Skip to main content

Determination of ERK Activity: Anti-phospho-ERK Antibodies and In Vitro Phosphorylation

  • Protocol
  • First Online:
MAP Kinase Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 661))

Abstract

The ERK signaling cascade is composed of several protein kinases that sequentially activate each other by phosphorylation. This pathway is a central component of a complex signaling network that regulates important cellular processes including proliferation, differentiation, and survival. In most of these cases, the ERK cascade is activated downstream of the small GTPase Ras that, upon activation, recruits and activates the first tier in the cascade, which contains the Raf kinases. Afterward the signal is further transmitted by MEKs, ERKs, and often RSKs in the MAPKK, MAPK, and MAPKAPKs tiers of the cascade, respectively. ERKs and RSKs can further disseminate the signal by phosphorylating and modulating the activity of a large number of regulatory proteins including transcription factors and chromatin modifying enzymes. Understanding the mechanisms of activation and the regulation of the various components of this cascade will enhance our insight into the regulation of the ERK-dependent cellular processes in normal cells or of their malfunctioning in various diseases, including cancer. In this chapter, we describe methods used to determine the activity of ERKs, which upon slight modifications can also be used for the study of other signaling kinases, either within the cascade or in other pathways. These methods have been successfully applied to study the ERK signaling cascades in a variety of tissue-cultured cell lines, homo­genized animal organs, and lower organisms. As such, the use of these methods should expand our knowledge on the regulation of many distinct systems and upon induction of various stimulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boulton, T. G., Yancopoulos, G. D., Gregory, J. S., Slaughter, C., Moomaw, C., Hsu, J., and Cobb, M. H. (1990) An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249, 64–7.

    Article  PubMed  CAS  Google Scholar 

  2. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7, 2135–48.

    Article  PubMed  CAS  Google Scholar 

  3. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–60.

    Article  PubMed  CAS  Google Scholar 

  4. Freshney, N. W., Rawlinson, L., Guesdon, F., Jones, E., Cowley, S., Hsuan, J., and Saklatvala, J. (1994) Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039–49.

    Article  PubMed  CAS  Google Scholar 

  5. Han, J., Lee, J. D., Bibbs, L., and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–11.

    Article  PubMed  CAS  Google Scholar 

  6. Rouse, J., Cohen, P., Trigon, S., Morange, M., Alonso-Llamazares, A., Zamanillo, D., et al. (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027–37.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, J. D., Ulevitch, R. J., and Han, J. (1995) Primary structure of BMK1: a new mammalian map kinase. Biochem Biophys Res Commun 213, 715–24.

    Article  PubMed  CAS  Google Scholar 

  8. Zhou, G., Bao, Z. Q., and Dixon, J. E. (1995) Components of a new human protein kinase signal transduction pathway. J Biol Chem 270, 12665–69.

    PubMed  CAS  Google Scholar 

  9. Abe, M. K., Kahle, K. T., Saelzler, M. P., Orth, K., Dixon, J. E., and Rosner, M. R. (2001) ERK7 is an autoactivated member of the MAP kinase family. J Biol Chem 276, 21272–79.

    Article  PubMed  CAS  Google Scholar 

  10. Abe, M. K., Saelzler, M. P., Espinosa, R., 3rd, Kahle, K. T., Hershenson, M. B., Le Beau, M. M., and Rosner, M. R. (2002) ERK8, a new member of the mitogen-activated protein kinase family. J Biol Chem 277, 16733–43.

    Article  PubMed  CAS  Google Scholar 

  11. Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radziejewska, E., Morgenbesser, S. D., et al. (1991) ERK’s: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–75.

    Article  PubMed  CAS  Google Scholar 

  12. Derijard, B., Raingeaud, J., Barrett, T., Wu, I. H., Han, J., Ulevitch, R. J., and Davis, R. J. (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms (published erratum appears in Science 1995 Jul 7;269(5220):17). Science 267, 682–85.

    Article  PubMed  CAS  Google Scholar 

  13. Tournier, C., Whitmarsh, A. J., Cavanagh, J., Barrett, T., and Davis, R. J. (1997) Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc Natl Acad Sci U S A 94, 7337–42.

    Article  PubMed  CAS  Google Scholar 

  14. Yan, M., Dai, T., Deak, J. C., Kyriakis, J. M., Zon, L. I., Woodgett, J. R., and Templeton, D. J. (1994) Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372, 798–800.

    PubMed  CAS  Google Scholar 

  15. Pawson, T., and Scott, J. D. (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–80.

    Article  PubMed  CAS  Google Scholar 

  16. Kolch, W. (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6, 827–37.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, X. F., Settleman, J., Kyriakis, J. M., Takeuchi, S. E., Elledge, S. J., Marshall, M. S., et al. (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308–13.

    Article  PubMed  CAS  Google Scholar 

  18. Kolch, W., Heidecker, G., Kochs, G., Hummel, R., Vahidi, H., Mischak, H., et al. (1993) Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364, 249–52.

    Article  PubMed  CAS  Google Scholar 

  19. Kyriakis, J. M., App, H., Zhang, F. X., Banerjee, P., Brautigan, D. L., Rapp, U. R., and Avruch, J. (1992) Raf-1 activates MAP kinase-kinase. Nature 358, 417–21.

    Article  PubMed  CAS  Google Scholar 

  20. Shaul, Y. D., and Seger, R. (2007) The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim Biophys Acta 1773, 1213–26.

    Article  PubMed  CAS  Google Scholar 

  21. Ahn, N. G., Seger, R., Bratlien, R. L., Diltz, C. D., Tonks, N. K., and Krebs, E. G. (1991) Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of myelin basic protein/microtubule-associated protein-2 kinase. J Biol Chem 266, 4220–27.

    PubMed  CAS  Google Scholar 

  22. Chen, R. H., Sarnecki, C., and Blenis, J. (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12, 915–27.

    PubMed  CAS  Google Scholar 

  23. Chuderland, D., Konson, A., and Seger, R. (2008) Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell 31, 850–61.

    Article  PubMed  CAS  Google Scholar 

  24. Roux, P. P., and Blenis, J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68, 320–44.

    Article  PubMed  CAS  Google Scholar 

  25. Ahn, N. G., and Krebs, E. G. (1990) Evidence for an epidermal growth factor- stimulated protein kinase cascade in Swiss 3T3 cells. Activation of serine peptide kinase activity by myelin basic protein kinases in vitro. J Biol Chem 265, 11495–501.

    PubMed  CAS  Google Scholar 

  26. Alroy, I., Soussan, L., Seger, R., and Yarden, Y. (1999) Neu differentiation factor stimulates phosphorylation and activation of the Sp1 transcription factor. Mol Cell Biol 19, 1961–72.

    PubMed  CAS  Google Scholar 

  27. Yung, Y., Dolginov, Y., Yao, Z., Rubinfeld, H., Michael, D., Hanoch, T., et al. (1997) Detection of ERK activation by a novel monoclonal antibody. FEBS Lett 408, 292–96.

    Article  PubMed  CAS  Google Scholar 

  28. Jaaro, H., Rubinfeld, H., Hanoch, T., and Seger, R. (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc Natl Acad Sci U S A 94, 3742–47.

    Article  PubMed  CAS  Google Scholar 

  29. Yao, Z., Dolginov, Y., Hanoch, T., Yung, Y., Ridner, G., Lando, Z., et al. (2000) Detection of partially phosphorylated forms of ERK by monoclonal antibodies reveals spatial regulation of ERK activity by phosphatases. FEBS Lett 468, 37–42.

    Article  PubMed  CAS  Google Scholar 

  30. Force, T., Bonventre, J. V., Heidecker, G., Rapp, U., Avruch, J., and Kyriakis, J. M. (1994) Enzymatic characteristics of the c-Raf-1 protein kinase. Proc Natl Acad Sci U S A 91, 1270–74.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao, Z., Tan, Z., Diltz, C. D., You, M., and Fischer, E. H. (1996) Activation of mitogen-activated protein (MAP) kinase pathway by pervanadate, a potent inhibitor of tyrosine phosphatases. J Biol Chem 271, 22251–55.

    Article  PubMed  CAS  Google Scholar 

  32. Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E. G. (1990) Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from Swiss 3T3 cells. J Biol Chem 265, 11487–94.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Mario Negri–Weizmann collaborative fund and from the EU Sixth Framework Program under the SIMAP (IST-2004-027265) and GROWTHSTOP (LSHC CT-2006-037731). RS is an Incumbent of the Yale S. Lewine and Ella Miller Lewine professorial chair for cancer research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rony Seger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Meida, LLC

About this protocol

Cite this protocol

Procaccia, S., Kraus, S., Seger, R. (2010). Determination of ERK Activity: Anti-phospho-ERK Antibodies and In Vitro Phosphorylation. In: Seger, R. (eds) MAP Kinase Signaling Protocols. Methods in Molecular Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-795-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-795-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-794-5

  • Online ISBN: 978-1-60761-795-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics