Skip to main content

Immunohistochemical Detection of 5-Hydroxymethylcytosine and 5-Carboxylcytosine in Sections of Zebrafish Embryos

  • Protocol
  • First Online:
DNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2198))

Abstract

5-methylcytosine (5mC) is an epigenetic modification to DNA which modulates transcription. 5mC can be sequentially oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Collectively, these marks are referred to as the oxidized derivatives of 5mC (i.e., oxi-mCs). Their formation is catalyzed by the ten-eleven translocation methylcytosine dioxygenases (TETs 1, 2 and 3). Various techniques have been developed for the detection of oxi-mCs. The following chapter describes an immunochemical protocol for the simultaneous detection of 5hmC and 5caC in embryonic zebrafish tissue sections. The embryos are fixed, permeabilized and embedded in paraffin blocks. The blocks are cut into sections that are mounted onto slides. Depurination of the DNA is performed to allow immunodetection of the oxi-mCs. The 5hmC is detected with the help of a mouse anti-5hmC monoclonal primary antibody and a goat anti-mouse Alexa Fluor 633-conjugated secondary antibody. The weak 5caC signal requires enzymatic amplification. Its detection involves a rabbit anti-5caC polyclonal primary antibody and a goat anti-rabbit secondary antibody that is conjugated to horseradish peroxidase (HRP). HRP amplifies the 5caC signal by catalyzing the deposition of large quantities of fluorescein-labeled tyramide. Sections immunostained for 5hmC and 5caC are analyzed by fluorescent light or confocal laser scanning microscopy. This immunochemical method allows for highly sensitive detection of 5hmC and 5caC in zebrafish tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, Li E (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122(10):3195–3205

    CAS  PubMed  Google Scholar 

  2. Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19(3):219–220. https://doi.org/10.1038/890

    Article  CAS  PubMed  Google Scholar 

  3. Gruenbaum Y, Cedar H, Razin A (1982) Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295(5850):620–622. https://doi.org/10.1038/295620a0

    Article  CAS  PubMed  Google Scholar 

  4. Cedar H (1988) DNA methylation and gene activity. Cell 53(1):3–4. https://doi.org/10.1016/0092-8674(88)90479-5

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476. https://doi.org/10.1038/nrg2341

    Article  CAS  PubMed  Google Scholar 

  6. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930. https://doi.org/10.1126/science.1169786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303. https://doi.org/10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307. https://doi.org/10.1126/science.1210944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bochtler M, Kolano A, Xu GL (2017) DNA demethylation pathways: additional players and regulators. BioEssays 39(1):1–13. https://doi.org/10.1002/bies.201600178

    Article  CAS  PubMed  Google Scholar 

  11. Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S (2014) 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 6(12):1049–1055. https://doi.org/10.1038/nchem.2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bachman M, Uribe-Lewis S, Yang X, Burgess HE, Iurlaro M, Reik W, Murrell A, Balasubramanian S (2015) 5-Formylcytosine can be a stable DNA modification in mammals. Nat Chem Biol 11(8):555–557. https://doi.org/10.1038/nchembio.1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Munzel M, Wagner M, Muller M, Khan F, Eberl HC, Mensinga A, Brinkman AB, Lephikov K, Muller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152(5):1146–1159. https://doi.org/10.1016/j.cell.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  14. Jessop P, Ruzov A, Gering M (2018) Developmental functions of the dynamic DNA methylome and hydroxymethylome in the mouse and zebrafish: similarities and differences. Front Cell Dev Biol 6:27. https://doi.org/10.3389/fcell.2018.00027

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534. https://doi.org/10.1038/nrg.2017.33

    Article  CAS  PubMed  Google Scholar 

  16. Dai HQ, Wang BA, Yang L, Chen JJ, Zhu GC, Sun ML, Ge H, Wang R, Chapman DL, Tang F, Sun X, Xu GL (2016) TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling. Nature 538(7626):528–532. https://doi.org/10.1038/nature20095

    Article  CAS  PubMed  Google Scholar 

  17. Almeida RD, Sottile V, Loose M, De Sousa PA, Johnson AD, Ruzov A (2012) Semi-quantitative immunohistochemical detection of 5-hydroxymethyl-cytosine reveals conservation of its tissue distribution between amphibians and mammals. Epigenetics 7(2):137–140. https://doi.org/10.4161/epi.7.2.18949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Potok ME, Nix DA, Parnell TJ, Cairns BR (2013) Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153(4):759–772. https://doi.org/10.1016/j.cell.2013.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J, Zhang J, Huang X, Yu M, Wang X, Liu F, Wu CI, He C, Zhang B, Ci W, Liu J (2013) Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153(4):773–784. https://doi.org/10.1016/j.cell.2013.04.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamstra JH, Loken M, Alestrom P, Legler J (2015) Dynamics of DNA hydroxymethylation in zebrafish. Zebrafish 12(3):230–237. https://doi.org/10.1089/zeb.2014.1033

    Article  CAS  PubMed  Google Scholar 

  21. Gjini E, Mansour MR, Sander JD, Moritz N, Nguyen AT, Kesarsing M, Gans E, He S, Chen S, Ko M, Kuang YY, Yang S, Zhou Y, Rodig S, Zon LI, Joung JK, Rao A, Look AT (2015) A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol Cell Biol 35(5):789–804. https://doi.org/10.1128/MCB.00971-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li C, Lan Y, Schwartz-Orbach L, Korol E, Tahiliani M, Evans T, Goll MG (2015) Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence. Cell Rep 12(7):1133–1143. https://doi.org/10.1016/j.celrep.2015.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seritrakul P, Gross JM (2017) Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet 13(9):e1006987. https://doi.org/10.1371/journal.pgen.1006987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lan Y, Pan H, Li C, Banks KM, Sam J, Ding B, Elemento O, Goll MG, Evans T (2019) TETs regulate proepicardial cell migration through extracellular matrix organization during zebrafish cardiogenesis. Cell Rep 26(3):720–732.e724. https://doi.org/10.1016/j.celrep.2018.12.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chowdhury B, Cho IH, Irudayaraj J (2017) Technical advances in global DNA methylation analysis in human cancers. J Biol Eng 11:10. https://doi.org/10.1186/s13036-017-0052-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1). https://doi.org/10.3390/biology5010003

  27. Berney M, McGouran JF (2018) Methods for detection of cytosine and thymine modifications in DNA. Nat Rev Chem 2(11):332–348. https://doi.org/10.1038/s41570-018-0044-4

    Article  CAS  Google Scholar 

  28. Gackowski D, Starczak M, Zarakowska E, Modrzejewska M, Szpila A, Banaszkiewicz Z, Olinski R (2016) Accurate, direct, and high-throughput analyses of a broad spectrum of endogenously generated DNA base modifications with isotope-dilution two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry: possible clinical implication. Anal Chem 88(24):12128–12136. https://doi.org/10.1021/acs.analchem.6b02900

    Article  CAS  PubMed  Google Scholar 

  29. Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G, Chandran S, Hay DC, Bradley M, Wilmut I, De Sousa P (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 21(9):1332–1342. https://doi.org/10.1038/cr.2011.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wheldon LM, Abakir A, Ferjentsik Z, Dudnakova T, Strohbuecker S, Christie D, Dai N, Guan S, Foster JM, Correa IR Jr, Loose M, Dixon JE, Sottile V, Johnson AD, Ruzov A (2014) Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Rep 7(5):1353–1361. https://doi.org/10.1016/j.celrep.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  31. Abakir A, Wheldon L, Johnson AD, Laurent P, Ruzov A (2016) Detection of modified forms of cytosine using sensitive immunohistochemistry. J Vis Exp (114). https://doi.org/10.3791/54416

  32. Copper JE, Budgeon LR, Foutz CA, van Rossum DB, Vanselow DJ, Hubley MJ, Clark DP, Mandrell DT, Cheng KC (2018) Comparative analysis of fixation and embedding techniques for optimized histological preparation of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 208:38–46. https://doi.org/10.1016/j.cbpc.2017.11.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Adulkadir Abakir, Tim Self, Denise McClean, and Ian Ward at the University of Nottingham for their technical assistance with the immunohistochemistry and imaging. P.J. was supported by a BBSRC-DTP PhD studentship (BB/J014508/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jessop, P., Gering, M. (2021). Immunohistochemical Detection of 5-Hydroxymethylcytosine and 5-Carboxylcytosine in Sections of Zebrafish Embryos. In: Ruzov, A., Gering, M. (eds) DNA Modifications. Methods in Molecular Biology, vol 2198. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0876-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0876-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0875-3

  • Online ISBN: 978-1-0716-0876-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics