Skip to main content

Animal Models of Orofacial Pain

  • Protocol
  • First Online:
Analgesia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 617))

Abstract

Pain is one of the most common reasons for which patients seek dental and medical care. Orofacial pain conditions consist of a wide range of disorders including odontalgia (toothache), temporomandibular disorders, trigeminal neuralgia and others. Most of these conditions are either inflammatory or neuropathic in nature. This chapter provides an overview of the commonly used models to study inflammatory and neuropathic orofacial pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lipton JA, Ship JA, Larach-Robinson D (1993) Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc 124:115–121

    PubMed  CAS  Google Scholar 

  2. Locker D, Slade G (1988) Prevalence of symptoms associated with temporomandibular disorders in a Canadian population. Community Dent Oral Epidemiol 16:310–313

    Article  PubMed  CAS  Google Scholar 

  3. Von Korff M, Dworkin SF, Le Resche L, Kruger A (1988) An epidemiologic comparison of pain complaints. Pain 32:173–183

    Article  Google Scholar 

  4. Bereiter DA, Hargreaves KM, Hu JW (In press) Trigeminal mechanisms of nociception: peripheral and brainstem organization. In: Basbaum A, Bushnell C (eds) Handbook of the senses. vol 1

    Google Scholar 

  5. Byers MR, Narhi MV (1999) Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit Rev Oral Biol Med 10:4–39

    Article  PubMed  CAS  Google Scholar 

  6. Khayat BG, Byers MR, Taylor PE, Mecifi K, Kimberly CL (1988) Responses of nerve fibers to pulpal inflammation and periapical lesions in rat molars demonstrated by calcitonin gene-related peptide immunocytochemistry. J Endod 14:577–587

    Article  PubMed  CAS  Google Scholar 

  7. Kimberly CL, Byers MR (1988) Inflammation of rat molar pulp and periodontium causes increased calcitonin gene-related peptide and axonal sprouting. Anat Rec 222:289–300

    Article  PubMed  CAS  Google Scholar 

  8. Kakehashi S, Stanley HR, Fitzgerald RJ (1965) The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol 20:340–349

    Article  PubMed  CAS  Google Scholar 

  9. Wang CY, Stashenko P (1991) Kinetics of bone-resorbing activity in developing periapical lesions. J Dent Res 70:1362–1366

    Article  PubMed  CAS  Google Scholar 

  10. Wang CY, Tani-Ishii N, Stashenko P (1997) Bone-resorptive cytokine gene expression in periapical lesions in the rat. Oral Microbiol Immunol 12:65–71

    Article  PubMed  Google Scholar 

  11. Byers MR, Taylor PE, Khayat BG, Kimberly CL (1990) Effects of injury and inflammation on pulpal and periapical nerves. J Endod 16:78–84

    Article  PubMed  CAS  Google Scholar 

  12. Kawashima N, Niederman R, Hynes RO, Ullmann-Cullere M, Stashenko P (1999) Infection-stimulated infraosseus inflammation and bone destruction is increased in P-/E-selectin knockout mice. Immunology 97:117–123

    Article  PubMed  CAS  Google Scholar 

  13. Tani-Ishii N, Wang CY, Stashenko P (1995) Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure. Oral Microbiol Immunol 10:213–219

    Article  PubMed  CAS  Google Scholar 

  14. Kawashima N, Stashenko P (1999) Expression of bone-resorptive and regulatory cytokines in murine periapical inflammation. Arch Oral Biol 44:55–66

    Article  PubMed  CAS  Google Scholar 

  15. Ro JY (2005) Bite force measurement in awake rats: a behavioral model for persistent orofacial muscle pain and hyperalgesia. J Orofac Pain 19:159–167

    PubMed  Google Scholar 

  16. Zhou Q, Imbe H, Dubner R, Ren K (1999) Persistent Fos protein expression after orofacial deep or cutaneous tissue inflammation in rats: implications for persistent orofacial pain. J Comp Neurol 412:276–291

    Article  PubMed  CAS  Google Scholar 

  17. Morgan JR, Gebhart GF (2008) Charac­teriza­tion of a model o chronic orofacial hyperalgesia in the rat: contribution of NaV 1.8. J Pain 9:522–531

    Article  PubMed  CAS  Google Scholar 

  18. Bereiter DA, Benetti AP (1996) Excitatory amino release within spinal trigeminal nucleus after mustard oil injection into the temporomandibular joint region of the rat. Pain 67:451–459

    Article  PubMed  CAS  Google Scholar 

  19. Bonjardim LR, da Silva AP, Gameiro GH, Tambeli CH, de Arruda F, Veiga MC (2009) Nociceptive behavior induced by mustard oil injection into the temporomandibular joint is blocked by a peripheral non-opioid analgesic and a central opioid analgesic. Pharmacol Bio­chem Behav 91:321–326

    Article  PubMed  CAS  Google Scholar 

  20. Haas DA, Nakanishi O, MacMillan RE, Jordan RC, Hu JW (1992) Development of an orofacial model of acute inflammation in the rat. Arch Oral Biol 37:417–422

    Article  PubMed  CAS  Google Scholar 

  21. Akopian A, Ruparel N, Jeske N, Hargreaves KM (2007) TRPA1 desensitization in sensory neurons is agonist-dependent and regulated by TRPV1-directed internalization. J Physiol 583:175–193

    Article  PubMed  CAS  Google Scholar 

  22. Chiang CY, Park SJ, Kwan CL, Hu JW, Sessle BJ (1998) NMDA receptor mechanisms contribute to neuroplasticity induced in caudalis nociceptive neurons by tooth pulp stimulation. J Neurophysiol 80:2621–2631

    PubMed  CAS  Google Scholar 

  23. Zhang S, Chiang CY, Xie YF, Park SJ, Lu Y, Hu JW, Dostrovsky JO, Sessle BJ (2006) Central sensitization in thalamic nociceptive neurons induced by mustard oil application to rat molar tooth pulp. Neuroscience 142:833–842

    Article  PubMed  CAS  Google Scholar 

  24. Clavelou P, Dallel R, Orliaguet T, Woda A, Raboisson P (1995) The orofacial formalin test in rats: effects of different formalin concentrations. Pain 62:295–301

    Article  PubMed  CAS  Google Scholar 

  25. Gilbert SD, Clark TM, Flores CM (2001) Antihyperalgesic activity of epibatidine in the formalin model of facial pain. Pain 89:159–165

    Article  PubMed  CAS  Google Scholar 

  26. Porro CA, Cavazzuti M (1993) Spatial and temporal aspects of spinal cord and brainstem activation in the formalin pain model. Prog Neurobiol 41:565–607

    Article  PubMed  CAS  Google Scholar 

  27. Raboisson P, Bourdiol P, Dallel R, Clavelou P, Woda A (1991) Responses of trigeminal subnucleus oralis nociceptive neurones to subcutaneous formalin in the rat. Neurosci Lett 125:179–182

    Article  PubMed  CAS  Google Scholar 

  28. Raboisson P, Dallel R (2004) The orofacial formalin test. Neurosci Biobehav Rev 28:219–226

    Article  PubMed  Google Scholar 

  29. Szolcsanyi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 38:377–384

    Article  PubMed  CAS  Google Scholar 

  30. Knotkova H, Pappagallo M, Szallasi A (2008) Capsaicin (TRPV1 Agonist) therapy for pain relief: farewell or revival? Clin J Pain 24:142–154

    Article  PubMed  Google Scholar 

  31. Chidiac JJ, Hawwa N, Baliki M, Safieh-Garabedian B, Rifai K, Jabbur SJ, Saade NE (2001) A perfusion technique for the determination of pro-inflammatory mediators induced by intradental application of irritants. J Pharmacol Toxicol Methods 46:125–130

    Article  PubMed  CAS  Google Scholar 

  32. Chidiac JJ, Rifai K, Hawwa NN, Massaad CA, Jurjus AR, Jabbur SJ, Saade NE (2002) Nociceptive behaviour induced by dental application of irritants to rat incisors: a new model for tooth inflammatory pain. Eur J Pain 6:55–67

    Article  PubMed  Google Scholar 

  33. Diogenes A, Patwardhan A, Ruparel N, Goffin A, Akopian A, Hargreaves KM (2006) Prolactin modulates TRPV1 in female rat trigeminal sensory neurons. J Neurosci 26:8126–8136

    Article  PubMed  CAS  Google Scholar 

  34. Bowles WR, Flores CM, Jackson DL, Hargreaves KM (2003) beta 2-Adrenoceptor regulation of CGRP release from capsaicin-sensitive neurons. J Dent Res 82:308–311

    Article  PubMed  CAS  Google Scholar 

  35. Hargreaves KM, Jackson DL, Bowles WR (2003) Adrenergic regulation of capsaicin-sensitive neurons in dental pulp. J Endod 29:397–399

    Article  PubMed  Google Scholar 

  36. Anderson LC, Vakoula A, Veinote R (2003) Inflammatory hypersensitivity in a rat model of trigeminal neuropathic pain. Arch Oral Biol 48:161–169

    Article  PubMed  Google Scholar 

  37. Henry MA, Freking AR, Johnson LR, Levinson SR (2007) Sodium channel Nav1.6 accumulates at the site of infraorbital nerve injury. BMC Neurosci 8:56

    Article  PubMed  Google Scholar 

  38. Vos BP, Strassman AM, Maciewicz RJ (1994) Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J Neurosci 14:2708–2723

    PubMed  CAS  Google Scholar 

  39. Pan Y, Wheeler EF, Bernanke JM, Yang H, Naftel JP (2003) A model experimental system for monitoring changes in sensory neuron phenotype evoked by tooth injury. J Neurosci Methods 126:99–109

    Article  PubMed  Google Scholar 

  40. Wheeler EF, Naftel JP, Pan M, von Bartheld CS, Byers MR (1998) Neurotrophin receptor expression is induced in a subpopulation of trigeminal neurons that label by retrograde transport of NGF or fluoro-gold following tooth injury. Brain Res Mol Brain Res 61:23–38

    Article  PubMed  CAS  Google Scholar 

  41. Ambalavanar R, Moritani M, Haines A, Hilton T, Dessem D (2003) Chemical phenotypes of muscle and cutaneous afferent neurons in the rat trigeminal ganglion. J Comp Neurol 26:167–179

    Article  Google Scholar 

  42. Eckert SP, Taddese A, McCleskey EW (1997) Isolation and culture of rat sensory neurons having distinct sensory modalities. J Neurosci Methods 77:183–190

    Article  PubMed  CAS  Google Scholar 

  43. Stephenson JL, Byers MR (1995) GFAP immunoreactivity in trigeminal ganglion satellite cells after tooth injury in rats. Exp Neurol 131:11–22

    Article  PubMed  CAS  Google Scholar 

  44. Sugaya A, Chudler EH, Byers MR (1995) Axonal transport of fluorescent carbocyanine dyes allows mapping of peripheral nerve territories in gingiva. J Periodontol 66:817–821

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Khan, A., Hargreaves, K.M. (2010). Animal Models of Orofacial Pain. In: Szallasi, A. (eds) Analgesia. Methods in Molecular Biology, vol 617. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-323-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-323-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-322-0

  • Online ISBN: 978-1-60327-323-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics