Semin Reprod Med 2002; 20(3): 205-216
DOI: 10.1055/s-2002-35385
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Disorders of Androgen Biosynthesis

Walter L. Miller
  • Professor, Department of Pediatrics, The Metabolic Research Unit, and the Center for Reproductive Sciences; and Director, Child Health Research Center, University of California, San Francisco, California
Further Information

Publication History

Publication Date:
12 November 2002 (online)

ABSTRACT

Disorders of androgen biosynthesis are a relatively rare cause of sexual ambiguity in 46,XY genetic males, but genetic disorders characterized by excessive androgen synthesis are a common cause of virilization in 46,XX genetic females. Understanding of these disorders is relatively simple if one is familiar with the components of the various steroidogenic pathways. The biosynthesis of androgens requires the steroidogenic acute regulatory protein (StAR) and the steroidogenic enzymes P450scc, P450c17, 3βHSDII, 17βHSDIII, and 5α-reductase. Deficiencies have been described in all of these, leading to male pseudohermaphroditism. Other steroidogenic enzymes not involved in androgen biosynthesis, such as P450c21, P450c11β, and P450aro, must also be considered, as mutations in these can result in overproduction of androgens, resulting in female pseudohermaphroditism.

REFERENCES

  • 1 Gwynne  J T, Strauss III F J. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands.  Endocr Rev . 1982;  3 299-329
  • 2 Strauss III J F, Miller W L. Molecular basis of ovarian steroid synthesis. In: Hillier SG, ed. Ovarian Endocrinology Oxford, UK: Blackwell Scientific 1991: 25-72
  • 3 Anderson R A, Byrum R S, Coates P M, Sando G N. Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease.  Proc Natl Acad Sci U S A . 1994;  91 2718-2722
  • 4 Miller W L. Molecular biology of steroid hormone synthesis.  Endocr Rev . 1988;  9 295-318
  • 5 Penning T M. Molecular endocrinology of hydroxysteroid dehydrogenases.  Endocr Rev . 1997;  18 281-305
  • 6 Chung B, Matteson K J, Voutilainen R, Mohandas T K, Miller W L. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta.  Proc Natl Acad Sci U S A . 1986;  83 8962-8966
  • 7 Yang X, Iwamoto K, Wang M. Inherited congenital adrenal hyperplasia in the rabbit is caused by a deletion in the gene encoding cytochrome P450 cholesterol side-chain cleavage enzyme.  Endocrinology . 1993;  132 1977-1982
  • 8 Tajima T, Fujieda K, Kouda N, Nakae J, Miller W L. Heterozygous mutation in the cholesterol side chain cleavage enzyme (P450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency.  J Clin Endocrinol Metab . 2001;  86 3820-3825
  • 9 Lin D, Shi Y, Miller W L. Cloning and sequence of the human adrenodoxin reductase gene.  Proc Natl Acad Sci U S A . 1990;  87 8516-8520
  • 10 Chang C-Y, Wu D-A, Lai C-C, Miller W L, Chung B. Cloning and structure of the human adrenodoxin gene.  DNA . 1988;  7 609-615
  • 11 Picado-Leonard J, Voutilainen R, Kao L. Human adrenodoxin: cloning of three cDNAs and cycloheximide enhancement in JEG-3 cells.  J Biol Chem . 1988;  263 3240-3244
  • 12 Brentano S T, Black S M, Lin D, Miller W L. cAMP post-transcriptionally diminishes the abundance of adrenodoxin reductase mRNA.  Proc Natl Acad Sci U S A . 1992;  89 4099-4103
  • 13 Stocco D M, Clark B J. Regulation of the acute production of steroids in steroidogenic cells.  Endocr Rev . 1996;  17 221-244
  • 14 Clark B J, Wells J, King S R, Stocco D M. The purification, cloning and expression of a novel luteinizing hormone- induced mitochondrial protein in MA-10 mouse Leydig tumor cells: characterization of the steroidogenic acute regulatory protein (StAR).  J Biol Chem . 1994;  269 28314-28322
  • 15 Lin D, Sugawara T, Strauss III F J. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis.  Science . 1995;  267 1828-1831
  • 16 Papadopoulos V. Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function.  Endocr Rev . 1993;  14 222-240
  • 17 Kirkland R T, Kirkland J L, Johnson C M. Congenital lipoid adrenal hyperplasia in an eight-year-old phenotypic female.  J Clin Endocrinol Metab . 1973;  36 488-496
  • 18 Hauffa B P, Miller W L, Grumbach M M, Conte F A, Kaplan S L. Congenital adrenal hyperplasia due to deficient cholesterol side-chain cleavage activity (20,22 desmolase) in a patient treated for 18 years.  Clin Endocrinol (Oxf) . 1985;  23 481-493
  • 19 Bose H S, Sugawara T, Strauss III F J, Miller W L. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia.  N Engl J Med . 1996;  335 1870-1878
  • 20 Nakae J, Tajima T, Sugawara T. Analysis of the steroidogenic acute regulatory protein (StAR) gene in Japanese patients with congenital lipoid adrenal hyperplasia.  Hum Mol Genet . 1997;  6 571-576
  • 21 Voutilainen R, Miller W L. Developmental expression of genes for the steroidogenic enzymes P450scc (20,22 desmolase), P450c17 (17α-hydroxylase/17/20 lyase) and P450c21 (21-hydroxylase) in the human fetus.  J Clin Endocrinol Metab . 1986;  63 1145-1150
  • 22 Bose H S, Pescovitz O H, Miller W L. Spontaneous feminization in a 46,XX female patient with congenital lipoid adrenal hyperplasia caused by a homozygous frame-shift mutation in the steroidogenic acute regulatory protein.  J Clin Endocrinol Metab . 1997;  82 1511-1515
  • 23 Fujieda K, Tajima T, Nakae J. Spontaneous puberty in 46, XX subjects with congenital lipoid adrenal hyperplasia.  J Clin Invest . 1997;  99 1265-1271
  • 24 Caron K, Soo S-C, Wetsel W. Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia.  Proc Natl Acad Sci U S A . 1997;  94 11540-11545
  • 25 Hasegawa T, Zhao L P, Caron K M. Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice.  Mol Endocrinol . 2000;  14 1462-1471
  • 26 Mellon S H, Deschepper C F. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain.  Brain Res . 1993;  629 283-292
  • 27 Sugawara T, Holt J A, Driscoll D. Human steroidogenic acute regulatory protein (StAR): functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and an expressed pseudogene to chromosome 13.  Proc Natl Acad Sci U S A . 1995;  92 4778-4782
  • 28 Arakane F, Sugawara T, Nishino H. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial targeting sequence: Implications for the mechanism of StAR action.  Proc Natl Acad Sci U S A . 1996;  93 13731-13736
  • 28a Bose H S, Lingappa V R, Miller W L. Rapid regulation of steroidogenesis by mitochondrial protein import.  Nature . 2002;  417 87-91
  • 29 Bose H S, Whittal R M, Baldwin M A, Miller W L. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule.  Proc Natl Acad Sci U S A . 1999;  96 7250-7255
  • 30 Moog-Lutz C, Tomasetto C, Régnier C H. MLN64 exhibits homology with the steroidogenic acute regulatory protein (StAR) and is over-expressed in human breast carcinomas.  Int J Cancer . 1997;  71 183-191
  • 31 Bose H S, Whittal R M, Huang M C, Baldwin M A, Miller W L. N-218 MLN64, a protein with StAR-like steroidogenic activity is folded and cleaved similarly to StAR.  Biochemistry . 2000;  39 11722-11731
  • 32 Thomas J L, Myers R P, Strickler R C. Human placental 3b-hydroxy-5-ene-steroid dehydrogenase and steroid 5→4-ene-isomerase: purification from mitochondria and kinetic profiles, biophysical characterization of the purified mitochondrial and microsomal enzymes.  J Steroid Biochem . 1989;  33 209-217
  • 33 Lorence M C, Murry B A, Trant J M, Mason J I. Human 3β-hydroxysteroid dehydrogenase/Δ5→Δ4 isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids.  Endocrinology . 1990;  126 2493-2498
  • 34 Lee T C, Miller W L, Auchus R J. Medroxyprogesterone acetate and dexamethasone are competitive inhibitors of different human steroidogenic enzymes.  J Clin Endocrinol Metab . 1999;  84 2104-2110
  • 35 Morel Y, Mébarke F, Rhéaume E. Structure-function relationships of 3β-hydroxysteroid dehydrogenase: contribution made by the molecular genetics of 3β-hydroxysteroid dehydrogenase deficiency.  Steroids . 1997;  62 176-184
  • 36 Moisan A M, Ricketts M L, Tardy V. New insight into the molecular basis of 3β-hydroxysteroid dehydrogenase deficiency: identification of eight mutations in the HSD3B2 gene eleven patients from seven new families and comparison of the functional properties of twenty-five mutant enzymes.  J Clin Endocrinol Metab . 1999;  84 4410-4425
  • 37 Chang Y T, Zhang L, Alkaddour H S. Absence of molecular defect in the type II 3β-hydroxysteroid dehydrogenase (3β-HSD) gene in premature pubarche children and hirsute female patients with moderately decreased adrenal 3β-HSD activity.  Pediatr Res . 1995;  37 820-824
  • 38 Sakkal-Alkaddour H, Zhang L, Yang X. Studies of 3β-hydroxysteroid dehydrogenase genes in infants and children manifesting premature pubarche and increased adrenocorticotropin-stimulated Δ5-steroid levels.  J Clin Endocrinol Metab . 1996;  81 3961-3965
  • 39 Pang S. The molecular and clinical spectrum of 3β-hydroxysteroid dehydrogenase deficiency disorder.  Trends Endocrinol Metab . 1998;  9 82-86
  • 40 Auchus R J, Lee T C, Miller W L. Cytochrome b 5 augments the 17,20 lyase activity of human P450c17 without direct electron transfer.  J Biol Chem . 1998;  273 3158-3165
  • 41 Nakajin S, Shinoda M, Haniu M, Shively J E, Hall P F. C21 steroid side-chain cleavage enzyme from porcine adrenal microsomes: purification and characterization of the 17α-hydroxylase/C17,20 lyase cytochrome P450.  J Biol Chem . 1984;  259 3971-3976
  • 42 Zuber M X, Simpson E R, Waterman M R. Expression of bovine 17α-hydroxylase cytochrome P450 cDNA in non-steroidogenic (COS-1) cells.  Science . 1986;  234 1258-1261
  • 43 Matteson K J, Picado-Leonard J, Chung B, Mohandas T K, Miller W L. Assignment of the gene for adrenal P450c17 (17α-hydroxylase/17,20 lyase) to human chromosome 10.  J Clin Endocrinol Metab . 1986;  63 789-791
  • 44 Picado-Leonard J, Miller W L. Cloning and sequence of the human gene encoding P450c17 (steroid 17α-hydroxylase/ 17,20 lyase): similarity to the gene for P450c21.  DNA . 1987;  6 439-448
  • 45 Zhang L, Rodriguez H, Ohno S, Miller W L. Serine phosphorylation of human P450c17 increases 17,20 lyase activity: implications for adrenarche and for the polycystic ovary syndrome.  Proc Natl Acad Sci U S A . 1995;  92 10619-10623
  • 46 Voutilainen R, Tapanainen J, Chung B, Matteson K J, Miller W L. Hormonal regulation of P450scc (20,22 desmolase) and P450c17 (17α-hydroxylase/17,20-lyase) in cultured human granulosa cells.  J Clin Endocrinol Metab . 1986;  63 202-207
  • 47 Biglieri E G, Herron M A, Brust N. 17α-hydroxylation deficiency in man.  J Clin Endocrinol Metab . 1966;  15 1945-1954
  • 48 Geller D H, Auchus R J, Mendonça B B, Miller W L. The genetic and functional basis of isolated 17,20 lyase deficiency.  Nat Genet . 1997;  17 201-205
  • 49 Geller D H, Auchus R J, Miller W L. P450c17 mutations R347H and R358Q selectively disrupt 17,20-lyase activity by disrupting interactions with P450 oxidoreductase and cytochrome b 5 .  Mol Endocrinol . 1999;  13 167-175
  • 50 Auchus R J, Miller W L. Molecular modeling of human P450c17 (17α-hydroxylase/17,20-lyase): insights into reaction mechanisms and effects of mutations.  Mol Endocrinol . 1999;  13 1169-1182
  • 51 Gupta M K, Geller D H, Auchus R J. Pitfalls in characterizing P450c17 mutations associated with isolated 17,20 lyase deficiency.  J Clin Endocrinol Metab . 2001;  86 4416-4423
  • 52 Morel Y, Miller W L. Clinical and molecular genetics of congenital adrenal hyperplasia due to 21-hydroxylase deficiency.  Adv Hum Genet . 1991;  20 1-68
  • 53 White P C, Speiser P W. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency.  Endocr Rev . 2000;  21 245-291
  • 54 Higashi Y, Yoshioka H, Yamane M, Gotoh O, Fujii-Kuriyama Y. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and genuine gene.  Proc Natl Acad Sci U S A . 1986;  83 2841-2845
  • 55 White P C, New M I, Dupont B. Structure of the human steroid 21-hydroxylase genes.  Proc Natl Acad Sci U S A . 1986;  83 5111-5115
  • 56 Morel Y, Andre J, Uring-Lambert B. Rearrangements and point mutations of P450c21 genes are distinguished by five restriction endonuclease haplotypes identified by a new probing strategy in 57 families with congenital adrenal hyperplasia.  J Clin Invest . 1989;  83 527-536
  • 57 Mellon S H, Miller W L. Extra-adrenal steroid 21-hydroxylation is not mediated by P450c21.  J Clin Invest . 1989;  84 1497-1502
  • 58 White P C, Curnow K M, Pascoe L. Disorders of steroid 11β-hydroxylase isozymes.  Endocr Rev . 1994;  15 421-438
  • 59 Fardella C E, Miller W L. Molecular biology of mineralocorticoid metabolism.  Annu Rev Nutr . 1996;  16 443-470
  • 60 Labrie F, Luu-The V, Lin S X. The key role of 17β-hydroxysteroid dehydrogenases in sex steroid biology.  Steroids . 1997;  62 148-158
  • 61 Moghrabi N, Andersson S. 17β-Hydroxysteroid dehydrogenases: physiological roles in health and disease.  Trends Endocrinol Metab . 1998;  9 265-270
  • 62 Peltoketo H, Isomaa V, Mäenlavsta O, Vihko R. Complete amino acid sequence of human placental 17β-hydroxysteroid dehydrogenase deduced from cDNA.  FEBS Lett . 1988;  239 73-77
  • 63 Tremblay Y, Ringler G E, Morel Y. Regulation of the gene for estrogenic 17-ketosteroid reductase lying on chromosome 17cen→q25.  J Biol Chem . 1989;  264 20458-20462
  • 64 Ghosh D, Pleuteu V Z, Zhu D W. Structure of human estrogenic 17β-hydroxysteroid dehydrogenase at 2.2 Å resolution.  Structure . 1995;  3 503-513
  • 65 Sawicki M W, Erman M, Puranen T, Vihko P, Ghosh D. Structure of the ternary complex of human 17β-hydroxysteroid dehydrogenase type 1 with 3-hydroxyestra-1,3,5,7-tetraen-17-one (equilin) and NADP+.  Proc Natl Acad Sci U S A . 1999;  96 840-845
  • 66 Takeyama J, Sasano H, Suzuki T. 17β-Hydroxysteroid dehydrogenase types 1 and 2 in human placenta: an immunohistochemical study with correlation to placental development.  J Clin Endocrinol Metab . 1998;  83 3710-3715
  • 67 Geissler W M, Davis D L, Wu L. Male pseudohermaphroditism caused by mutations of testicular 17β-hydroxysteroid dehydrogenase 3.  Nat Genet . 1994;  7 34-39
  • 68 Leenders F, Tesdorpf J G, Markus M. Porcine 80-kDa protein reveals intrinsic 17β-hydroxysteroid dehydrogenase, fatty acyl-CoA-hydratase/dehydrogenase, and sterol transfer activities.  J Biol Chem . 1996;  271 5438-5442
  • 69 Dufort I, Rheault P, Huang X F, Soucy P, Luu-The V. Characteristics of a highly labile human type 5 17β-hydroxysteroid dehydrogenase.  Endocrinology . 1999;  140 568-574
  • 70 Simpson E R, Mahendroo M S, Means G D. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis.  Endocr Rev . 1994;  15 342-355
  • 71 Grumbach M M, Auchus R J. Estrogen: consequences and implications of human mutations in synthesis and action.  J Clin Endocrinol Metab . 1999;  84 4677-4694
  • 72 Conte F A, Grumbach M M, Ito Y, Fisher C R, Simpson E R. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom).  J Clin Endocrinol Metab . 1994;  78 1287-1292
  • 73 Thigpen A E, Silver R I, Guileyardo J M. Tissue distribution and ontogeny of steroid 5α-reductase isozyme expression.  J Clin Invest . 1993;  92 903-910
  • 74 Wilson J D. The role of androgens in male gender role behavior.  Endocr Rev . 1999;  20 726-737
  • 75 Wilson J D, Griffin J E, Russell D W. Steroid 5α-reductase 2 deficiency.  Endocr Rev . 1993;  14 577-593
    >