Horm Metab Res 2007; 39(9): 665-671
DOI: 10.1055/s-2007-985395
Original

© Georg Thieme Verlag KG Stuttgart · New York

Improved Vascular Function upon Pioglitazone Treatment in Type 2 Diabetes is not Associated with Changes in Mononuclear NF-κB Binding Activity

G. Rudofsky 1  Jr. , P. Reismann 1 , I. A. Grafe 1 , I. Konrade 1 , Z. Djuric 1 , J. Tafel 1 , S. Buchbinder 1 , M. Zorn 1 , P. M. Humpert 1 , A. Hamann 1 , M. Morcos 1 , P. P. Nawroth 1 , A. Bierhaus 1
  • 1Department Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
Further Information

Publication History

received 04.04.2007

accepted 04.07.2007

Publication Date:
10 September 2007 (online)

Abstract

Thiazolidinediones such as pioglitazone have been shown to exert anti-inflammatory effects independent of their insulin sensitizing effects by reducing activation of the proinflammatory transcription factor NF-κB in animal models of experimental diabetes. Furthermore, short-term pioglitazone treatment ameliorates endothelial dysfunction in conduit arteries of patients with type 2 diabetes. Since inflammation is supposed to impair flow-mediated vasodilatation, we studied the effects of an 8-week pioglitazone intervention on endothelial function and mononuclear NF-κB activation in patients with type 2 diabetes. Twenty patients were included in a randomized, double-blind, placebo-controlled study receiving 30 mg pioglitazone or placebo, respectively. Flow-mediated endothelium dependent vasodilatation (FMD) of the brachial artery, NF-κB binding activity in peripheral blood mononuclear cells [pBMC, determined by electrophoretic mobility shift assay (EMSA)] and interleukin-6 (IL-6)-transcription rates (determined by real-time PCR) were measured at study entry and after eight weeks of intervention. Pioglitazone treatment resulted in a significant improvement of FMD (4.3%±3.3; p=0.003), while no effect was seen under placebo medication (2.0%±2.7; p=0.71). The correction of FMD was neither paralleled by a pioglitazone-dependent reduction in mononuclear NF-κB binding activity (ΔNF-κB activity: pioglitazone: 9.2%±6.7, p=0.24; placebo: 5.7%±19.6; p=0.82) nor in NF-κB dependent gene transcription as determined for IL-6 (ΔIL-6 pioglitazone: +1.8%±12.0, p=0.93; placebo: -0.2%±9.7; p=0.92). These data demonstrate for the first time that pioglitazone treatment improves endothelial dysfunction in patients with type 2 diabetes without affecting NF-κB binding activity and NF-κB dependent proinflammatory gene expression in pBMC.

References

  • 1 Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Koranyi L, Laakso M, Mokan M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton J. PROactive investigators . Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial.  Lancet. 2005;  366 1279-1289
  • 2 Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study.  BMJ. 2000;  321 405-412
  • 3 Sourij H, Zweiker R, Wascher TC. Effects of pioglitazone on endothelial function, insulin sensitivity, and glucose control in subjects with coronary artery disease and new-onset type 2 diabetes.  Diabetes Care. 2006;  29 1039-1045
  • 4 Suzuki M, Takamisawa I, Yoshimasa Y, Harano Y. Association between insulin resistance and endothelial dysfunction in type 2 diabetes and the effects of pioglitazone.  Diabetes Res Clin Pract. 2007;  76 12-17
  • 5 Martens FM, Visseren FL, Koning EJ de, Rabelink TJ. Short-term pioglitazone treatment improves vascular function irrespective of metabolic changes in patients with type 2 diabetes.  J Cardiovasc Pharmacol. 2005;  46 773-778
  • 6 Da Ros R, Assaloni R, Ceriello A. The preventive anti-oxidant action of thiazolidinediones: a new therapeutic prospect in diabetes and insulin resistance.  Diabet Med. 2004;  21 1249-1252
  • 7 Fukunaga Y, Itoh H, Doi K, Tanaka T, Yamashita J, Chun TH, Inoue M, Masatsugu K, Sawada N, Saito T, Hosoda K, Kook H, Ueda M, Nakao K. Thiazolidinediones, peroxisome proliferator-activated receptor gamma agonists, regulate endothelial cell growth and secretion of vasoactive peptides.  Atherosclerosis. 2001;  158 113-119
  • 8 Taniguchi J, Honda H, Shibusawa Y, Iwata T, Notoya Y. Alteration in endothelial function and modulation by treatment with pioglitazone in rabbit renal artery from short-term hypercholesterolemia.  Vascul Pharmacol. 2005;  43 47-55
  • 9 Kutuk O, Basaga H. Inflammation meets oxidation: NF-kappaB as a mediator of initial lesion development in atherosclerosis.  Trends Mol Med. 2003;  9 549-557
  • 10 Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP. The role of oxidative stress and NF-kappaB activation in late diabetic complications.  Biofactors. 1999;  10 157-167
  • 11 Bierhaus A, Nawroth PP. Modulation of the vascular endothelium during infection-the role of NF-kappaB activation.  Contrib Microbiol. 2003;  10 86-105
  • 12 Zelvyte I, Dominaitiene R, Crisby M, Janciauskiene S. Modulation of inflammatory mediators and PPARgamma and NF-kappaB expression by pravastatin in response to lipoproteins in human monocytes in vitro.  Pharmacol Res. 2002;  45 147-154
  • 13 Jung KJ, Kim JY, Zou Y, Kim YJ, Yu BP, Chung HY. Effect of short-term, low dose aspirin supplementation on the activation of pro-inflammatory NF-kappaB in aged rats.  Mech Ageing Dev. 2006;  127 223-230
  • 14 Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R. International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force.  J Am Coll Cardiol. 2002;  39 257-265
  • 15 Bots ML, Westerink J, Rabelink TJ, Koning EJ de. Assessment of flow-mediated vasodilatation (FMD) of the brachial artery: effects of technical aspects of the FMD measurement on the FMD response.  Eur Heart. 2005;  26 363-368
  • 16 Hofmann MA, Schiekofer S, Kanitz M, Klevesath MS, Joswig M, Lee V, Morcos M, Tritschler H, Ziegler R, Wahl P, Bierhaus A, Nawroth PP. Insufficient glycemic control increases nuclear factor-kappa B binding activity in peripheral blood mononuclear cells isolated from patients with type 1 diabetes.  Diabetes Care. 1998;  21 1310-1316
  • 17 Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Haring HU, Schleicher E, Nawroth PP. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB.  Diabetes. 2001;  50 2792-2808
  • 18 Bierhaus A, Chevion S, Chevion M, Quehenberger P, Hofmann M, Illmer T, Luther T, Berentshtein E, Tritschler H, Müller M. Advanced glycation endproducts (AGEs) induced activation of NF-κB is suppressed by α-lipoic acid in cultured endothelial cells.  Diabetes. 1997;  46 1481-1490
  • 19 Bierhaus A, Zhang Y, Deng Y, Mackman N, Quehenberger P, Haase M, Luther T, Müller M, Böhrer H, Greten J. Mechanism of the TNFα mediated induction of endothelial tissue factor.  J Biol Chem. 1995;  270 26419-26432
  • 20 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1996;  72 248-254
  • 21 Schiekofer S, Rudofsky G, Andrassy M, Schneider J, Chen J, Isermann B, Kanitz M, Elsenhans S, Heinle H, Balletshofer B, Haring HU, Schleicher E, Nawroth PP, Bierhaus A. Glimepiride reduces mononuclear activation of the redox-sensitive transcription factor nuclear factor-kappa B.  Diabetes Obes Metab. 2003;  5 251-261
  • 22 Rudofsky Jr G, Reismann P, Schiekofer S, Petrov D, Eynatten M, Humpert PM, Isermann B, Muller-Hoff C, Thai TP, Lichtenstein S, Bartsch U, Hamann A, Nawroth P, Bierhaus A. Reduction of postprandial hyperglycemia in patients with type 2 diabetes reduces NF-kappaB activation in PBMCs.  Horm Metab Res. 2004;  36 630-638
  • 23 Bierhaus A, Chevion S, Chevion M, Quehenberger P, Hofmann M, Illmer T, Luther T, Berentshtein E, Tritschler H, Müller M. Advanced glycation endproducts (AGEs) induced activation of NF-κB is suppressed by α-lipoic acid in cultured endothelial cells.  Diabetes. 1997;  46 1481-1490
  • 24 Pahl HL, Baeuerle PA. Expression of influenza virus hemagglutinin activates the transcription factor NFκB.  J Virol. 1995;  69 1480-1484
  • 25 Eynatten M von, Schneider JG, Humpert PM, Rudofsky G, Schmidt N, Barosch P, Hamann A, Morcos M, Kreuzer J, Bierhaus A, Nawroth PP, Dugi KA. Decreased plasma lipoprotein lipase in hypoadiponectinemia: an association independent of systemic inflammation and insulin resistance.  Diabetes Care. 2004;  27 2925-2929
  • 26 Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: mole-cular and pathophysiological mechanisms.  Circulation. 2006;  113 1888-1904
  • 27 Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, Fronzo RA De, Kahn CR, Mandarino LJ. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle.  J Clin Invest. 2000;  105 311-320
  • 28 Madonna R, Pandolfi A, Massaro M, Consoli A, Caterina R De. Insulin enhances vascular cell adhesion molecule-1 expression in human cultured endothelial cells through a pro-atherogenic pathway mediated by p38 mitogen-activated protein-kinase.  Diabetologia. 2004;  47 532-536
  • 29 Marx N, Duez H, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells.  Circ Res. 2004;  94 1168-1178
  • 30 Stumvoll M, Goldstein BJ, Haeften TW van. Type 2 diabetes: principles of pathogenesis and therapy.  Lancet. 2005;  365 1333-1346
  • 31 Haider DG, Leuchten N, Schaller G, Gouya G, Kolodjaschna J, Schmetterer L, Kapiotis S, Wolzt M. C-reactive protein is expressed and secreted by peripheral blood mononuclear cells.  Clin Exp Immunol. 2006;  146 533-539
  • 32 Park KG, Lee KM, Chang YC, Magae J, Ando K, Kim KB, Kim YN, Kim HS, Park JY, Lee KU, Lee IK. The ascochlorin derivative, AS-6, inhibits TNF-alpha-induced adhesion molecule and chemokine expression in rat vascular smooth muscle cells.  Life Sci. 2006;  80 120-126
  • 33 Inoue I, Goto S, Matsunaga T, Nakajima T, Awata T, Hokari S, Komoda T, Katayam S. The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma increase Cu2+, Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells.  Metabolism. 2001;  50 3-11
  • 34 Artwohl M, Holzenbein T, Furnsinn C, Freudenthaler A, Huttary N, Waldhausl WK, Baumgartner-Parzer SM. Thiazolidinediones inhibit apoptosis and heat shock protein 60 expression in human vascular endothelial cells.  Thromb Haemost. 2005;  93 810-815
  • 35 Srinivasan S, Hatley ME, Reilly KB, Danziger EC, Hedrick CC. Modulation of PPARalpha expression and inflammatory interleukin-6 production by chronic glucose increases monocyte/endothelial adhesion.  Arterioscler Thromb Vasc Biol. 2004;  24 851-857
  • 36 Marx N, Walcher D, Ivanova N, Rautzenberg K, Jung A, Friedl R, Hombach V, Caterina R, Basta G, Wautier MP, Wautiers JL. Thiazolidinediones reduce endothelial expression of receptors for advanced glycation end products.  Diabetes. 2004;  53 2662-2668
  • 37 Edelstein LC, Pan A, Collins T. Chromatin modification and the endothelial-specific activation of the E-selectin gene.  J Biol Chem. 2005;  280 11192-11202
  • 38 Goldberg RB. Impact of thiazolidenediones on serum lipoprotein levels.  Curr Atheroscler Rep. 2006;  8 397-404
  • 39 Khan M, Murray FT, Karunaratne M, Perez A. Pioglitazone and reductions in post-challenge glucose levels in patients with type 2 diabetes.  Diabetes Obes Metab. 2006;  8 31-38
  • 40 Al Majali K, Cooper MB, Staels B, Luc G, Taskinen MR, Betteridge DJ. The effect of sensitisation to insulin with pioglitazone on fasting and postprandial lipid metabolism, lipoprotein modification by lipases, and lipid transfer activities in type 2 diabetic patients.  Diabetologia. 2006;  49 527-537
  • 41 Mori Y, Ojima K, Fuujimori Y, Aoyagi I, Kusama H, Yamazaki Y, Kojima M, Shibata N, Itoh Y, Tajima N. Effects of mitiglinide on glucose-induced insulin release into the portal vein and fat-induced triglyceride elevation in prediabetic and diabetic OLETF rats.  Endocrine. 2006;  29 309-315
  • 42 Gastaldelli A, Casolaro A, Pettiti M, Nannipieri M, Ciociaro D, Frascerra S, Buzzigoli E, Baldi S, Mari A, Ferrannini E. Effect of pioglitazone on the metabolic and hormonal response to a mixed meal in type II diabetes.  Clin Pharmacol Ther. 2007;  81 205-212
  • 43 Suzuki M, Takamisawa I, Yoshimasa Y, Harano Y. Association between insulin resistance and endothelial dysfunction in type 2 diabetes and the effects of pioglitazone.  Diabetes Res Clin Pract. 2007;  76 12-17
  • 44 Title LM, Cummings PM, Giddens K, Nassar BA. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E.  J Am Coll Cardiol. 2000;  36 2185-2191
  • 45 Westphal S, Taneva E, Kastner S, Martens-Lobenhoffer J, Bode-Boger S, Kropf S, Dierkes J, Luley C. Endothelial dysfunction induced by postprandial lipemia is neutralized by addition of proteins to the fatty meal.  Atherosclerosis. 2006;  185 313-319
  • 46 Tushuizen ME, Nieuwland R, Scheffer PG, Sturk A, Heine RJ, Diamant M. Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men.  J Thromb Haemost. 2006;  4 1003-1010
  • 47 Chappuis B, Braun M, Stettler C, Allemann S, Diem P, Lumb PJ, Wierzbicki AS, James R, Christ ER. Differential effect of pioglitazone (PGZ) and rosiglitazone (RGZ) on postprandial glucose and lipid metabolism in patients with type 2 diabetes mellitus: a prospective, randomized crossover study.  Diabetes Metab Res Rev. 2007;  23 392-399

Correspondence

A. BierhausPhD 

Department of Medicine I and Clinical Chemistry

University of Heidelberg

Im Neuenheimer Feld 410

69120 Heidelberg

Germany

Phone: +49/622/156 47 52

Fax: +49/622/156 47 54

Email: angelika_bierhaus@med.uni-heidelberg.de

    >