Semin Reprod Med 2002; 20(3): 255-276
DOI: 10.1055/s-2002-35373
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Congenital Adrenal Hyperplasia due to 3β-Hydroxysteroid Dehydrogenase/ Δ54 Isomerase Deficiency

Jacques Simard1 , Anne Marie  Moisan1 , Yves Morel2
  • 1Laval University Medical Center (CHUL) Research Center and Laval University, Québec, Canada
  • 2Laboratoire de Biochimie Endocrinienne, INSERM U 329, Université de Lyon, and Hôpital Debrousse, Lyon, France
Further Information

Publication History

Publication Date:
12 November 2002 (online)

ABSTRACT

The 3β-hydroxysteroid dehydrogenase/Δ54 isomerase (3β-HSD) isoenzymes are responsible for the oxidation and isomerization of Δ5-3β-hydroxysteroid precursors into Δ4-ketosteroids, thus catalyzing an essential step in the formation of all classes of active steroid hormones. The 3β-HSD gene family should have evolved to facilitate differential patterns of tissue- and cell-specific expression and regulation involving multiple signal transduction pathways, which are activated by several growth factors, steroids, and cytokines. In humans, there are two 3β-HSD isoenzymes, which were chronologically designated type I and II encoded by HSD3B1 and HSD3B2 gene, respectively. HSD3B1 gene encodes the almost exclusive 3β-HSD isoenzyme expressed in the placenta and peripheral tissues, whereas HSD3B2 gene encodes the predominant 3β-HSD isoenzyme expressed in the adrenal gland, ovary, and testis and its deficiency is responsible for a rare form of congenital adrenal hyperplasia causing various degrees of salt-wasting in both sexes and incomplete masculinization of the external genitalia in genetic males. Although an elevated ratio of Δ5-/Δ 4 -steroids was considered to be the best biological parameter for the diagnosis of this autosomal recessive disorder, the most accurate criteria now appears to be the plasma levels of 17-OH-pregnenolone greater than 100 nmol/L following ACTH stimulation. To date a total of 34 mutations (including 5 frameshift, 4 nonsense, 1 in-frame deletion, 1 splicing, and 23 missense mutations) have been identified in the HSD3B2 gene in 56 individuals from 44 families suffering from classical 3β-HSD deficiency. In almost all the cases, the functional characterization of HSD3B2 mutations has provided a molecular explanation for the heterogeneous clinical presentation of this disorder. Indeed these experiments confirm that no functional 3βHSD type II isoenzyme is expressed in the adrenals and gonads of the patients suffering from a severe salt-wasting form, whereas the non-salt-losing form results from specific missense mutation(s) in the HSD3B2 gene, which causes an incomplete loss of enzymatic activity thus leaving sufficient enzymatic activity to prevent salt wasting. Moreover, various mutations appear to have a drastic effect upon stability of the protein, therefore providing molecular evidence of a new mechanism involved in classical 3β-HSD deficiency. Thus, the elucidation of the molecular basis of 3β-HSD deficiency has highlighted the fact that mutations in the HSD3B2 gene can result in a wide spectrum of molecular repercussions, which are associated with the different phenotypic manifestations of classical 3β-HSD deficiency and also provide valuable information concerning the structure-function relationships of the 3β-HSD superfamily.

REFERENCES

  • 1 Cherradi N, Defaye G, Chambaz E M. Dual subcellular localization of the 3β-hydroxysteroid dehydrogenase isomerase: characterization of the mitochondrial enzyme in the bovine adrenal cortex.  J Steroid Biochem Mol Biol . 1993;  46 773-779
  • 2 Cherradi N, Defaye G, Chambaz E M. Characterization of the 3β-hydroxysteroid dehydrogenase activity associated with bovine adrenocortical mitochondria.  Endocrinology . 1994;  134 1358-1364
  • 3 Cherradi N, Rossier M F, Vallotton M B. Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome p450scc and 3β-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells.  J Biol Chem . 1997;  272 7899-7907
  • 4 Luu-The V, Lachance Y, Labrie C. Full length cDNA structure and deduced amino acid sequence of human 3β-hydroxy-5-ene steroid dehydrogenase.  Mol Endocrinol . 1989;  3 1310-1312
  • 5 Sauer L A, Chapman J C, Dauchy R T. Topology of 3β-hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase in adrenal cortex mitochondria and microsomes.  Endocrinology . 1994;  134 751-759
  • 6 Thomas J L, Evans B W, Blanco G. Site-directed mutagenesis identifies amino acid residues associated with the dehydrogenase and isomerase activities of human type I (placental) 3β-hydroxysteroid dehydrogenase/isomerase.  J Steroid Biochem Mol Biol . 1998;  66 327-334
  • 7 Mason J I, Keeney D S, Bird I M. The regulation of 3β-hydroxysteroid dehydrogenase expression.  Steroids . 1997;  62 164-168
  • 8 Payne A H, Abbaszade I G, Clarke T R, Bain P A, Park C H. The multiple murine 3β-hydroxysteroid dehydrogenase isoforms: structure, function, and tissue- and developmentally specific expression.  Steroids . 1997;  62 169-175
  • 9 Simard J, Durocher F, Mebarki F. Molecular biology and genetics of the 3β-hydroxysteroid dehydrogenase/ delta5-delta4 isomerase gene family.  J Endocrinol . 1996;  150(suppl) S189-S207
  • 10 Mason J I, Naville D, Evans B W, Thomas J L. Functional activity of 3β-hydroxysteroid dehydrogenase/isomerase.  Endocr Res . 1998;  24 549-557
  • 11 Lachance Y, Luu-The V, Labrie C. Characterization of human 3β-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase gene and its expression in mammalian cells [published erratum appears in J Biol Chem 1992;267:3551].  J Biol Chem . 1990;  265 20469-20475
  • 12 Lorence M C, Murry B A, Trant J M, Mason J I. Human 3β-hydroxysteroid dehydrogenase/delta 5-4 isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids.  Endocrinology . 1990;  126 2493-2498
  • 13 Rheaume E, Lachance Y, Zhao H F. Structure and expression of a new complementary DNA encoding the almost exclusive 3β-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase in human adrenals and gonads.  Mol Endocrinol . 1991;  5 1147-1157
  • 14 Thomas J L, Frieden C, Nash W E, Strickler R C. An NADH-induced conformational change that mediates the sequential 3β-hydroxysteroid dehydrogenase/isomerase activities is supported by affinity labeling and the time-dependent activation of isomerase.  J Biol Chem . 1995;  270 21003-21008
  • 15 Luu-The V, Coté J, Labrie F. 1988 Purification and characterization of human placental 3β-hydroxysteroid dehydrogenase/5-4-isomerase (Abstract).  Clin Invest Med . 1988;  11(suppl) C32
  • 16 Luu-The V, Coté J, Labrie F. 1990 Purification of microsomal 3β-hydroxysteroid dehydrogenase/5-4-isomerase from human placenta.  Ann N Y Acad Sci . 1990;  595 386-388
  • 17 Nickson D A, McBride M W, Zeinali S. Molecular cloning and expression of human trophoblast antigen FDO161G and its identification as 3β-hydroxy-5-ene steroid dehydrogenase.  J Reprod Fertil . 1991;  93 149-156
  • 18 Dumont M, Van L T, Dupont E, Pelletier G, Labrie F. Characterization, expression, and immunohistochemical localization of 3β-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase in human skin.  J Invest Dermatol . 1992;  99 415-421
  • 19 Gingras S, Moriggl R, Groner B, Simard J. Induction of 3β-hydroxysteroid dehydrogenase/delta5-delta4 isomerase type 1 gene transcription in human breast cancer cell lines and in normal mammary epithelial cells by interleukin-4 and interleukin-13.  Mol Endocrinol . 1999;  13 66-81
  • 20 Gingras S, Simard J. Induction of 3β-hydroxysteroid dehydrogenase/isomerase type 1 expression by interleukin-4 in human normal prostate epithelial cells, immortalized keratinocytes, colon, and cervix cancer cell lines.  Endocrinology . 1999;  140 4573-4584
  • 21 Lachance Y, Luu-The V, Labrie C. Characterization of human 3β-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase gene and its expression in mammalian cells [erratum].  J Biol Chem . 1992;  267 3551
  • 22 Rheaume E, Simard J, Morel Y. Congenital adrenal hyperplasia due to point mutations in the type II 3β-hydroxysteroid dehydrogenase gene.  Nat Genet . 1992;  1 239-245
  • 23 Simard J, Rheaume E, Mebarki F. Molecular basis of human 3β-hydroxysteroid dehydrogenase deficiency.  J Steroid Biochem Mol Biol . 1995;  53 127-138
  • 24 Simard J, Rheaume E, Sanchez R. Molecular basis of congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase deficiency.  Mol Endocrinol . 1993;  7 716-728
  • 25 Lachance Y, Luu-The V, Verreault H. Structure of the human type II 3β-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3β-HSD) gene: adrenal and gonadal specificity.  DNA Cell Biol . 1991;  10 701-711
  • 26 Lorence M C, Corbin C J, Kamimura N, Mahendroo M S, Mason J I. Structural analysis of the gene encoding human 3β-hydroxysteroid dehydrogenase/delta 5-4-isomerase.  Mol Endocrinol . 1990;  4 1850-1855
  • 27 Berube D, Luu-The V, Lachance Y, Gagne R, Labrie F. Assignment of the human 3β-hydroxysteroid dehydrogenase gene (HSDB3) to the p13 band of chromosome 1.  Cytogenet Cell Genet . 1989;  52 199-200
  • 28 Morissette J, Rheaume E, Leblanc J F. Genetic linkage mapping of HSD3B1 and HSD3B2 encoding human types I and II 3β-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase close to D1S514 and the centromeric D1Z5 locus.  Cytogenet Cell Genet . 1995;  69 59-62
  • 29 Luu-The V, Lachance Y, Leblanc G, Labrie F. Human 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase: characterization of three additional related genes. Proceedings of the 74th Annual Endocrine Society Meeting, San Antonio, June 1992
  • 30 Bain P A, Meisler M H, Taylor B A, Payne A H. The genes encoding gonadal and nongonadal forms of 3β-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase are closely linked on mouse chromosome 3.  Genomics . 1993;  16 219-223
  • 31 McBride M W, McVie A J, Burridge S M. Cloning, expression, and physical mapping of the 3β-hydroxysteroid dehydrogenase gene cluster (HSD3BP1-HSD3BP5) in human.  Genomics . 1999;  61 277-284
  • 32 Russell A, Nazer H, Shams A, Sjovall J, Sutcliffe R. No linkage to the 3β-HSD gene cluster in a kindred affected with 3β-hydroxy-delta 5-C27-steroid dehydrogenase deficiency and early onset hepatic failure.  Hum Genet . 1995;  95 586-588
  • 33 Furster C. Hepatic and extrahepatic dehydrogenation/isomerization of 5-cholestene-3β,7α-diol: localization of 3β-hydroxy-delta 5-C27-steroid dehydrogenase in pig tissues and subcellular fractions.  Biochim Biophys Acta . 1999;  1436 343-353
  • 34 Filling C, Marschall H U, Prozorovski T. Structure-function relationships of 3β-hydroxysteroid dehydrogenases involved in bile acid metabolism.  Adv Exp Med Biol . 1999;  463 389-394
  • 35 Liu X Y, Dangel A W, Kelley R I. The gene mutated in bare patches and striated mice encodes a novel 3β-hydroxysteroid dehydrogenase.  Nat Genet . 1999;  22 182-187
  • 36 Wilson J D, Griffin J E, Russell D W. Steroid 5 alpha-reductase 2 deficiency.  Endocr Rev . 1993;  14 577-593
  • 37 Grumbach M, Conte F. Disorders of sex differentiation. In: Wilson JD, et al, eds. Williams Textbook of Endocrinology Philadelphia: WB Saunders 1999: 1303-1425
  • 38 Quigley C A. Disorders of sex determination and differentiation. In: Jameson JL, ed. Principles of Molecular Medicine Totowa, NJ: Humana Press 1998: 527-559
  • 39 Dupont E, Labrie F, Luu-The V, Pelletier G. Immunocytochemical localization of 3β-hydroxysteroid dehydrogenase/ delta 5-delta 4-isomerase in human ovary.  J Clin Endocrinol Metab . 1992;  74 994-998
  • 40 Kaplan S, Grumbach M. Pituitary and placental gonadotropin and sex steroids in the human and sub-human primate fetus.  J Clin Endocrinol Metab . 1978;  7 487-511
  • 41 Goldman A S, Yakovac W C, Bongiovanni A M. Development of activity of 3β-hydroxysteroid dehydrogenase in human fetal tissues and in two anencephalic newborns.  J Clin Endocrinol Metab . 1966;  26 14-22
  • 42 George F W, Wilson J D. The regulation of androgen and estrogen formation in fetal gonads.  Ann Biol Anim Biochem Biophys . 1979;  19 1297-1306
  • 43 Baillie A, Niemi M, Ikanen M. 3β-Hydroxysteroid dehydrogenase activity in the human foetal testis.  Acta Endocrinol (Copenh) . 1965;  48 429-438
  • 44 Milewich L, Shaw C E, Doody K M. 3β-Hydroxysteroid dehydrogenase activity in glandular and extraglandular human fetal tissues.  J Clin Endocrinol Metab . 1991;  73 1134-1140
  • 45 Parker Jr R C, Faye-Petersen O, Stankovic A K, Mason J I, Grizzle W E. Immunohistochemical evaluation of the cellular localization and ontogeny of 3β-hydroxysteroid dehydrogenase/delta 5-4 isomerase in the human fetal adrenal gland.  Endocr Res . 1995;  21 69-80
  • 46 Dupont E, Luu-The V, Labrie F, Pelletier G. Ontogeny of 3β-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3β-HSD) in human testis as studied by immunocytochemistry.  J Androl . 1991;  12 161-164
  • 47 Seron Ferre M. Steroid production by definitive and fetal zones of the human fetal adrenal gland.  J Clin Endocrinol Metab . 1978;  47 603-609
  • 48 Simonian M H, Gill G N. Regulation of the fetal human adrenal cortex: effects of adrenocorticotropin on growth and function of monolayer cultures of fetal and definitive zone cells.  Endocrinology . 1981;  108 1769-1779
  • 49 Dupont E, Luu-The V, Labrie F, Pelletier G. Ontogeny of 3β-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3β-HSD) in human adrenal gland performed by immunocytochemistry.  Mol Cell Endocrinol . 1990;  74 R7-R10
  • 50 Doody K M, Carr B R, Rainey W E. 3β-Hydroxysteroid dehydrogenase/isomerase in the fetal zone and neocortex of the human fetal adrenal gland.  Endocrinology . 1990;  126 2487-2492
  • 51 Mesiano S, Coulter C L, Jaffe R B. Localization of cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17 alpha-hydroxylase/17,20-lyase, and 3β-hydroxysteroid dehydrogenase isomerase steroidogenic enzymes in human and rhesus monkey fetal adrenal glands: reappraisal of functional zonation.  J Clin Endocrinol Metab . 1993;  77 1184-1189
  • 52 Voutilainen R, Ilvesmaki V, Miettinen P J. Low expression of 3β-hydroxy-5-ene steroid dehydrogenase gene in human fetal adrenals in vivo: adrenocorticotropin and protein kinase C-dependent regulation in adrenocortical cultures.  J Clin Endocrinol Metab . 1991;  72 761-767
  • 53 Dupont E, Luu-The V, Labrie F, Pelletier G. Light microscopic immunocytochemical localization of 3β-hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase in the gonads and adrenal glands of the guinea pig.  Endocrinology . 1990;  126 2906-2909
  • 54 Albrecht E D, Aberdeen G W, Babischkin J S, Tilly J L, Pepe G J. Biphasic developmental expression of adrenocorticotropin receptor messenger ribonucleic acid levels in the baboon fetal adrenal gland.  Endocrinology . 1996;  137 1292-1298
  • 55 Coulter C L, Goldsmith P C, Mesiano S. Functional maturation of the primate fetal adrenal in vivo: II. Ontogeny of corticosteroid synthesis is dependent upon specific zonal expression of 3β-hydroxysteroid dehydrogenase/isomerase.  Endocrinology . 1996;  137 4953-4959
  • 56 Herman-Giddens M E, Slora E, Wasserman R C. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the pediatric research in office settings network.  Pediatrics . 1997;  99 505-512
  • 57 Cutler Jr B G, Glenn M, Bush M. Adrenarche: a survey of rodents, domestic animals, and primates.  Endocrinology . 1978;  103 2112-2118
  • 58 Dardis A, Saraco N, Rivarola M A, Belgorosky A. Decrease in the expression of the 3β-hydroxysteroid dehydrogenase gene in human adrenal tissue during prepuberty and early puberty: implications for the mechanism of adrenarche.  Pediatr Res . 1999;  45 384-388
  • 59 Gell J S, Carr B R, Sasano H. Adrenarche results from development of a 3β-hydroxysteroid dehydrogenase- deficient adrenal reticularis.  J Clin Endocrinol Metab . 1998;  83 3695-3701
  • 60 Conley A J, Bird I M. The role of cytochrome P450 17 alpha-hydroxylase and 3β-hydroxysteroid dehydrogenase in the integration of gonadal and adrenal steroidogenesis via the delta 5 and delta 4 pathways of steroidogenesis in mammals.  Biol Reprod . 1997;  56 789-799
  • 61 Mapes S, Corbin C J, Tarantal A, Conley A. The primate adrenal zona reticularis is defined by expression of cytochrome b5, 17alpha-hydroxylase/17,20-lyase cytochrome P450 (P450c17) and NADPH-cytochrome P450 reductase (reductase) but not 3β-hydroxysteroid dehydrogenase/delta5-4 isomerase (3β-HSD).  J Clin Endocrinol Metab . 1999;  84 3382-3385
  • 62 Miller W. The regulation of 17,20 lyase activity.  Steroids . 1997;  62 133-142
  • 63 Bois E, Mornet E, Chompret A. Congenital adrenal hyperplasia (21-OH) in France: population genetics.  Arch Fr Pediatr . 1985;  42 175-179
  • 64 Thilen A, Larsson A. Congenital adrenal hyperplasia in Sweden 1969-1986; prevalence, symptoms and age at diagnosis.  Acta Paediatr Scand . 1990;  79 168-175
  • 65 Donohoue P, Parker K, Migeon C. Congenital adrenal hyperplasia. In: Scriver C, Sly W, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease New York: Mc-Graw-Hill 1995: 2929-2966
  • 66 Forest M G. Diagnosis and treatment of disorders of sexual development. In: Degroot LJ, ed. Endocrinology 3rd ed. Vol. 2. Montreal: WB Saunders 1995: 1901-1937
  • 67 Wilson R, New M I. Congenital adrenal hyperplasia. In: Jameson JL, ed. Principles of Molecular Medicine Totowa, NJ: Humana Press 1998: 481-493
  • 68 Bongiovanni A M. Unusual steroid pattern in congenital adrenal hyperplasia: deficiency of 3β-hydroxysteroid dehydrogenase.  J Clin Endocrinol . 1961;  21 860-862
  • 69 Bongiovanni A M. The adrenogenital syndrome with deficiency of 3b-hydroxy dehydrogenase.  J Clin Invest . 1962;  41 2086-2092
  • 70 Moisan A M, Ricketts M L, Tardy V. New insight into the molecular basis of 3β-hydroxysteroid dehydrogenase deficiency: identification of eight mutations in the HSD3B2 gene eleven patients from seven new families and comparison of the functional properties of twenty-five mutant enzymes.  J Clin Endocrinol Metab . 1999;  84 4410-4425
  • 71 Morel Y, Mebarki F, Rheaume E. Structure-function relationships of 3β-hydroxysteroid dehydrogenase: contribution made by the molecular genetics of 3β-hydroxysteroid dehydrogenase deficiency.  Steroids . 1997;  62 176-184
  • 72 Pang S. The molecular and clinical spectrum of 3β-hydroxysteroid dehydrogenase deficiency disorder.  Trends Endocrinol Metab . 1998;  9 82-86
  • 73 Russell A J, Wallace A M, Forest M G. Mutation in the human gene for 3β-hydroxysteroid dehydrogenase type II leading to male pseudohermaphroditism without salt loss.  J Mol Endocrinol . 1994;  12 225-237
  • 74 Eldar-Geva T, Hurwitz A, Vecsei P. Secondary biosynthetic defects in women with late-onset congenital adrenal hyperplasia.  N Engl J Med . 1990;  323 855-863
  • 75 Medina M, Herrera J, Flores M. Normal ovarian function in a mild form of late-onset 3β-hydroxysteroid dehydrogenase deficiency.  Fertil Steril . 1986;  46 1021-1025
  • 76 Pang S Y, Lerner A J, Stoner E. Late-onset adrenal steroid 3β-hydroxysteroid dehydrogenase deficiency: I. A cause of hirsutism in pubertal and postpubertal women.  J Clin Endocrinol Metab . 1985;  60 428-439
  • 77 Schram P, Zerah M, Mani P. Nonclassical 3β-hydroxysteroid dehydrogenase deficiency: a review of our experience with 25 female patients.  Fertil Steril . 1992;  58 129-136
  • 78 Zerah M, Rheaume E, Mani P. No evidence of mutations in the genes for type I and type II 3β-hydroxysteroid dehydrogenase (3βHSD) in nonclassical 3βHSD deficiency.  J Clin Endocrinol Metab . 1994;  79 1811-1817
  • 79 Chang Y T, Zhang L, Alkaddour H S. Absence of molecular defect in the type II 3β-hydroxysteroid dehydrogenase (3β-HSD) gene in premature pubarche children and hirsute female patients with moderately decreased adrenal 3β-HSD activity.  Pediatr Res . 1995;  37 820-824
  • 80 Forest M G, Mebatki F, David A, Bureau L, Morel Y. Diagnosis of partial 3β-hydroxysteroid dehydrogenase (3β-HSD) questioned: lessons from long-term study and molecular biology.  Horm Res . 1995;  44 55
  • 81 Sakkal-Alkaddour H, Zhang L, Yang X. Studies of 3β-hydroxysteroid dehydrogenase genes in infants and children manifesting premature pubarche and increased adrenocorticotropin-stimulated delta 5-steroid levels.  J Clin Endocrinol Metab . 1996;  81 3961-3965
  • 82 Mebarki F. Etude moléculaire de causes de pseudohermaphrodisme masculin le syndrome d'insensibilité aux androgenes, le deficit en enzyme de la stériodogénese 3β-HSD [doctorat].  Lyon, France: l'Université Lyon; 1995
  • 83 Moran C, Knochenhauer E S, Azziz R. Non-classic adrenal hyperplasia in hyperandrogenism: a reappraisal.  J Endocrinol Invest . 1998;  21 707-720
  • 84 de Peretti E, Forest M G, Feit J P, David M. Endocrine studies in two children with male pseudohermaphroditism due to 3β-hydroxysteroid dehydrogenase (3β-HSD) defect. In: Genazzani AR, Thijssen JHH, Siiteri PK, eds. Adrenal Androgens New York: Raven Press 1980: 141-145
  • 85 Heinrich U E, Bettendorf M, Vecsei P. Male pseudohermaphroditism caused by nonsalt-losing congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase (3β-HSD) deficiency.  J Steroid Biochem Mol Biol . 1993;  45 83-85
  • 86 Janne O, Perheentupa J, Vihko R. Plasma and urinary steroids in an eight-year-old boy with 3-β-hydroxysteroid dehydrogenase deficiency.  J Clin Endocrinol Metab . 1970;  31 162-165
  • 87 Kenny F M, Reynolds J W, Green O C. Partial 3-hydroxysteroid dehydrogenase (3β-HSD) deficiency in a family with congenital adrenal hyperplasia: evidence for increasing 3β-HSD activity with age.  Pediatrics . 1971;  48 756-765
  • 88 Parks G A, Bermudez J A, Anast C S, Bongiovanni A M, New M I. Pubertal boy with the 3β-hydroxysteroid dehydrogenase defect.  J Clin Endocrinol Metab . 1971;  33 269-278
  • 89 Zachmann M, Vollmin J A, Murset G, Curtius H C, Prader A. Unusual type of congenital adrenal hyperplasia probably due to deficiency of 3-β-hydroxysteroid dehydrogenase: case report of a surviving girl and steroid studies.  J Clin Endocrinol Metab . 1970;  30 719-726
  • 90 Gendrel D, Chaussain J L, Roger M, Job J C. [Congenital adrenal hyperplasia due to blockade of 3-β-hydroxysteroid dehydrogenase].  Arch Fr Pediatr . 1979;  36 647-655
  • 91 Nahoul K, Perrin C, Leymarie P, Job J C. [Elevated levels of plasma 4-ene steroids in a case of congenital deficiency of 3β-hydroxysteroid dehydrogenase].  Ann Endocrinol . 1989;  50 58-63
  • 92 Rosenfield R L, Rich B H, Wolfsdorf J I. Pubertal presentation of congenital delta 5-3 β-hydroxysteroid dehydrogenase deficiency.  J Clin Endocrinol Metab . 1980;  51 345-353
  • 93 Cara J F, Moshang Jr T, Bongiovanni A M, Marx B S. Elevated 17-hydroxyprogesterone and testosterone in a newborn with 3-β-hydroxysteroid dehydrogenase deficiency.  N Engl J Med . 1985;  313 618-621
  • 94 Mendonca B B, Bloise W, Arnhold I J. Male pseudohermaphroditism due to nonsalt-losing 3β-hydroxysteroid dehydrogenase deficiency: gender role change and absence of gynecomastia at puberty.  J Steroid Biochem . 1987;  28 669-675
  • 95 Pang S, Levine L S, Stoner E. Nonsalt-losing congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase deficiency with normal glomerulosa function.  J Clin Endocrinol Metab . 1983;  56 808-818
  • 96 Alos N, Moisan A M, Ward L. A novel A10E homozygous mutation in the HSD3B2 gene causing severe salt-wasting 3β-hydroxysteroid dehydrogenase deficiency in 46 XX and 46 XY French Canadians: evaluation of gonadal function after puberty.  J Clin Endocrinol Metab . 2000;  85 1968-1974
  • 97 Zachmann M, Forest M G, De Peretti E. 3β-Hydroxysteroid dehydrogenase deficiency: follow-up study in a girl with pubertal bone age.  Horm Res . 1979;  11 292-302
  • 98 Yoshimoto M, Kawaguchi T, Mori R. Pubertal changes in testicular 3β-hydroxysteroid dehydrogenase activity in a male with classical 3β-hydroxysteroid dehydrogenase deficiency showing spontaneous secondary sexual maturation.  Horm Res . 1997;  48 83-87
  • 99 Mendonca B B, Russell A J, Vasconcelos-Leite M. Mutation in 3β-hydroxysteroid dehydrogenase type II associated with pseudohermaphroditism in males and premature pubarche or cryptic expression in females.  J Mol Endocrinol . 1994;  12 119-122
  • 100 de Peretti E, Forest M G. Pitfalls in the etiological diagnosis of congenital adrenal hyperplasia in the early neonatal period.  Horm Res . 1982;  16 10-22
  • 101 Labrie F, Belanger A, Luu-The V. Role of DHEA transformation into androgens and estrogens in peripheral intracrine tissues. In: Thijssen J, Nieuwenhuyse H, eds. DHEA: A Comprehensive Review New York: Parthenon Publishing 1999: 69-103
  • 102 Rosenfield R L, Barmach de Niepomniszsze A, Kenny F M, Genel M. The response to human chorionic gonadotropin (HCG) administration in boys with and without delta5-3β-hydroxysteroid dehydrogenase deficiency.  J Clin Endocrinol Metab . 1974;  39 370-374
  • 103 Labrie F. Intracrinology.  Mol Cell Endocrinol . 1991;  78 C113-C118
  • 104 Labrie F, Bélanger A, Cusan L, Candas B. Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology.  J Clin Endocrinol Metab . 1997;  82 2403-2409
  • 105 Labrie F, Belanger A, Cusan L, Gomez J L, Candas B. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging.  J Clin Endocrinol Metab . 1997;  82 2396-2402
  • 106 Martel C, Melner M H, Gagne D, Simard J, Labrie F. Widespread tissue distribution of steroid sulfatase, 3β-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3β-HSD), 17β-HSD 5 alpha-reductase and aromatase activities in the rhesus monkey.  Mol Cell Endocrinol . 1994;  104 103-111
  • 107 Zhang L, Mason J I, Naiki Y. Characterization of two novel homozygous missense mutations involving codon 6 and 259 of type II 3β-hydroxysteroid dehydrogenase (3βHSD) gene causing, respectively, nonsalt-wasting and salt-wasting 3βHSD deficiency disorder.  J Clin Endocrinol Metab . 2000;  85 1678-1685
  • 108 Baker M E, Blasco R. Expansion of the mammalian 3β-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus.  FEBS Lett . 1992;  301 89-93
  • 109 Rheaume E, Sanchez R, Mebarki F. Identification and characterization of the G15D mutation found in a male patient with 3β-hydroxysteroid dehydrogenase (3β-HSD) deficiency: alteration of the putative NAD-binding domain of type II 3β-HSD.  Biochemistry . 1995;  34 2893-2900
  • 110 Lesk A M. NAD-binding domains of dehydrogenases.  Curr Opin Struct Biol . 1995;  5 775-783
  • 111 Scrutton N S, Berry A, Perham R N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering.  Nature . 1990;  343 38-43
  • 112 Simard J, de Launoit Y, Labrie F. Characterization of the structure-activity relationships of rat types I and II 3β-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase by site-directed mutagenesis and expression in HeLa cells.  J Biol Chem . 1991;  266 14842-14845
  • 113 Krozowski Z. 11b-Hydroxysteroid dehydrogenase and the short-chain alcohol dehydrogenase (SCAD) superfamily.  Mol Cell Endocrinol . 1992;  84 C25-C31
  • 114 Thomas J L, Nash W E, Myers R P, Crankshaw M W, Strickler R C. Affinity radiolabeling identifies peptides and amino acids associated with substrate binding in human placental 3β-hydroxy-delta(5)-steroid dehydrogenase.  J Biol Chem . 1993;  268 18507-18512
  • 115 Mebarki F, Sanchez R, Rheaume E. Nonsalt-losing male pseudohermaphroditism due to the novel homozygous N100S mutation in the type II 3β-hydroxysteroid dehydrogenase gene.  J Clin Endocrinol Metab . 1995;  80 2127-2134
  • 116 Sanchez R, Mebarki F, Rheaume E. Functional characterization of the novel L108W and P186L mutations detected in the type II 3β-hydroxysteroid dehydrogenase gene of a male pseudohermaphrodite with congenital adrenal hyperplasia.  Hum Mol Genet . 1994;  3 1639-1645
  • 117 Sanchez R, Rheaume E, Laflamme N. Detection and functional characterization of the novel missense mutation Y254D in type II 3β-hydroxysteroid dehydrogenase (3b HSD) gene of a female patient with nonsalt-losing 3βHSD deficiency.  J Clin Endocrinol Metab . 1994;  78 561-567
  • 118 Rheaume E, Sanchez R, Simard J. Molecular basis of congenital adrenal hyperplasia in two siblings with classical nonsalt-losing 3β-hydroxysteroid dehydrogenase deficiency.  J Clin Endocrinol Metab . 1994;  79 1012-1018
  • 119 Fisher R, Eades S, Taylor N. Two brothers with congenital adrenal hyperplasia due to partial 3β-hydroxysteroid dehydrogenase deficiency.  Anal Clin Biochem . 1988;  25(suppl) 133-135
  • 120 Marui S, Torrealba I M, Russell A J, Latronico A C, Sutcliffe R G, Mendonca B B. A novel homozygous nonsense mutations E135* in the type II 3β-hydroxysteroid dehydrogenase gene in a girl with salt-losing congenital adrenal hyperplasia. Mutations in brief no. 168. Online.  Hum Mutat . 1998;  12 139
  • 121 Tajima T, Fujieda K, Nakae J. Molecular analysis of type II 3β-hydroxysteroid dehydrogenase gene in Japanese patients with classical 3β-hydroxysteroid dehydrogenase deficiency.  Hum Mol Genet . 1995;  4 969-971
  • 122 Simard J, Rheaume E, Leblanc J F. Congenital adrenal hyperplasia caused by a novel homozygous frameshift mutation 273 delta AA in type II 3β-hydroxysteroid dehydrogenase gene (HSD3B2) in three male patients of Afghan/ Pakistani origin.  Hum Mol Genet . 1994;  3 327-330
  • 123 Zhang L, Sakkal-Alkaddour H, Chang Y T, Yang X, Pang S. A new compound heterozygous frameshift mutation in the type II 3β-hydroxysteroid dehydrogenase (3β-HSD) gene causes salt-wasting 3β-HSD deficiency congenital adrenal hyperplasia.  J Clin Endocrinol Metab . 1996;  81 291-295
  • 124 Sutcliffe R G, Russell A J, Edwards C R, Wallace A M. Human 3β-hydroxysteroid dehydrogenase: genes and phenotypes.  J Mol Endocrinol . 1996;  17 1-5
  • 125 Marui S, Castro M, Latronico A C. Mutations in type II 3β-Hydroxysteroid dehydrogenase (HSD3B2) gene can cause premature pubarche in girls.  Clin Endocrinol (Oxf) . 2000;  52 67-75
  • 126 Chang Y, Wang J, Pang S. Molecular basis of the type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) gene in patients with non-classic (late-onset) 3β-HSD deficiency congenital adrenal hyperplasia (CAH). Presented at the 75th Annual Endocrine Society Meeting, Las Vegas, June 1993
  • 127 Nayak S, Lee P A, Witchel S F. Variants of the type II 3β-hydroxysteroid dehydrogenase gene in children with premature pubic hair and hyperandrogenic adolescents.  Mol Genet Metab . 1998;  64 184-192
  • 128 Tajima T, Nishi Y, Takase A. No genetic mutation in type II 3β-hydroxysteroid dehydrogenase gene in patients with biochemical evidence of enzyme deficiency.  Horm Res . 1997;  47 49-53
  • 129 LaFont M. Le déficit en 3β-ol-déshydrogénase chez l'enfant [Ph.D  thesis]. Lyon, France: Université Claude-Bernard-Lyon I; 1984
  • 130 Zachmann M, Kempken B, Anner I, Pezzoli V. Age-related differences in the excretion of delta 5 steroids (D5S) in two related girls with 3β-hydroxysteroid dehydrogenase deficiency.  Pediatr Res . 1988;  24 543
  • 131 Park O K, Mayo K E. Transient expression of progesterone receptor messenger RNA in ovarian granulosa cells after the preovulatory luteinizing hormone surge.  Mol Endocrinol . 1991;  5 967-978
  • 132 Katsumata N, Tanae A, Yasunaga T. A novel missense mutation in the type II 3β-hydroxysteroid dehydrogenase gene in a family with classical salt-wasting congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase deficiency.  Hum Mol Genet . 1995;  4 745-746
  • 133 Yoshimoto M, Baba T, Yokoo T. Case of salt-losing congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase deficiency: the first Japanese patient.  Acta Paediatr Jpn . 1988;  92 1964-1970
  • 134 Van Seters P A, Degenhart H, Moolenaar A J. Biochemical concealment of 3βHSD deficiency by long-term steroid substitution.  J Steroid Biochem . 1989;  36(suppl) 174
  • 135 Wolthers B G, de Vries J I, Volmer M, Nagel G T. Detection of 3β-hydroxysteroid dehydrogenase deficiency in a newborn by means of urinary steroid analysis.  Clin Chim Acta . 1987;  169 109-116
  • 136 McCartin S, Russell A J, Fisher R A. Phenotypic variability and origins of mutations in the gene encoding 3β-hydroxysteroid dehydrogenase type II.  J Mol Endocrinol . 2000;  24 75-82
  • 137 Chang Y T, Kulin H E, Garibaldi L. Hypothalamic-pituitary-gonadal axis function in pubertal male and female siblings with glucocorticoid-treated nonsalt-wasting 3β-hydroxysteroid dehydrogenase deficiency congenital adrenal hyperplasia.  J Clin Endocrinol Metab . 1993;  77 1251-1257
  • 138 Babalola G O, Shapiro B H. Changes in the expression of cytochrome P450c17 associated with ovarian cystic follicles: an immunocytochemical and enzymatic analysis of porcine ovaries.  J Steroid Biochem Mol Biol . 1992;  42 581-587
  • 139 Barnes R B, Ehrmann D A, Brigell D F, Rosenfield R L. Ovarian steroidogenic responses to gonadotropin-releasing hormone agonist testing with nafarelin in hirsute women with adrenal responses to adrenocorticotropin suggestive of 3β-hydroxy-delta 5-steroid dehydrogenase deficiency.  J Clin Endocrinol Metab . 1993;  76 450-455
  • 140 Barnes R B, Rosenfield R L, Burstein S, Ehrmann D A. Pituitary-ovarian responses to nafarelin testing in the polycystic ovary syndrome.  N Engl J Med . 1989;  320 559-565
  • 141 Paula F J, Dick-de-Paula I, Pontes A. Hyperandrogenism due to 3β-hydroxysteroid dehydrogenase deficiency with accessory adrenocortical tissue: a hormonal and metabolic evaluation.  Braz J Med Biol Res . 1994;  27 1149-1158
    >