Thromb Haemost 2005; 93(05): 801-809
DOI: 10.1160/TH04-09-0596
Review Article
Schattauer GmbH

The role of neovascularisation in the resolution of venous thrombus

Bijan Modarai
1   Academic Department of Surgery, Cardiovascular Division, St Thomas’ Hospital, King’s College, London, UK
,
Kevin Guiver Burnand
1   Academic Department of Surgery, Cardiovascular Division, St Thomas’ Hospital, King’s College, London, UK
,
Julia Humphries
1   Academic Department of Surgery, Cardiovascular Division, St Thomas’ Hospital, King’s College, London, UK
,
Matthew Waltham
1   Academic Department of Surgery, Cardiovascular Division, St Thomas’ Hospital, King’s College, London, UK
,
Alberto Smith
1   Academic Department of Surgery, Cardiovascular Division, St Thomas’ Hospital, King’s College, London, UK
› Author Affiliations
Grant support: Bijan Modarai was supported by the British Heart Foundation and a grant from the Guy’s and St Thomas’ Charitable Foundation.
Further Information

Publication History

Received 15 September 2004

Accepted after resubmission 04 February 2005

Publication Date:
11 December 2017 (online)

Summary

Deep vein thrombosis (DVT) can give rise to chronic debilitating complications, which are expensive to treat. Anticoagulation, the standard therapy for DVT, prevents propagation, but does not remove the existing thrombus, which undergoes slow natural resolution. Alternative forms of treatment that accelerate resolution may arise from a better understanding of the cellular and molecular pathways that regulate the natural resolution of thrombi. This review will outline our current understanding of the mechanisms of thrombus resolution and the role of neovascularisation in this process. Novel experimental treatments that may one day find clinical use are also discussed. The process of thrombus resolution resembles wound healing. The mainly monocytic inflammatory infiltrate, which develops, is associated with the appearance of vascular channels. These cells may drive resolution by encouraging angiogenesis, which contributes to restoration of the vein lumen. Significant numbers of bone marrow-derived progenitor cells have also been found in naturally resolving thrombi, but their precise phenotype and their role in thrombus recanalisation is unclear. Enhanced thrombus neovascularisation and rapid vein recanalisation have been achieved in experimental models with proangiogenic agents. Recent reports of the role of bone marrow-derived progenitor cells in the revascularisation of ischaemic tissues suggest that it may be possible to obtain the same effect by delivering pluripotent or lineage specific stem cells into thrombus. These cells could contribute to thrombus recanalisation by expressing a variety of proangiogenic cytokines or by lining the new vessels that appear within the thrombus.

 
  • References

  • 1 Nordstrom M, Lindblad B, Bergqvist D. et al. A prospective study of the incidence of deep-vein thrombosis within a defined urban population. J Intern Med 1992; 232: 155-60.
  • 2 Oger E. Incidence of venous thromboembolism: a community-based study in Western France. EPIGETBP Study Group. Groupe d'Etude de la Thrombose de Bretagne Occidentale. Thromb Haemost 2000; 83: 657-60.
  • 3 Fowkes FJ, Price JF, Fowkes FG. Incidence of diagnosed deep vein thrombosis in the general population: systematic review. Eur J Vasc Endovasc Surg 2003; 25: 1-5.
  • 4 Anderson Jr FA, Wheeler HB, Goldberg RJ. et al. A population-based perspective of the hospital incidence and case- fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study. Arch Intern Med 1991; 151: 933-8.
  • 5 White RH, Zhou H, Romano PS. Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb Haemost 2003; 90: 446-55.
  • 6 Bulger CM, Jacobs C, Patel NH. Epidemiology of acute deep vein thrombosis. Tech Vasc Interv Radiol 2004; 7: 50-4.
  • 7 Stulberg BN, Insall JN, Williams GW. et al. Deepvein thrombosis following total knee replacement. An analysis of sixhundred and thirty-eight arthroplasties. J Bone Joint Surg Am 1984; 66: 194-201.
  • 8 Anderson Jr FA, Spencer FA. Risk factors for venous thromboembolism. Circulation 2003; 107: I9-16.
  • 9 Schmidt B, Michler R, Klein M. et al. Ultrasound screening for distal vein thrombosis is not beneficial after major orthopedic surgery. A randomized controlled trial. Thromb Haemost 2003; 90: 949-54.
  • 10 Gay J. On varicose disease of the lower extremities. 1866. London: Churchill. Lettsomian Lecture;
  • 11 Homans J. The etiology and treatment of varicose ulcers of the leg. Surg Gynecol Obstet 1917; 24: 300-11.
  • 12 Strandness Jr DE, Langlois Y, Cramer M. et al. Long-term sequelae of acute venous thrombosis. JAMA 1983; 250: 1289-92.
  • 13 Kearon C. Natural history of venous thromboembolism. Circulation 2003; 107: I22-I30.
  • 14 Prandoni P, Lensing AW, Cogo A. et al. The longterm clinical course of acute deep venous thrombosis. Ann Intern Med 1996; 125: 1-7.
  • 15 Bauer G. Venous thrombosis. Early diagnosis with the aid of phlebography and abortive treatment with heparin. Arch Surg 1941; 43: 463.
  • 16 Cziraky MJ, Spinler SA. Low-molecular-weight heparins for the treatment of deep-vein thrombosis. Clin Pharm 1993; 12: 892-9.
  • 17 Hirsh J, Lee AY. How we diagnose and treat deep vein thrombosis. Blood 2002; 99: 3102-10.
  • 18 Pineo GF, Hull RD. Heparin and low-molecularweight heparin in the treatment of venous thromboembolism. Baillieres Clin Haematol 1998; 11: 621-37.
  • 19 Levine MN, Raskob G, Landefeld S. et al. Hemorrhagic complications of anticoagulant treatment. Chest 2001; 119: 108S-21S.
  • 20 Meissner MH, Manzo RA, Bergelin RO. et al. Deep venous insufficiency: the relationship between lysis and subsequent reflux. J Vasc Surg 1993; 18: 596-605.
  • 21 Wakefield TW. Treatment options for venous thrombosis. J Vasc Surg 2000; 31: 613-20.
  • 22 Forster AJ, Wells PS. The rationale and evidence for the treatment of lower-extremity deep venous thrombosis with thrombolytic agents. Curr Opin Hematol 2002; 9: 437-42.
  • 23 ten Cate JW, Koopman MM, Prins MH. et al. Treatment of venous thromboembolism. Thromb Haemost 1995; 74: 197-203.
  • 24 Mewissen MW, Seabrook GR, Meissner MH. et al. Catheter-directed thrombolysis for lower extremity deep venous thrombosis: report of a national multicenter registry. Radiology 1999; 211: 39-49.
  • 25 Wells PS, Forster AJ. Thrombolysis in deep vein thrombosis: is there still an indication?. Thromb Haemost 2001; 86: 499-508.
  • 26 Mewissen MW. Catheter-directed thrombolysis for lower extremity deep vein thrombosis. Tech Vasc Interv Radiol 2001; 4: 111-4.
  • 27 Brandjes DP, Buller HR, Heijboer H. et al. Randomised trial of effect of compression stockings in patients with symptomatic proximal-vein thrombosis. Lancet 1997; 349: 759-62.
  • 28 COX JS. The maturation and canalization of thrombi. Surg Gynecol Obstet 1963; 116: 593-9.
  • 29 Stirling GA, Tsapogas MJ, Girolami PL. Organization of thrombi. Br J Surg 1966; 53: 232-5.
  • 30 Kang C, Bonneau M, Brouland JP. et al. In vivo pig models of venous thrombosis mimicking human disease. Thromb Haemost 2003; 89: 256-63.
  • 31 McGuinness CL. A new model of venous thrombosis. Humphries JSABKG, editor. Cardiovasc Surg 1997; 5: 123.
  • 32 Londy FJ, Kadell AM, Wrobleski SK. et al. Detection of perivenous inflammation in a rat model of venous thrombosis using MRV. J Invest Surg 1999; 12: 151-6.
  • 33 Singh I, Burnand KG, Collins M. et al. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation 2003; 107: 869-75.
  • 34 Fowlkes JB, Strieter RM, Downing LJ. et al. Ultrasound echogenicity in experimental venous thrombosis. Ultrasound Med Biol 1998; 24: 1175-82.
  • 35 Millet J, Vaillot M, Theveniaux J. et al. Experimental venous thrombosis induced by homologous serum in the rat. Thromb Res 1996; 81: 497-502.
  • 36 Wakefield TW, Linn MJ, Henke PK. et al. Neovascularization during venous thrombosis organization: a preliminary study. J Vasc Surg 1999; 30: 885-92.
  • 37 Henke PK, Wakefield TW, Kadell AM. et al. Interleukin-8 administration enhances venous thrombosis resolution in a rat model. J Surg Res 2001; 99: 84-91.
  • 38 Varma MR, Varga AJ, Knipp BS. et al. Neutropenia impairs venous thrombosis resolution in the rat. J Vasc Surg 2003; 38: 1090-8.
  • 39 Henke PK, Varga A, De S. et al. Deep vein thrombosis resolution is modulated by monocyte CXCR2-mediated activity in a mouse model. Arterioscler Thromb Vasc Biol 2004; 24: 1130-7.
  • 40 Xie H, Kim K, Aglyamov SR. et al. Staging deep venous thrombosis usingultrasound elasticity imaging: Animal model. Ultrasound Med Biol 2004; 30: 1385-96.
  • 41 McGuinness CL, Humphries J, Waltham M. et al. Recruitment of labelled monocytes by experimental venous thrombi. Thromb Haemost 2001; 85: 1018-24.
  • 42 Quarmby J, Smith A, Collins M. et al. Amodel of in vivo human venous thrombosis that confirms changes in the release of specific soluble cell adhesion molecules in experimental venous thrombogenesis. J Vasc Surg 1999; 30: 139-47.
  • 43 Holmstrom M, Lindmarker P, Granqvist S. et al. A 6-month venographic follow-up in 164 patients with acute deep vein thrombosis. Thromb Haemost 1997; 78: 803-7.
  • 44 Virchow RR. Cellular Pathology. 1860. London: Churchill;
  • 45 Kwaan HCGG. Clinical use of 51 Cr-leukocytes in the detection of DVT. Circulation 1971; 44: 55.
  • 46 Humphries J, McGuinness CL, Smith A. et al. Monocyte chemotactic protein-1 (MCP-1) accelerates the organization and resolution of venous thrombi. J Vasc Surg 1999; 30: 894-9.
  • 47 Clark RA. Biology of dermal wound repair. Dermatol Clin 1993; 11: 647-66.
  • 48 Soo KS, Northeast AD, Happerfield LC. et al. Tissue plasminogen activator production by monocytes in venous thrombolysis. J Pathol 1996; 178: 190-4.
  • 49 Knighton DR, Fiegel VD. Macrophage-derived growth factors in wound healing: regulation of growth factor production by the oxygen microenvironment. Am Rev Respir Dis 1989; 140: 1108-11.
  • 50 Majno G, Joris I. Cells, Tissues, and Disease. Principles of General Pathology. 1996 Blackwell Science.
  • 51 Sevitt S. The mechanisms of canalisation in deep vein thrombosis. J Pathol 1973; 110: 153-65.
  • 52 Nehls V, Herrmann R. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res 1996; 51: 347-64.
  • 53 Lim BC, Ariens RA, Carter AM. et al. Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. Lancet 2003; 361: 1424-31.
  • 54 Pepper MS, Montesano R, Mandriota SJ. et al. Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 1996; 49: 138-62.
  • 55 Inkinen K, Turakainen H, Wolff H. et al. Expression and activity ofmatrix metalloproteinase-2 and –9 in experimental granulation tissue. APMIS 2000; 108: 318-28.
  • 56 Varma MR, Moaveni DM, Dewyer NA. et al. Deep veinthrombosis resolution is not acceleratedwith increased neovascularization. J Vasc Surg 2004; 40: 536-42.
  • 57 Collen A, Hanemaaijer R, Lupu F. et al. Membrane- type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood 2003; 101: 1810-7.
  • 58 Tamura T, Nakanishi T, Kimura Y. et al. Nitric oxide mediates interleukin-1-induced matrix degradation and basic fibroblast growth factor release in cultured rabbit articular chondrocytes: a possible mechanism of pathological neovascularization in arthritis. Endocrinology 1996; 137: 3729-37.
  • 59 Kanematsu A, Yamamoto S, Ozeki M. et al. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 2004; 25: 4513-20.
  • 60 Wijelath ES, Murray J, Rahman S. et al. Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 2002; 91: 25-31.
  • 61 Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc 2000; 5: 40-6.
  • 62 Li J, Zhang YP, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 2003; 60: 107-14.
  • 63 Hodivala-Dilke KM, Reynolds AR, Reynolds LE. Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res 2003; 314: 131-44.
  • 64 Waltham M, Burnand KG, Collins M. et al. Vascular endothelial growth factor and basic fibroblast growth factor are found in resolving venous thrombi. J Vasc Surg 2000; 32: 988-96.
  • 65 Tanaka K, Hirst AE, Smith LL. Rate of endothelialization in venous thrombi: an experimental study. Arch Surg 1982; 117: 1045-8.
  • 66 Feigl W, Susani M, Ulrich W. et al. Organisation of experimental thrombosis by blood cells. Evidence of the transformation of mononuclear cells into myofibroblasts and endothelial cells. Virchows Arch A Pathol Anat Histopathol 1985; 406: 133-48.
  • 67 Asahara T, Masuda H, Takahashi T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221-8.
  • 68 Carmeliet P, Luttun A. The emerging role of the bonemarrow-derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 2001; 86: 289-97.
  • 69 Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organvascularizationand regeneration. Nat Med 2003; 9: 702-12.
  • 70 Majka SM, Jackson KA, Kienstra KA. et al. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest 2003; 111: 71-9.
  • 71 Abedin M, Tintut Y, Demer LL. Mesenchymal stem cells and the artery wall. Circ Res 2004; 95: 671-6.
  • 72 Shaw JP, Basch R, Shamamian P. Hematopoietic stem cells and endothelial cell precursors express Tie-2, CD31 and CD45. Blood Cells Mol Dis 2004; 32: 168-75.
  • 73 Rehman J, Li J, Orschell CM. et al. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003; 107: 1164-9.
  • 74 Zhao Y, Glesne D, Huberman E. Ahuman peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci U S A 2003; 100: 2426-31.
  • 75 Nakul-Aquaronne D, Bayle J, Frelin C. Coexpression of endothelial markers and CD14 by cytokine mobilized CD34+ cells under angiogenic stimulation. Cardiovasc Res 2003; 57: 816-23.
  • 76 Schmeisser A, Garlichs CD, Zhang H. et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 2001; 49: 671-80.
  • 77 Metz C. Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci 2003; 60: 1342-50.
  • 78 Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J. et al. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 2000; 87: 378-84.
  • 79 Bendeck MP. Mining the myocardium with macrophage drills: A novel mechanism for revascularization. Circ Res 2000; 87: 341-3.
  • 80 Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003; 9: 694-701.
  • 81 Abo-Auda W, Benza RL. Therapeutic angiogenesis: reviewof current concepts and future directions. J Heart Lung Transplant 2003; 22: 370-82.
  • 82 Isner JM, Baumgartner I, Rauh G. et al. Treatment of thromboangiitis obliterans (Buerger's disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. JVasc Surg 1998; 28: 964-73.
  • 83 Makinen K, Manninen H, Hedman M. et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, doubleblinded phase II study. Mol Ther 2002; 6: 127-33.
  • 84 Losordo DW, Vale PR, Symes JF. et al. Gene therapy for myocardial angiogenesis: initial clinical results with directmyocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998; 98: 2800-4.
  • 85 Vale PR, Losordo DW, Milliken CE. et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronicmyocardial ischemia. Circulation 2000; 102: 965-74.
  • 86 Henry TD, Annex BH, McKendall GR. et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 2003; 107: 1359-65.
  • 87 Simovic D, Isner JM, Ropper AH. et al. Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 2001; 58: 761-8.
  • 88 Waltham M, Burnand KG, Collins M. et al. Vascular endothelial growth factor enhances venous thrombus recanalisation and organisation. Thromb Haemost 2003; 89: 169-76.
  • 89 Leung DW, Cachianes G, Kuang WJ. et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306-9.
  • 90 Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9: 669-76.
  • 91 Pepper MS, Ferrara N, Orci L. et al. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 1991; 181: 902-6.
  • 92 Hattori K, Dias S, Heissig B. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001; 193: 1005-14.
  • 93 Rafii S, Meeus S, Dias S. et al. Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol 2002; 13: 61-7.
  • 94 Gerber HP, McMurtrey A, Kowalski J. et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/ Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273: 30336-43.
  • 95 Barleon B, Sozzani S, Zhou D. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996; 87: 3336-43.
  • 96 Clauss M, Gerlach M, Gerlach H. et al. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocytemigration. J Exp Med 1990; 172: 1535-45.
  • 97 Polverini PJ, DiPietro LA. Role of the macrophage in the regulation of physiological and pathological angiogenesis. Maragoudakis ME, Gullino P, Lelkes PI. editors. Angiogenesis in health and disease 1992. New York: Plenum Press; 43-53.
  • 98 Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6: 389-95.
  • 99 Yancopoulos GD, Davis S, Gale NW. et al. Vascular- specific growth factors and blood vessel formation. Nature 2000; 407: 242-8.
  • 100 Hughes GC, Biswas SS, Yin B. et al. Therapeutic angiogenesis in chronically ischemic porcine myocardium: comparative effects of bFGF and VEGF. Ann Thorac Surg 2004; 77: 812-8.
  • 101 Tjwa M, Luttun A, Autiero M. et al. VEGF and PlGF: two pleiotropic growth factorswith distinct roles in development and homeostasis. Cell Tissue Res 2003; 314: 5-14.
  • 102 Whitlock PR, Hackett NR, Leopold PL. et al. Adenovirus-mediated transfer of a minigene expressing multiple isoforms of VEGF is more effective at inducing angiogenesis than comparable vectors expressing individual VEGF cDNAs. Mol Ther 2004; 9: 67-75.
  • 103 Autiero M, Waltenberger J, Communi D. et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 9: 936-43.
  • 104 Kamihata H, Matsubara H, Nishiue T. et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001; 104: 1046-52.
  • 105 Tateishi-Yuyama E, Matsubara H, Murohara T. et al. Therapeutic angiogenesis for patients with limb ischaemia byautologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-35.
  • 106 Assmus B, Schachinger V, Teupe C. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial nfarction (TOPCAREAMI). Circulation 2002; 106: 3009-17.
  • 107 Kawamoto A, Tkebuchava T, Yamaguchi J. et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 2003; 107: 461-8.
  • 108 Shintani S, Murohara T, Ikeda H. et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001; 103: 897-903.
  • 109 Szmitko PE, Fedak PW, Weisel RD. et al. Endothelial progenitor cells: newhope for a broken heart. Circulation 2003; 107: 3093-100.
  • 110 Jackson KA, Majka SM, Wang H. et al. Regeneration of ischemic cardiacmuscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107: 1395-402.
  • 111 Crosby JR, Kaminski WE, Schatteman G. et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000; 87: 728-30.
  • 112 Yeh ET, Zhang S, Wu HD. et al. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 2003; 108: 2070-3.
  • 113 Ferrari N, Glod J, Lee J. et al. Bone marrow-derived, endothelial progenitor-like cells as angiogenesisselective gene-targeting vectors. Gene Ther 2003; 10: 647-56.
  • 114 Kalka C, Masuda H, Takahashi T. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U SA 2000; 97: 3422-7.
  • 115 Iwaguro H, Yamaguchi J, Kalka C. et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 2002; 105: 732-8.
  • 116 Isner JM, Vale PR, Symes JF. et al. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001; 89: 389-400.
  • 117 Celletti FL, Waugh JM, Amabile PG. et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 2001; 7: 425-9.
  • 118 Isner JM, Pieczek A, Schainfeld R. et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996; 348: 370-4.
  • 119 St George JA. Gene therapy progress and prospects: adenoviral vectors. Gene Ther 2003; 10: 1135-41.
  • 120 Deodato B, Arsic N, Zentilin L. et al. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther 2002; 9: 777-85.
  • 121 Mitta B, Weber CC, Rimann M. et al. Design and in vivo characterization of self-inactivating human and non-human lentiviral expressionvectors engineered for streptogramin-adjustable transgene expression. Nucleic Acids Res 2004; 32: e106.