Skip to main content

Mesenchymal Stromal Cells in Hematopoietic Stem Cell Transplantation

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and cultured ex vivo for clinical use. Thanks to their secretion of growth factors, immunomodulatory properties and cell-to-cell interactions, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to prevent/treat graft rejection and to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe; moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials. This chapter focuses on recent advances in MSC therapy by reporting on the most important relevant studies in the field of HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein AJ, Petrakova KV, Kurolesova AI et al (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  PubMed  Google Scholar 

  2. Friedenstein AJ, Deriglasova UF, Kulagina NN et al (1947) Precursors for fibroblast in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92

    Google Scholar 

  3. Im GI, Shin YW, Lee KB (2005) Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 13:845–853

    Article  PubMed  Google Scholar 

  4. Campagnoli C, Roberts IA, Kumar S et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    Article  CAS  PubMed  Google Scholar 

  5. in 't Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549

    Article  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  7. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506

    Article  CAS  PubMed  Google Scholar 

  8. Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262:509–525

    Article  PubMed  Google Scholar 

  9. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or non specific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  10. Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12:383–396

    Article  PubMed  Google Scholar 

  11. Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krampera M (2011) Mesenchymal stromal cell ‘licensing’: a multistep process. Leukemia 25:1408–1414

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Li Y, Chen X et al (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117

    Article  CAS  PubMed  Google Scholar 

  14. Ball LM, Bernardo ME, Roelofs H et al (2007) Co-transplantation of ex-vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem cell transplantation. Blood 110:2764–2767

    Article  CAS  PubMed  Google Scholar 

  15. Bernardo ME, Ball LM, Cometa AM et al (2011) Co-infusion of ex vivo expanded, parental mesenchymal stromal cells prevents life-threatening acute GvHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant 46:200–207

    Article  CAS  PubMed  Google Scholar 

  16. Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  PubMed  Google Scholar 

  17. Ringden O, Uzunel M, Sundberg B et al (2007) Tissue repair using mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon. Leukemia 21:2271–2276

    Article  CAS  PubMed  Google Scholar 

  18. Ciccocioppo R, Bernardo ME, Sgarella A et al (2011) Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 60:788–798

    Article  PubMed  Google Scholar 

  19. Avanzini MA, Bernardo ME, Cometa AM et al (2009) Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypical and functional comparison of umbilical cord blood- and bone marrow-derived progenitors. Haematologica 94:1649–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schallmoser K, Bartmann C, Rohde E et al (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47:1436–1446

    Article  CAS  PubMed  Google Scholar 

  21. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  22. Gang EJ, Bosnakovski D, Figueiredo CA et al (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109:1743–1751

    Article  CAS  PubMed  Google Scholar 

  23. Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62

    CAS  PubMed  Google Scholar 

  24. Battula VL, Treml S, Bareiss PM et al (2009) Isolation of functionally distinct mesenchymal stem cells subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1 (MSCA-1). Haematologica 94:173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bernardo ME, Zaffaroni N, Novara F et al (2007) Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149

    Article  CAS  PubMed  Google Scholar 

  26. Tarte K, Gaillard J, Lataillade J et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–1553

    Article  CAS  PubMed  Google Scholar 

  27. Vogel G (2010) To scientists’ dismay, mixed-up cell lines strike again. Science 329:1004

    Article  CAS  PubMed  Google Scholar 

  28. Torsvik A, Røsland GV, Svendsen A et al (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track - letter. Cancer Res 70:6393–6396

    Article  CAS  PubMed  Google Scholar 

  29. Barkholt L, Flory E, Jekerle V et al (2013) Risk of tumorigenicity in mesenchymal stromal cell-based therapies—bridging scientific observations and regulatory viewpoints. Cytotherapy 15:753–759

    Article  PubMed  Google Scholar 

  30. Le Blanc K, Tammik L, Sundberg B et al (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    Article  PubMed  Google Scholar 

  31. Tse WT, Pendleton JD, Beyer WM et al (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    Article  CAS  PubMed  Google Scholar 

  32. Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naïve and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729

    Article  CAS  PubMed  Google Scholar 

  33. Rasmusson I, Ringden O, Sundberg B et al (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213

    Article  PubMed  Google Scholar 

  34. Meisel R, Zibert A, Laryea M et al (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indolamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621

    Article  CAS  PubMed  Google Scholar 

  35. Chabannes D, Hill M, Merieau E et al (2007) A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 110:3691–3694

    Article  CAS  PubMed  Google Scholar 

  36. Burr SP, Dazzi F, Garden OA (2013) Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance? Immunol Cell Biol 91:12–18

    Article  CAS  PubMed  Google Scholar 

  37. Maccario R, Podestà M, Moretta A et al (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favours the differentiation of CD4+ T-cell subsets expressing regulatory/suppressive phenotype. Haematologica 90:516–525

    CAS  PubMed  Google Scholar 

  38. English K, Ryan JM, Tobin L et al (2009) Cell contact, prostaglandin E (2) and transforming growth factor beta1 play nonredundant roles in human mesenchymal stem cell induction of CD4 + CD25(High) forkheadbox P3+ regulatory T cells. Clin Exp Immunol 156:149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Melief SM, Schrama CLM, Brugman MH (2013) Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes towards anti-inflammatory macrophages. Stem Cells. doi:10.1002/1432

    PubMed  Google Scholar 

  40. Akiyama K, Chen C, Wang D et al (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10:544–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duijvestein M, Wildenberg ME, Welling MM et al (2011) Pretreatment with interferon-gamma enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells 29:1549–1558

    Article  CAS  PubMed  Google Scholar 

  42. Cutler AJ, Limbani V, Girdlestone J et al (2010) Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol 185:6617–6623

    Article  CAS  PubMed  Google Scholar 

  43. Jiang XX, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126

    Article  CAS  PubMed  Google Scholar 

  44. Nauta AJ, Kruisselbrink AB, Lurvink E et al (2006) Mesenchymal stem cells inhibit generation and function of both CD34 + -derived and monocyte-derived dendritic cells. J Immunol 177:2080–2087

    Article  CAS  PubMed  Google Scholar 

  45. Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B cell functions. Blood 107:367–372

    Article  CAS  PubMed  Google Scholar 

  46. Krampera M, Cosmi L, Angeli R et al (2006) Role of interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398

    Article  CAS  PubMed  Google Scholar 

  47. Traggiai E, Volpi S, Schena F et al (2008) Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 26:562–569

    Article  CAS  PubMed  Google Scholar 

  48. Rosado MM, Bernardo ME, Scarsella M et al (2015) Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev 24(1):93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sotiropoulou PA, Perez SA, Gritzapis AD et al (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85

    Article  PubMed  Google Scholar 

  50. Spaggiari GM, Capobianco A, Becchetti S et al (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490

    Article  CAS  PubMed  Google Scholar 

  51. Nauta AJ, Westerhuis G, Kruisselbrink AB et al (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a non-myeloablative setting. Blood 108:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10:709–716

    Article  CAS  PubMed  Google Scholar 

  53. Eggenhofer E, Hoogduijn MJ (2012) Mesenchymal stem cell-educated macrophages. Transplant Res 1:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402

    Article  CAS  PubMed  Google Scholar 

  55. Nemeth K, Leelahavanichkul A, Yuen PS et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. François M, Romieu-Mourez R, Li M, Galipeau J (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20:187–195

    Article  PubMed  Google Scholar 

  57. Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3, e1886

    Article  PubMed  PubMed Central  Google Scholar 

  58. Melief SM, Geutskens SB, Fibbe W et al (2013) Multipotent stromal cells skew monocytes towards an anti-inflammatory IL-10 producing phenotype by production of IL-6. Haematologica 98:888–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ren G, Zhang L, Zhaon X et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150

    Article  CAS  PubMed  Google Scholar 

  60. Li W, Ren G, Huang Y et al (2012) Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ 19:1505–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Waterman RS, Tomchuck SL, Henkle SL et al (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5, e10088

    Article  PubMed  PubMed Central  Google Scholar 

  62. Almeida-Porada G, Porada CD, Tran N et al (2000) Co-transplantation of human stromal cell progenitors into pre-immune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood 95:3620–3627

    CAS  PubMed  Google Scholar 

  63. Noort WA, Kruisselbrink AB, in't Anker PS et al (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+ cells in NOD/SCID mice. Exp Hematol 30:870–878

    Article  PubMed  Google Scholar 

  64. Koc ON, Gerson SL, Cooper BW et al (2000) Rapid hematopoietic recovery after co-infusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    CAS  PubMed  Google Scholar 

  65. Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398

    Article  PubMed  Google Scholar 

  66. MacMillan ML, Blazar BR, DeFor TE et al (2008) Transplantation of culture-expanded haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I–II clinical trial. Bone Marrow Transplant 43:1–8

    Google Scholar 

  67. Gonzalo-Daganzo R, Regidor C, Martìn-Donaire T et al (2009) Results of a pilot study on the use of third-party mesenchymal stromal cells in cord blood transplantation in adults. Cytotherapy 11:278–288

    Article  CAS  PubMed  Google Scholar 

  68. Wu Y, Cao Y, Li X et al (2014) Cotransplantation of haploidentical hematopoietic and umbilical cord mesenchymal stem cells for severe aplastic anemia: successful engraftment and mild GVHD. Stem Cell Res 12:132–138

    Article  CAS  PubMed  Google Scholar 

  69. Wu Y, Wang Z, Cao Y et al (2013) Cotransplantation of haploidentical hematopoietic and umbilical cord mesenchymal stem cells with a myeloablative regimen for refractory/relapsed hematologic malignancy. Ann Hematol 92:1675–1684

    Article  CAS  PubMed  Google Scholar 

  70. Robinson SN, Ng J, Niu T et al (2006) Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 37:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. de Lima M, McNiece I, Robinson SN et al (2012) Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 367:2305–2315

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sudres M, Norol F, Trenado A et al (2006) Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host-disease in mice. J Immunol 176:7761–7767

    Article  CAS  PubMed  Google Scholar 

  73. Tisato V, Naresh K, Girdlestone J et al (2007) Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia 21:1992–1999

    Article  CAS  PubMed  Google Scholar 

  74. Polchert D, Sobinsky J, Douglas G et al (2008) IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 38:1745–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    Article  PubMed  Google Scholar 

  76. Ball LM, Bernardo ME, Roelofs H et al (2013) Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III–IV acute graft-versus-host disease. Br J Haematol 163:501–509

    Article  CAS  PubMed  Google Scholar 

  77. Lucchini G, Introna M, Dander E et al (2010) Platelet-lysate-expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft-versus-host disease in a pediatric population. Biol Blood Marrow Transplant 16:1293–1301

    Article  PubMed  Google Scholar 

  78. Introna M, Lucchini G, Dander E et al (2014) Treatment of graft versus host disease with mesenchymal stromal cells: a phase I study on 40 adult and pediatric patients. Biol Blood Marrow Transplant 20:375–381

    Article  PubMed  Google Scholar 

  79. Dander E, Lucchini G, Vinci P et al (2012) Mesenchymal stromal cells for the treatment of graft-versus-host disease: understanding the in vivo biological effect through patient immune monitoring. Leukemia 26:1682–1684

    Google Scholar 

  80. Zhou H, Guo M, Bian C et al (2010) Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant 16:403–412

    Article  CAS  PubMed  Google Scholar 

  81. Peng Y, Chen X, Liu Q et al (2015) Mesenchymal stromal cells infusions improve refractory chronic graft versus host disease through an increase of CD5+ regulatory B cells producing interleukin 10. Leukemia 29(3):636–646

    Article  CAS  PubMed  Google Scholar 

  82. Ringden O, Le Blanc K (2011) Mesenchymal stem cells for treatment of acute and chronic graft-versus-host disease, tissue toxicity and hemorrhages. Best Pract Res Clin Haematol 24:65–72

    Article  CAS  PubMed  Google Scholar 

  83. Yin F, Battiwalla M, Ito S et al (2014) Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: correlation of biological markers with clinical responses. Stem Cells 32:1278–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ranganath SH, Levy O, Inamdar MS et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Biancone L, Bruno S, Deregibus MC et al (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27:3037–3042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC) IG9062 and the Bando Giovani Ricercatori 2008 to M.E.B.; by the special grant “5 × 1000” from AIRC and a grant from the Regione Lazio (FILAS grant) to F.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ester Bernardo M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bernardo, M.E., Locatelli, F. (2016). Mesenchymal Stromal Cells in Hematopoietic Stem Cell Transplantation. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics