Skip to main content

Genetic Knockdown and Pharmacologic Inhibition of Hypoxia-Inducible Factor (HIF) Hydroxylases

  • Protocol
  • First Online:
Hypoxia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1742))

Abstract

Reduced oxygen supply that does not satisfy tissue and cellular demand (hypoxia) regularly occurs both in health and disease. Hence, the capacity for cellular oxygen sensing is of vital importance for each cell to be able to alter its energy metabolism and promote adaptation to hypoxia. The hypoxia-inducible factor (HIF) prolyl hydroxylases 1–3 (PHD1–3) and the asparagine hydroxylase factor-inhibiting HIF (FIH) are the primary cellular oxygen sensors, which confer cellular oxygen-dependent sensitivity upon HIF as well as other hypoxia-sensitive pathways, such as nuclear factor κB (NF-κB). Studying these enzymes allows us to understand the oxygen-dependent regulation of cellular processes and has led to the development of several putative novel therapeutics, which are currently in clinical trials for the treatment of anemia associated with kidney disease. Pharmacologic inhibition and genetic knockdown are commonly established techniques in protein biochemistry and are used to investigate the activity and function of proteins. Here, we describe specific protocols for the knockdown and inhibition of the HIF prolyl hydroxylases 1–3 (PHD1–3) and the asparagine hydroxylase factor-inhibiting HIF (FIH) using RNA interference (RNAi) and hydroxylase inhibitors, respectively. These techniques are essential tools for the analysis of the function of the HIF hydroxylases, allowing the investigation and discovery of novel functions and substrates of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402

    Article  CAS  PubMed  Google Scholar 

  2. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    Article  CAS  PubMed  Google Scholar 

  3. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22(16):4082–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279(37):38458–38465

    Article  CAS  PubMed  Google Scholar 

  5. Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Coles CH, Yu X, Hay RT, Ley SC, Pugh CW, Oldham NJ, Masson N, Schofield CJ, Ratcliffe PJ (2006) Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci U S A 103(40):14767–14772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci U S A 103(48):18154–18159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stiehl DP, Wirthner R, Koditz J, Spielmann P, Camenisch G, Wenger RH (2006) Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem 281(33):23482–23491

    Article  CAS  PubMed  Google Scholar 

  8. Scholz CC, Cavadas MA, Tambuwala MM, Hams E, Rodriguez J, von Kriegsheim A, Cotter P, Bruning U, Fallon PG, Cheong A, Cummins EP, Taylor CT (2013) Regulation of IL-1beta-induced NF-kappaB by hydroxylases links key hypoxic and inflammatory signaling pathways. Proc Natl Acad Sci U S A 110(46):18490–18495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scholz CC, Rodriguez J, Pickel C, Burr S, Fabrizio JA, Nolan KA, Spielmann P, Cavadas MA, Crifo B, Halligan DN, Nathan JA, Peet DJ, Wenger RH, Von Kriegsheim A, Cummins EP, Taylor CT (2016) FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1. PLoS Biol 14(1):e1002347

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bagnall J, Leedale J, Taylor SE, Spiller DG, White MR, Sharkey KJ, Bearon RN, See V (2014) Tight control of hypoxia-inducible factor-alpha transient dynamics is essential for cell survival in hypoxia. J Biol Chem 289(9):5549–5564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scholz CC, Taylor CT (2013) Hydroxylase-dependent regulation of the NF-kappaB pathway. Biol Chem 394(4):479–493

    Article  CAS  PubMed  Google Scholar 

  13. Fu J, Taubman MB (2010) Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF-{kappa}B-dependent pathway. J Biol Chem 285(12):8927–8935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wenger RH, Kurtcuoglu V, Scholz CC, Marti HH, Hoogewijs D (2015) Frequently asked questions in hypoxia research. Hypoxia 3:35–43

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, Simpson DA, Leonard MO, Tambuwala MM, Cummins EP, Taylor CT (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31(19):4087–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stiehl DP, Bordoli MR, Abreu-Rodriguez I, Wollenick K, Schraml P, Gradin K, Poellinger L, Kristiansen G, Wenger RH (2012) Non-canonical HIF-2alpha function drives autonomous breast cancer cell growth via an AREG-EGFR/ErbB4 autocrine loop. Oncogene 31(18):2283–2297

    Article  CAS  PubMed  Google Scholar 

  17. Cavadas MA, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Scholz CC, Cummins EP, Cheong A, Taylor CT (2015) REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia. Sci Rep 5:17851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coelen RJ, Jose DG, May JT (1983) The effect of hexadimethrine bromide (polybrene) on the infection of the primate retroviruses SSV 1/SSAV 1 and BaEV. Arch Virol 75(4):307–311

    Article  CAS  PubMed  Google Scholar 

  19. Jain IH, Zazzeron L, Goli R, Alexa K, Schatzman-Bone S, Dhillon H, Goldberger O, Peng J, Shalem O, Sanjana NE, Zhang F, Goessling W, Zapol WM, Mootha VK (2016) Hypoxia as a therapy for mitochondrial disease. Science 352(6281):54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barrett TD, Palomino HL, Brondstetter TI, Kanelakis KC, Wu X, Haug PV, Yan W, Young A, Hua H, Hart JC, Tran DT, Venkatesan H, Rosen MD, Peltier HM, Sepassi K, Rizzolio MC, Bembenek SD, Mirzadegan T, Rabinowitz MH, Shankley NP (2011) Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor. Mol Pharmacol 79(6):910–920

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ERACoSysMed (15/ERA-CSM/3267) and Science Foundation Ireland (11/PI/1005) awarded to Cormac T. Taylor, and by a Forschungskredit of the University of Zurich (FK-15-046) awarded to Carsten C. Scholz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten C. Scholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pickel, C., Taylor, C.T., Scholz, C.C. (2018). Genetic Knockdown and Pharmacologic Inhibition of Hypoxia-Inducible Factor (HIF) Hydroxylases. In: Huang, L. (eds) Hypoxia. Methods in Molecular Biology, vol 1742. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7665-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7665-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7664-5

  • Online ISBN: 978-1-4939-7665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics