Skip to main content

In Vivo Microdialysis Technique Applications to Understand the Contribution of Receptor–Receptor Interactions to the Central Nervous System Signaling

  • Protocol
  • First Online:
Receptor-Receptor Interactions in the Central Nervous System

Abstract

During the last 50 years, microdialysis technique has been continuously improved to become a well-established method to monitor local concentrations of neurotransmitters. In respect to other currently used techniques, such as voltammetry, microdialysis has the advantage to be possibly applied to all measurable neurotransmitters and to allow local treatments. These properties render the technique a suitable approach to investigate, in vivo, the neurochemical consequences of receptor–receptor interactions, thus providing functional correlates to binding and other biochemical data.

This chapter is mainly focused on a general description of microdialysis technique in freely moving animals and on the application of one- or dual-probe(s) microdialysis to investigate the functional relevance of receptor–receptor interactions in rodent brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chefer VI, Thompson AC, Zapata A et al (2009) Overview of brain microdialysis. Curr Protoc Neurosci Chapter 7:Unit7.1

    Google Scholar 

  2. Pan YF, Feng J, Cheng QY et al (2007) Intracerebral microdialysis technique and its application on brain pharmacokinetic-pharmacodynamic study. Arch Pharm Res 30:1635–1645

    Article  CAS  PubMed  Google Scholar 

  3. Höcht C, Opezzo JA, Taira CA (2007) Applicability of reverse microdialysis in pharmacological and toxicological studies. J Pharmacol Toxicol Methods 5:3–15

    Article  CAS  Google Scholar 

  4. Hutchinson PJ, Jalloh I, Helmy A et al (2015) Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med 41:1517–1528

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bito L, Davson H, Levin E et al (1966) The concentration of free amino acids and other electrolytes in cerebrospinal fluid: In vivo dialysis of brain and blood plasma of the dog. J Neurochem 13:1057–1067

    Article  CAS  PubMed  Google Scholar 

  6. Delgado JMR, DeFeudis FV, Roth RH et al (1974) Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn 198:9–21

    Google Scholar 

  7. Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30:44–55

    PubMed  CAS  Google Scholar 

  8. Westerink BHC, Justice JB Jr (1991) Microdialysis compared with other in vivo release models. In: Robinson TE, Justice JB Jr (eds) Microdialysis in the Neurosciences. Elsevier Science Publishing, New York, pp 23–43

    Chapter  Google Scholar 

  9. Ungerstedt U (1991) Microdialysis--principles and applications for studies in animals and man. J Intern Med 230:365–373

    Article  CAS  PubMed  Google Scholar 

  10. Thompson AC, Shippenberg TS (2001) Microdialysis in rodents. Curr Protoc Neurosci Chapter 7:Unit7.2

    Google Scholar 

  11. Anderzhanova E, Wotjak CT (2013) Brain microdialysis and its applications in experimental neurochemistry. Cell Tissue Res 354:27–39

    Article  CAS  PubMed  Google Scholar 

  12. König M, Thinnes A, Klein J (2017) Microdialysis and its use in behavioural studies: focus on acetylcholine. J Neurosci Methods S0165-0270(17):30294–30297

    Google Scholar 

  13. Benveniste H, Drejer J, Schousboe A et al (1987) Regional cerebral glucose phosphorylation and blood flow after insertion of a microdialysis fiber through the dorsal hippocampus in the rat. J Neurochem 49:729–734

    Article  CAS  PubMed  Google Scholar 

  14. Benveniste H, Diemer NH (1987) Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol 74:234–238

    Article  CAS  PubMed  Google Scholar 

  15. Georgieva J, Luthman J, Mohringe B et al (1993) Tissue and microdialysate changes after repeated and permanent probe implantation in the striatum of freely moving rats. Brain Res Bull 31:463–470

    Article  CAS  PubMed  Google Scholar 

  16. Zapata A, Chefer VI, Shippenberg TS (2009) Microdialysis in rodents. Curr Protoc Neurosci Chapter 7:Unit7.2

    Google Scholar 

  17. Herrera-Marschitz M, Meana JJ, O'Connor WT et al (1992) Neuronal dependence of extracellular dopamine, acetylcholine, glutamate, aspartate and gamma-aminobutyric acid (GABA) measured simultaneously from rat neostriatum using in vivo microdialysis: reciprocal interactions. Amino Acids 2:157–179

    Article  CAS  PubMed  Google Scholar 

  18. Morari M, O'Connor WT, Darvelid M et al (1996) Functional neuroanatomy of the nigrostriatal and striatonigral pathways as studied with dual probe microdialysis in the awake rat–I. Effects of perfusion with tetrodotoxin and low-calcium medium. Neuroscience 72:79–87

    Article  CAS  PubMed  Google Scholar 

  19. LaLumiere RT, Kalivas PW (2008) Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 28:3170–3177

    Article  CAS  PubMed  Google Scholar 

  20. Fuxe K, Canals M, Torvinen M et al (2007) Intramembrane receptor-receptor interactions: a novel principle in molecular medicine. J Neural Transm (Vienna) 114:49–75

    Article  CAS  Google Scholar 

  21. Hernández L, Paredes D, Rada P (2011) Feeding behavior as seen through the prism of brain microdialysis. Physiol Behav 104:47–56

    Article  CAS  PubMed  Google Scholar 

  22. Lietsche J, Gorka J, Hardt S et al (2015) Custom-made Microdialysis Probe Design. J Vis Exp 101:e53048

    Google Scholar 

  23. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  24. Ferraro L, O'Connor WT, Antonelli T et al (1997) Differential effects of intrastriatal neurotensin(1-13) and neurotensin(8-13) on striatal dopamine and pallidal GABA release. A dual-probe microdialysis study in the awake rat. Eur J Neurosci 9:1838–1846

    Article  CAS  PubMed  Google Scholar 

  25. Ferraro L, O’Connor WT, Beggiato S et al (2012) Striatal NTS1, dopamine D2 and NMDA receptor regulation of pallidal GABA and glutamate release–a dual-probe microdialysis study in the intranigral 6-hydroxydopamine unilaterally lesioned rat. Eur J Neurosci 35:207–220

    Article  PubMed  Google Scholar 

  26. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  27. Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:277–280

    Article  CAS  PubMed  Google Scholar 

  28. Quirion R, Chiueh CC, Everist HD et al (1985) Comparative localization of neurotensin receptors on nigrostriatal and mesolimbic dopaminergic terminals. Brain Res 327:385–389

    Article  CAS  PubMed  Google Scholar 

  29. Fuxe K, O’Connor WT, Antonelli T et al (1992) Evidence for a substrate of neuronal plasticity based on pre- and postsynaptic neurotensin-dopamine receptor interactions in the neostriatum. Proc Natl Acad Sci U S A 89:5591–5595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agnati LF, Fuxe K, Benfenati F et al (1983) Neurotensin in vitro markedly reduces the affinity in subcortical limbic [3H]N-propylnorapomorphine binding sites. Acta Physiol Scand 117:299–301

    Article  CAS  PubMed  Google Scholar 

  31. von Euler G, Fuxe K, Benfenati F et al (1987) Neurotensin modulates the binding characteristics of dopamine D2 receptors in rat striatal membranes following treatment with toluene. Acta Physiol Scand 135:442–448

    Google Scholar 

  32. Fuxe K, Agnati LF, von Euler G (1992) Neuropeptides, excitatory amino acid and adenosine A2 receptors regulate D2 receptors via intramembrane receptor-receptor interactions. Relevance for Parkinson’s disease and schizophrenia. Neurochem Int 20:215S–224S

    Article  CAS  PubMed  Google Scholar 

  33. Gully D, Canton M, Boigegrain R et al (1993) Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc Natl Acad Sci U S A 90:65–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reid MS, O'Connor WT, Herrera-Marschitz M et al (1990) The effects of intranigral GABA and dynorphin A injections on striatal dopamine and GABA release: evidence that dopamine provides inhibitory regulation of striatal GABA neurons via D2 receptors. Brain Res 519:255–260

    Article  CAS  PubMed  Google Scholar 

  35. Granier C, van Rietschoten J, Kitabgi P et al (1982) Synthesis and characterization of neurotensin analogues for structure/activity relationship studies. Acetyl-neurotensin-(8-13) is the shortest analogue with full binding and pharmacological activities. Eur J Biochem 124:117–24

    Google Scholar 

  36. Sirinathsinghji DJ, Heavens RP (1989) Stimulation of GABA release from the rat neostriatum and globus pallidus in vivo by corticotropin-releasing factor. Neurosci Lett 100:203–209

    Article  CAS  PubMed  Google Scholar 

  37. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127

    Article  CAS  PubMed  Google Scholar 

  38. Ferraro L, Tomasini MC, Fernandez M et al (2001) Nigral neurotensin receptor regulation of nigral glutamate and nigroventral thalamic GABA transmission: a dual-probe microdialysis study in intact conscious rat brain. Neuroscience 102:113–120

    Article  CAS  PubMed  Google Scholar 

  39. Antonelli T, Tomasini MC, Fuxe K et al (2007) Focus on NTR/D2 interactions in the basal ganglia. J Neural Transm (Vienna) 114:105–113

    Article  CAS  Google Scholar 

  40. Guidolin D, Agnati LF, Marcoli M et al (2015) G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin Ther Targets 19:265–283

    Article  CAS  PubMed  Google Scholar 

  41. Kennedy RT (2013) Emerging trends in in vivo neurochemical monitoring by microdialysis. Curr Opin Chem Biol 17:860–867

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Tanganelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tanganelli, S. et al. (2018). In Vivo Microdialysis Technique Applications to Understand the Contribution of Receptor–Receptor Interactions to the Central Nervous System Signaling. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics