Skip to main content

Alternatives to Mammalian Pain Models 2: Using Drosophila to Identify Novel Genes Involved in Nociception

  • Protocol
  • First Online:
Analgesia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 617))

Abstract

Identification of the molecules involved in nociception is fundamental to our understanding of pain. Drosophila, with its short generation time, powerful genetics and capacity for rapid, genome-wide mutagenesis, represents an ideal invertebrate model organism to dissect nociception. The fly has already been used to identify factors that are involved in other sensory systems such as vision, chemosensation, and audition. Thus, the tiny fruit fly is a viable alternative to mammalian model organisms. Here we present a brief primer on techniques used in screening for thermal and/or mechanical nociception mutants using Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Tracey WD Jr, Wilson RI, Laurent G, Benzer S (2003) painless, a Drosophila gene essential for nociception. Cell 113:261-273

    Article  PubMed  CAS  Google Scholar 

  2. Dhaka A, Viswanath V, Patapoutian A (2006) TRP ion channels and temperature sensation. Annu Rev Neurosci 29:135-161

    Article  PubMed  CAS  Google Scholar 

  3. Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858-865

    Article  PubMed  CAS  Google Scholar 

  4. Sullivan W, Ashburner M, Hawley RS (2000) Drosophila protocols. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  5. Lewis EB, Bacher F (1968) Method for feeding ethyl-methane sulfonate (EMS) to Drosophila males. Drosoph Inf Serv 43:193

    Google Scholar 

  6. Bokel C (2008) EMS screens: from mutagenesis to screening and mapping. Methods Mol Biol 420:119-138

    Article  PubMed  Google Scholar 

  7. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731-740

    PubMed  CAS  Google Scholar 

  8. Bentley A, MacLennan B, Calvo J, Dearolf CR (2000) Targeted recovery of mutations in Drosophila. Genetics 156:1169-1173

    PubMed  CAS  Google Scholar 

  9. Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G et al (2007) The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177:615-629

    Article  PubMed  CAS  Google Scholar 

  10. Ryder E, Blows F, Ashburner M, Bautista-Llacer R, Coulson D, Drummond J et al (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167:797-813

    Article  PubMed  CAS  Google Scholar 

  11. Parks AL, Cook KR, Belvin M, Dompe NA, Fawcett R, Huppert K et al (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36:288-292

    Article  PubMed  CAS  Google Scholar 

  12. Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM et al (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36:283-287

    Article  PubMed  CAS  Google Scholar 

  13. Blumenstiel JP, Noll AC, Griffiths JA, Perera AG, Walton KN, Gilliland WD et al (2009) Identification of EMS-induced mutations in Drosophila melanogaster by whole genome sequencing. Genetics 182(1):25-32

    Article  PubMed  CAS  Google Scholar 

  14. Metaxakis A, Oehler S, Klinakis A, Savakis C (2005) Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics 171:571-581

    Article  PubMed  CAS  Google Scholar 

  15. Engels, W R (1989) P elements in Drosophila melanogaster. In: Berg, D. E. and Howe, M. M., (eds) Mobile DNA, pp. 437-484. American Society for Microbiology, Washington, DC

    Google Scholar 

  16. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185-2195

    Article  PubMed  Google Scholar 

  17. Bier E, Vaessin H, Shepherd S, Lee K, McCall K, Barbel S et al (1989) Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev 3:1273-1287

    Article  PubMed  CAS  Google Scholar 

  18. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1-15

    Article  PubMed  CAS  Google Scholar 

  19. Lukacsovich T, Asztalos Z, Awano W, Baba K, Kondo S, Niwa S et al (2001) Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics 157:727-742

    PubMed  CAS  Google Scholar 

  20. Rorth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A 93:12418-12422

    Article  PubMed  CAS  Google Scholar 

  21. Roseman RR, Johnson EA, Rodesch CK, Bjerke M, Nagoshi RN, Geyer PK (1995) A P element containing suppressor of hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics 141:1061-1074

    PubMed  CAS  Google Scholar 

  22. Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G et al (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167:761-781

    Article  PubMed  CAS  Google Scholar 

  23. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Develop­ment 118:401-415

    PubMed  CAS  Google Scholar 

  24. Fischer JA, Giniger E, Maniatis T, Ptashne M (1988) GAL4 activates transcription in Drosophila. Nature 332:853-856

    Article  PubMed  CAS  Google Scholar 

  25. Laski FA, Rio DC, Rubin GM (1986) Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44:7-19

    Article  PubMed  CAS  Google Scholar 

  26. Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461-470

    PubMed  CAS  Google Scholar 

  27. Daniels SB, McCarron M, Love C, Chovnick A (1985) Dysgenesis-induced instability of rosy locus transformation in Drosophila melanogaster: analysis of excision events and the selective recovery of control element deletions. Genetics 109:95-117

    PubMed  CAS  Google Scholar 

  28. Voelker RA, Greenleaf AL, Gyurkovics H, Wisely GB, Huang SM, Searles LL (1984) Frequent imprecise excision among reversions of a P element-caused lethal mutation in Drosophila. Genetics 107:279-294

    PubMed  CAS  Google Scholar 

  29. Cooley L, Thompson D, Spradling AC (1990) Constructing deletions with defined endpoints in Drosophila. Proc Natl Acad Sci U S A 87:3170-3173

    Article  PubMed  CAS  Google Scholar 

  30. Huet F, Lu JT, Myrick KV, Baugh LR, Crosby MA, Gelbart WM (2002) A deletion-generator compound element allows deletion saturation analysis for genomewide phenotypic annotation. Proc Natl Acad Sci U S A 99:9948-9953

    Article  PubMed  CAS  Google Scholar 

  31. Lukacsovich T, Yamamoto D (2001) Trap a gene and find out its function: toward functional genomics in Drosophila. J Neurogenet 15:147-168

    Article  PubMed  CAS  Google Scholar 

  32. Bellen HJ (1999) Ten years of enhancer detection: lessons from the fly. Plant Cell 11:2271-2281

    PubMed  CAS  Google Scholar 

  33. Manseau L, Baradaran A, Brower D, Budhu A, Elefant F, Phan H et al (1997) GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev Dyn 209:310-322

    Article  PubMed  CAS  Google Scholar 

  34. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151-156

    Article  PubMed  CAS  Google Scholar 

  35. Maggert KA, Gong WJ, Golic KG (2008) Methods for homologous recombination in Drosophila. Methods Mol Biol 420:155-174

    Article  PubMed  CAS  Google Scholar 

  36. Gong WJ, Golic KG (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci U S A 100:2556-2561

    Article  PubMed  CAS  Google Scholar 

  37. Rong YS, Titen SW, Xie HB, Golic MM, Bastiani M, Bandyopadhyay P et al (2002) Tar­geted mutagenesis by homologous reco­m­bination in D. melanogaster. Genes Dev 16:1568-1581

    Article  PubMed  CAS  Google Scholar 

  38. Rong YS, Golic KG (2001) A targeted gene knoc­kout in Drosophila. Genetics 157:1307-1312

    PubMed  CAS  Google Scholar 

  39. Rong YS, Golic KG (2000) Gene targeting by homologous recombination in Drosophila. Science 288:2013-2018

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Daniel Tracey Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Caldwell, J.C., Tracey, W.D. (2010). Alternatives to Mammalian Pain Models 2: Using Drosophila to Identify Novel Genes Involved in Nociception. In: Szallasi, A. (eds) Analgesia. Methods in Molecular Biology, vol 617. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-323-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-323-7_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-322-0

  • Online ISBN: 978-1-60327-323-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics