Skip to main content

Nuts and Bolts of CF3 and CH3 NMR Toward the Understanding of Conformational Exchange of GPCRs

  • Protocol
G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1335))

Abstract

With the advent of efficient protein expression and functional purification protocols, it is now possible to reconstitute many G protein-coupled receptors (GPCRs) in detergent micelles at concentrations of 25 μM or more. Such concentrations are sufficient for studies of conformational states and dynamics relating to function and the mechanism of activation of GPCRs, using solution state NMR. In particular, methyl spectroscopy, in the form of one-dimensional 19F NMR or two-dimensional (1H,13C) NMR, provides high fidelity spectra which reveal detailed features associated with conformational states and their lifetimes, as a function of ligand. While X-ray crystallography provides exquisitely detailed structures of lowest energy states associated with ligands, G proteins, and other proteins, NMR is able to validate such states, while providing insight into higher energy states that form part of the conformational landscape and are involved in activation. Through relaxation experiments spanning microseconds to seconds, lifetimes of these functional states can often be measured. By determining the effect of ligands on both equilibrium populations and rates of interconversion between states, it becomes possible to understand activation in terms of an ensemble description and in turn relate the ensemble to pharmaceutical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palczewski K, Kumasaka T, Hori T, Behnke C, Motoshima H, Fox B, Le Trong I, Teller D, Okada T, Stenkamp R, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745. doi:10.1126/science.289.5480.739

    Article  CAS  PubMed  Google Scholar 

  2. Scheerer P, Park J, Hildebrand P, Kim Y, Krauss N, Choe H, Hofmann K, Ernst O (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455(7212):497–502. doi:10.1038/nature07330

    Article  CAS  PubMed  Google Scholar 

  3. Choe HW, Park JH, Kim YJ, Ernst OP (2011) Transmembrane signaling by GPCRs: Insight from rhodopsin and opsin structures. Neuropharmacology 60(1):52–57. doi:10.1016/j.neuropharm.2010.07.018

    Article  CAS  PubMed  Google Scholar 

  4. Rasmussen SGF, Choi H, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human beta(2) adrenergic G-protein-coupled receptor. Nature 450:383–7. doi:10.1038/nature06325

    Article  CAS  PubMed  Google Scholar 

  5. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor. Science 318:1258–65. doi:10.1126/science.1150577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rasmussen SGF, Devree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555. doi:10.1038/nature10361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kobilka BK (2011) Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol Sci 32(4):213–218. doi:10.1016/j.tips.2011.02.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Katritch V, Cherezov V, Stevens RC (2013) Structure-Function of the G Protein-Coupled Receptor Superfamily. In: Insel PA (ed) Annual Review of Pharmacology and Toxicology, Vol 53, 2013, vol 53. Annual Review of Pharmacology and Toxicology. pp 531-556. doi:10.1146/annurev-pharmtox-032112-135923

    Google Scholar 

  9. Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, Schlinkmann KM, Scott DJ, Schutz M, Pluckthun A (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci U S A 111(6):E655–E662. doi:10.1073/pnas.1317903111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gakh YG, Gakh AA, Gronenborn AM (2000) Fluorine as an NMR probe for structural studies of chemical and biological systems. Magn Reson Chem 38(7):551–558

    Article  CAS  Google Scholar 

  11. Gerig JT (1994) Fluorine NMR of proteins. Prog Nucl Magn Reson Spectrosc 26:293–370. doi:10.1016/0079-6565(94)80009-X

    Article  CAS  Google Scholar 

  12. Li H, Frieden C (2006) Fluorine-19 NMR studies on the acid state of the intestinal fatty acid binding protein. Biochemistry 45(20):6272–6278. doi:10.1021/bi0602922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kitevski-LeBlanc JL, Prosser RS (2011) Current applications of 19 F NMR to studies of protein structure and dynamics. Prog Nucl Magn Reson Spectrosc 62:1–33. doi:10.1016/j.pnmrs.2011.06.003

    Article  PubMed  Google Scholar 

  14. Sykes BD, Weingarten HI, Schlesinger MJ (1974) Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum. Proc Natl Acad Sci U S A 71(2):469–473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Prosser R, Luchette P (2000) Using O2 to probe membrane immersion depth by 19 F NMR. Proc Natl Acad Sci U S A 97(18):9967–9971. doi:10.1073/pnas.170295297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Al-Abdul-Wahid MS, Evanics F, Prosser RS (2011) Dioxygen transmembrane distributions and partitioning thermodynamics in lipid bilayers and micelles. Biochemistry 50(19):3975–3983. doi:10.1021/bi200168n

    Article  CAS  PubMed  Google Scholar 

  17. Al-Abdul-Wahid MS, Verardi R, Veglia G, Prosser RS (2011) Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen. J Biomol NMR 51(1-2):173–183. doi:10.1007/s10858-011-9551-z

    Article  CAS  PubMed  Google Scholar 

  18. Li C, Wang G-F, Wang Y, Creager-Allen R, Lutz EA, Scronce H, Slade KM, Ruf RAS, Mehl RA, Pielak GJ (2010) Protein 19 F NMR in Escherichia coli. J Am Chem Soc 132(1):321–327. doi:10.1021/ja907966n

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cellitti SE, Jones DH, Lagpacan L, Hao XS, Zhang Q, Hu HY, Brittain SM, Brinker A, Caldwell J, Bursulaya B, Spraggon G, Brock A, Ryu Y, Uno T, Schultz PG, Geierstanger BH (2008) In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J Am Chem Soc 130(29):9268–9281. doi:10.1021/ja801602q

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Klein-Seetharaman J, Getmanova E, Loewen M, Reeves P, Khorana H (1999) NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: Applicability of solution 19 F NMR. Proc Natl Acad Sci U S A 96(24):13744–13749. doi:10.1073/pnas.96.24.13744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Liu JJ, Horst R, Katritch V, Stevens RC, Wuethrich K (2012) Biased signaling pathways in beta(2)-adrenergic receptor characterized by F-19-NMR. Science 335(6072):1106–1110. doi:10.1126/science.1215802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Luchette PA, Prosser RS, Sanders CR (2002) Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and F-19 NMR spectroscopy. J Am Chem Soc 124:1778–1781. doi:10.1021/ja016748e

    Article  CAS  PubMed  Google Scholar 

  23. Chung KY, Kim TH, Manglik A, Alvares R, Kobilka BK, Prosser RS (2012) Role of detergents in conformational exchange of a G protein-coupled receptor. J Biol Chem 287(43):36305–36311. doi:10.1074/jbc.M112.406371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kim TH, Chung KY, Manglik A, Hansen AL, Dror RO, Mildorf TJ, Shaw DE, Kobilka BK, Prosser RS (2013) The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J Am Chem Soc 135(25):9465–9474. doi:10.1021/ja404305k

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ye L, Larda ST, Feng YQ, Manglik A, Prosser RS (2015) A Comparison of Chemical Shift Sensitivity of Trifluoromethyl Tags –Optimizing Resolution in 19 F NMR Studies of Proteins. J Biomol NMR 62:97–103

    Google Scholar 

  26. Alvares R, Gupta S, Macdonald PM, Prosser RS (2014) Temperature and pressure based NMR studies of detergent micelle phase equilibria. J Phys Chem B 118(21):5698–5706. doi:10.1021/jp500139p

    Article  CAS  PubMed  Google Scholar 

  27. Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104(8):3623–3640. doi:10.1021/cr030413t

    Article  CAS  PubMed  Google Scholar 

  28. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules.1. Theory and range of validity. J Am Chem Soc 104(17):4546–4559. doi:10.1021/ja00381a009

    Article  CAS  Google Scholar 

  29. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules.2. Analysis of experimental results. J Am Chem Soc 104(17):4559–4570. doi:10.1021/ja00381a010

    Article  CAS  Google Scholar 

  30. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Edit, 38. doi:10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q

    Google Scholar 

  31. Meyer B, Peters T (2003) NMR Spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42(8):864–890. doi:10.1002/anie.200390233

    Article  CAS  Google Scholar 

  32. Dalvit C, Fagerness PE, Hadden DTA, Sarver RW, Stockman BJ (2003) Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J Am Chem Soc 125(25):7696–7703. doi:10.1021/ja034646d

    Article  CAS  PubMed  Google Scholar 

  33. Dalvit C, Mongelli N, Papeo G, Giordano P, Veronesi M, Moskau D, Kummerle R (2005) Sensitivity improvement in F-19 NMR-based screening experiments: theoretical considerations and experimental applications. J Am Chem Soc 127(38):13380–13385. doi:10.1021/ja0542385

    Article  CAS  PubMed  Google Scholar 

  34. Nietlispach D, Gautier A (2011) Solution NMR studies of polytopic alpha-helical membrane proteins. Curr Opin Struct Biol 21(4):497–508. doi:10.1016/j.sbi.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  35. Kay LE (2011) Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. J Magn Reson 210(2):159–70

    Article  CAS  PubMed  Google Scholar 

  36. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445(7128):618–622. doi:10.1038/nature05512

    Article  CAS  PubMed  Google Scholar 

  37. Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46(1):75–87. doi:10.1007/s10858-009-9376-1

    Article  CAS  PubMed  Google Scholar 

  38. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Maeda M, Tsujishita H, Shimada I (2012) Efficacy of the β(2)-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat Commun 3:1045. doi:10.1038/ncomms2046

    Article  PubMed Central  PubMed  Google Scholar 

  39. Nygaard R, Zou YZ, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The Dynamic Process of beta(2)-Adrenergic Receptor Activation. Cell 152(3):532–542. doi:10.1016/j.cell.2013.01.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Mizumura T, Suzuki S, Shimada I (2014) Functional dynamics of deuterated beta(2)-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew Chem Int Ed Engl 53(49):13376–13379. doi:10.1002/anie.201406603

    Article  CAS  PubMed  Google Scholar 

  41. Bokoch MP, Zou Y, Rasmussen SGF, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi H-J, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–12. doi:10.1038/nature08650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kahsai AW, Rajagopal S, Sun JP, Xiao KH (2014) Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry. Nat Protoc 9(6):1301–1319. doi:10.1038/nprot.2014.075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Larda ST, Bokoch MP, Evanics F, Prosser RS (2012) Lysine methylation strategies for characterizing protein conformations by NMR. J Biomol NMR 54(2):199–209. doi:10.1038/nprot.2014.075

    Article  CAS  PubMed  Google Scholar 

  44. Religa TL, Ruschak AM, Rosenzweig R, Kay LE (2011) Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the CIpP protease. J Am Chem Soc 133(23):9063–9068. doi:10.1021/ja202259a

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Scott Prosser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Prosser, R.S., Kim, T.H. (2015). Nuts and Bolts of CF3 and CH3 NMR Toward the Understanding of Conformational Exchange of GPCRs. In: Filizola, M. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 1335. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2914-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2914-6_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2913-9

  • Online ISBN: 978-1-4939-2914-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics