Skip to main content

Human Evoked Potentials

  • Protocol
Neurophysiological Techniques

Part of the book series: Neuromethods ((NM,volume 15))

Abstract

After the current section, the history (1.2.) of evoked potentials (EP—for abbreviations, see the end of this chapter) is briefly presented, followed by a discussion of how EPs can be broken down into components (1.3.). General methodology (2.) is then presented, covering recording techniques (2.l.), including electrodes and their placement (2.1.1.), reference electrodes (2.1.2.), EEG amplifying, filtering, and digitizing (2.1.3.), and recording artifacts (2.1.4.). The discussion of methodology then turns to analysis techniques (2.2.), from averaging and peak detection (2.2.l.), and alternative analysis methods (2.2.2.), to factor analysis (2.2.3.), spectral analysis (2.2.4.), and topographical display (2.2.5.). Increasing use is being made of methods of generator localization (2.3.), from scalp EPs (2.3.1.), from evoked magnetic fields (2.3.2.), and from depth recordings and brain lesions (2.3.3.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackley D.H., Hinton G.E., and Sejnowski T. J. (1985) A learning algorithm for Boltzmann Machines. Cognit. Science 9, 147–169.

    Google Scholar 

  • Aladjalova N. A. (1964) Slow electrical processes in the brain, Prog. Bruin Res., vol. 7 Elsevier, Amsterdam

    Google Scholar 

  • Allison R. and Hume A. L. (1981) A comparative analysis of short-latency somatosensory evoked potentials in man, monkey, cat and rat. Exp. Neural. 72, 592–611.

    CAS  Google Scholar 

  • Allison T. (1962) Recovery functions of somatosensory evoked responses in man. yElectroencephalogr. Clin. Neurophysiol. 14, 331–343.

    CAS  Google Scholar 

  • Allison T. Goff W. R. Williamson P.D. and Van Gilder J. C. 1980 On the neural origin of early components of the somatosensory evoked potential in Clinical Uses of Cerebral Brainstem and Spinal Somafosensory Evoked Potenttals Desmedt J. E. ed. Prog. Clin. Neurophysiol. 7 KargerBasel, pp, 51–

    Google Scholar 

  • Allson T., Matsumiya Y., Goff G.D., and Goff, W. R. (1977) The scalp topography of human visual evoked potentials. EZectroencephulogr. Clin. Neurophysiol. 43, 185–197.

    Google Scholar 

  • Allison T., McCarthy G., Wood C. C., Darcey T, M., Spencer D. D., and Williamson P.D. (1988) Human sensorimotor cortex potentials evoked by stimulation of the median nerve. I Cytoarchitectonic areas generating short-latency potentials. J. Neurosurg. (in press).

    Google Scholar 

  • Altafullah I., Halgren E., Stapleton J., and Crandall P. H. (1986) Interictal spike-wave complexes m the human medial temporal potentials. Electroencephulogr. Ckn. Neurophysrol. 63, 503–516.

    CAS  Google Scholar 

  • American EEG Society (1984) Guidelines for clinical evolved potential studies. J. CIEM. Neurophyszol. 1, 3–53.

    Google Scholar 

  • Andersen P., Bliss T.V.P., and Skrede K. K. (1971) Lamellar organization of hippocampal excitatory pathways. Exp. Bruin Res. 13, 208–221.

    CAS  Google Scholar 

  • Andersen I’., Eccles J. C., and Loyning Y. (1964) Location of post-synaptic inhibitory synapses on hippocampal pyramids. J, Neurophysiol. 27, 592–607.

    CAS  Google Scholar 

  • Antervo A., Hari R., Katila T., Pautenaen T. Seppanen M., and Tuomisto T. (1983) Cerebral magnetic fields preceding self-paced plantar flexions of the foot. Acta Neurol. Scand. 68, 213–217.

    PubMed  CAS  Google Scholar 

  • Arduini A. (1958) Enduring potential changes evoked in the cerebral cortex by stimulation of brainstem reticular formation and thalamus, in Reticular Formation of the Bran (Jasper, H. H., Proctor, L. D., Kington, R.S., Noshay, W C., and Costello, R. T., eds.), pp. 333–354.

    Google Scholar 

  • Arduini A., Mancia M., and Mechelse K. (1957) Slow potential changes in the cerebral cortex by sensory and reticular stimulation. Arch. ltd. Biol. 95, 127–138.

    Google Scholar 

  • Arezzo J.L. and Vaughan H. G., Jr. (1975) Cortical potentials associated with voluntary movements in the monkey. Bruin Res. 88, 99–104.

    CAS  Google Scholar 

  • Arezzo J.C. and Vaughan H. G. Jr. 1980 Intracortical sources and surface topography of the motor potential and somatosensory evoked potential m the monkey in Motmutzon Motor and Sensory Process of the Bran Electrical Potentuzls Behmour and Clinical Use Kornhuber H.H. and Deecke L. eds. Prog. Bruin Res., vol. 54), Elsevier,Amsterdam, pp. 77–8

    Google Scholar 

  • Arezzo J. C., Vaughan H. G., Jr., and Legatt A.D. (1981) Topography and intracranial sources of somatosensory evoked potentials m the monkey II. Cortical components. Electroencephulogr. Clin. Neurophysiol. 51, 1–18.

    CAS  Google Scholar 

  • Arezzo J. C., Legatt A. D., and Vaughan H. G., Jr. (1979) Topography and intracranial sources of somatosensory evoked potentials in the monkey I. Early components. Electroencephalogr. Clin. Neurophysiol. 46, 155–172.

    PubMed  CAS  Google Scholar 

  • Arezzo J. C., Pickoff A., and Vaughan H. G., Jr. (1975) The sources and intracerebral distribution of auditory evoked potentials in the alert rhesus monkey. Brain Res. 90, 57–73.

    PubMed  CAS  Google Scholar 

  • Arezzo J. C., Tenke C. E., and Vaughan H. G., Jr. (1987) Movement-related potentials within the hippocampal formation of the monkey. Brain Res. 401, 79–86.

    PubMed  CAS  Google Scholar 

  • Arezzo J. C., Vaughan H. G., Jr., and Koss B. (1977) Relationship of neuronal activity to gross movement-related potentials in monkey pre-and postcentral cortex. Brmn Res. 132, 362–369.

    CAS  Google Scholar 

  • Arezzo J. C., Vaughan H. G., Jr., Kraut M. A., Stemshneider M., and Legatt A.D. (1986) Intracranial generators of event-related potentials in the monkey, in Evoked Potentials (Cracco R. and Bodis-Wollner I., eds), Alan R. Liss, New York, pp. 141–154.

    Google Scholar 

  • Arthur D.L. and Starr A. (1984) Task-relevent late positive component of the auditory event-related potentials in monkeys resembles P300 in humans. Science 223, 186–188.

    PubMed  CAS  Google Scholar 

  • Arthur D. L., Flynn E.R., and Williamson S. J, (1987) Source localization of long-latency auditory evoked magnetic fields m human temporal cortex. Current Trends in Event-Related Potential Research (Johnson, R., Jr., Rohrbaugh J. W., and Parasuraman, R., eds.) (EEG Suppl. 40), Elsevier, Amsterdam, 429–439.

    Google Scholar 

  • Ary J. I’., Klein S.A., and Fender D. H. (1981b) Location of source of evoked scalp potentials: Corrections for skull and scalp thickness. IEEE Trans. Biomed. Eng. 28(6), 447–452.

    PubMed  CAS  Google Scholar 

  • Ary J. I’., Darcey T.M., and Fender D. H. (1981) Locating electrical sources in the human brain. IEEE Trans. Biomed. Eng. 28, 1–5.

    Google Scholar 

  • Ashford J.W. and Fuster J. M. (1985) Occipital and inferotemporal responses to visual signals in the monkey. Exp. Neurol. 90, 444–466.

    PubMed  CAS  Google Scholar 

  • Aunon J. I., McGillem C.D., and Chllders D. G. (1981) Signal processing in evoked potential research: Averaging and modeling. CRC Crif. Rev. Bzol. 5, 323–367.

    CAS  Google Scholar 

  • Baba G., Asano T., Nakamura S., and Orimoto T. (1976-77) Readiness potential recorded from the scalp and depth leads. Appl. Neurophysiol. 39, 268–271.

    PubMed  Google Scholar 

  • Bancaud J. (ed.) (1975) Stereoencephalography (Remond A. ed.) (Handbook of Elecfroencephalography and Clmical Neurophstology, vol. 10B), Elsevier, Amsterdam.

    Google Scholar 

  • Bancaud J., Bloch V., and Paillard J. (1953) Contributions EEG a l′etude des potentiels evoques chez l′homme au niveau du vertex. Rev. Neural. (Pans) 89, 399–418.

    CAS  Google Scholar 

  • Barlow J.S. (1960) Rhythmic activrty induced by photic stimulation in relation to intrinsic alpha activity of the brain in man. Electroencepha-logr. Cbn. Neurophysrol. 12, 317–326.

    CAS  Google Scholar 

  • Barlow J.S. and Remond A. (1981) Eye movement artifact nulling in EEGs by multichannel on-line EOG subtraction. Elecfroencephalogr. Clin. Neurophyslol., 52, 418–423.

    CAS  Google Scholar 

  • Barrett S. E., Rugg M.D., and Perrett D. I. (1988) Event-related potentials and the matchmg of familiar and unfamiliar faces. Neuropsychologiu 26, 105–117.

    CAS  Google Scholar 

  • Barth D. S., Sutherling W., Broffman J., and Beatty J. (1986) Magnetic localization of a dipolar current source implanted in a sphere and human cranium. Electroencephalogr. Clan. Neurophysiol., 63, 260–273.

    CAS  Google Scholar 

  • Beall J, E., Applebaum A. E., Foreman R.D., and Willis W. D. (1977) Spinal cord potentials evoked by cutaneous afferents in the monkey. J. Neurophyslol. 40, 199–211.

    CAS  Google Scholar 

  • Becker W., Hoehne O., Iwase K., and Kornhuber H. H. (1973) Cerebral and ocular muscle potentials preceding voluntary eye movements in man, in Event-Related Potentials of the Brain: Their Relations to Behavior (McCallum W.C. and Knott J. R., eds) (Electroencephalogr. Clin. Neurophysiol., Suppl. 33) Elsevier, Amsterdam, pp. 99–104.

    Google Scholar 

  • Begleiter H., Porjesz B., and Tenner M. (1980) Neuroradiological neurophysiological evidence of brain deficits m chronic alcoholics. Actu. Psychiutr. Stand. Suppl. 286, 62, 3–14.

    Google Scholar 

  • Bentin S., McCarthy, G., and Wood C. C. (1985) Event-related potentials, lexical decision and semantic priming. Electroencephalogr. Clin. Neurophysiol, 60, 343–355.

    PubMed  CAS  Google Scholar 

  • Bertrand O., Perrin F., and Pernier J. (1985) A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalogr. Clin. Neurophyszol., 62, 462–464.

    CAS  Google Scholar 

  • Bessom J. M., Woody C. D., Aleonard P., Thompson H.K., Albe-Fessard D., and Marshall W. H. (1970) Correlations of brain d-c shifts with changes in cerebral blood flow. Am. J.. Physiol. 218, 284–291.

    Google Scholar 

  • Bickford R.G. (1972) Physiological and clinical studies of micro-reflexes. Electroencephalogr. Cbn. Neurophysiol. 31, 93–108

    Google Scholar 

  • Bickford R. G., Jacobson J. L., and Cody D. T. R. (1964) Nature of average evoked potentials to sound and other stimuli in man. Ann. NYAcad. Sci. 112, 204–223.

    CAS  Google Scholar 

  • Bioulac B. and Lamarre Y. (1979) Activity of post-central cortical neurons of the monkey during conditioned movements of the deafferented limb. Brain Res. 172, 427–438.

    PubMed  CAS  Google Scholar 

  • Blom J.L. and Anneveldt J. (1982) An electrocap tested. Electroencephalogr. Clin. Neurophyszol, 54, 591–594.

    CAS  Google Scholar 

  • Blumhardt L.D. and Halhday A. M. (1979) Hemisphere contributions to the composition of the pattern-evoked potential waveform. Exp. Brain Res. 36, 53–69.

    Google Scholar 

  • Blumhardt L. D., Barrett G., Halliday A. M., andKrlss A. (1978) The effect of experimental “scotomata” on the ipsilateral and contralateral responses to pattern-reversal in one half-field. Electroencephalogr. Clm. Neurophysiol. 15, 376–392.

    Google Scholar 

  • Bodes-Wollner I., Hendley C. D., Mylin L.H., and Thornton J. (1979) Visual evoked potentials and the visuogram in multiple sclerosis. Ann. Neural. 5, 40–47.

    Google Scholar 

  • Bonnet M. (1981) Comparison of monosynaptic tendon reflexes during preparation for ballistic or ramp movement. Electroencephalogr. Clin. Neurophysrol. 51, 353–362.

    CAS  Google Scholar 

  • Boston J. R. and Moller A. R. (1985) Brainstem auditory-evoked potentials. Crit. Rev, Blamed. Eng. 13, 97–123.

    CAS  Google Scholar 

  • Boyd E. H., Boyd E. S., and Brown L. E. (1982) Precentral cortex unit activity during the M-wave and contingent negative variation in behaving squirrel monkeys. Exp. Neural. 75, 535–554.

    CAS  Google Scholar 

  • Brazier M. A. (1984) Pioneers in the discovery of evoked potentials Electroencephalogr. CIm. Neurophyslol. 59, 2–8.

    CAS  Google Scholar 

  • Brenner D., Williamson S. J., and Kaufman L. (1975) Visually evoked magnetic fields of the human brain. Science 190, 480–482.

    PubMed  CAS  Google Scholar 

  • Brenner D., Okada Y., Maclin E., Williamson S. J., and Kaufman L. (1981) Evoked magnetic fields reveal different visual areas in human cortex, in Biomagnetism (Erne S.N., Hahlbohm H.-D., and Lubbig H., eds.), Walter de Gruyter, New York, pp. 431–444.

    Google Scholar 

  • Bromm B., Neitzel H., Tecklenburg A., and Treede R. D (1983) Evoked cerebral potential correlates of C-fibre activity in man. Neurosci. Lett. 43, 109–114.

    PubMed  CAS  Google Scholar 

  • Broughton R. J. (1969) Discussion, in Average Evoked Potentials (NASA SP-19) (Lindsley B. and Donchm E., eds.), US Government Printing Office Washington, DC, pp. 79–84.

    Google Scholar 

  • Broughton R., Rasmussen T., and Branch C. (1981) Scalp and direct cortical recordings of somatosensory evoked potentials in man (Circa 1967). Can. J. Psychol. 35, 136–158.

    PubMed  CAS  Google Scholar 

  • Brown W. J. (1973) Structural substrates of seizure foci in the human temporal lobe, in Epilepsy: Its Phenomena in Man (Brazier M. A. B., ed.), Academic, New York, pp. 339–374.

    Google Scholar 

  • Bruce C. J, and Goldberg M. E. (1985) Primate frontal eye fields I. Single neurons discharging before saccades. J. Neurophystol. 53, 603–635.

    CAS  Google Scholar 

  • Brunia C. H. M and Damen E. J P (1988) Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalogr Clan. Neurophyslol. 69, 234–243.

    CAS  Google Scholar 

  • Buchwald J. (1983) Generators, in Buses of Auditory Bruzn-stem Evoked Responses (Moore E. J.ed.), Grune & Stratton, New York, pp. 157–195.

    Google Scholar 

  • Buchwald J.S. (1987) Animal models of event-related potentials. In: Event-Related Potentials of the Brain, (Rohrbaugh J., Parasuraman R., and Johnson R., eds.) New York, (in press).

    Google Scholar 

  • Buchwald J. S. and Squires N. S. (1982) Endogenous potentials in the cat, in Conditioning Representation of Involved Neural Function (Woody C., ed.), Plenum, New York, pp. 503.

    Google Scholar 

  • Buchwald J. S., Hinman C., Norman R. J., Huang C. M. and Brown K., A. (1981) Middle-and long-latency auditory evoked responses recorded from the vertex of normal and chronically lesioned cats. Brain Res. 205, 91–109.

    PubMed  CAS  Google Scholar 

  • Bullock T. H. (1986) Interspecific comparison of brainstem auditory evoked potentials and frequency following responses among vertebrate classes, in Evoked Potentials (Cracco R., and Bodis-Wollner I., eds.), Alan R. Liss, New York, pp. 141–154.

    Google Scholar 

  • Buser P. (1987) Thalamocortical mechanisms underlying synchronized EEG activity, in A. Textbook of Clinical Neurophysiology (Halliday A. M., Butler S. R., Paul R., eds.) Wiley, New York, pp. 595–622.

    Google Scholar 

  • Buzsaki G. (1984) Feed-forward inhibition in the hippocampal formation. Prog. NeurobioE. 22, 131–153.

    CAS  Google Scholar 

  • Buzsaki G., Leung L. S., and Vanderwolf C. H. (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res. Rev. 6, 139–171.

    Google Scholar 

  • Carmon A., Mor J., and Goldberg, J. (1976) Evoked cerebral response to noxious thermal stimuli in humans. Exp. Brain Res. 25, 103–107.

    PubMed  CAS  Google Scholar 

  • Caspers H. (1974) DC potentials recorded directly from the cortex, in Handbook of Electroencephalography and Clinical Neurophysiology, vol. 10 (A. Remond, ed.), Elsevier, Amsterdam. pp. 5–80.

    Google Scholar 

  • Caspers H., Speckmann E.-J., and Lehmenkuhler A. (1979) Effects of CO2 in cortical field potentials in relation to neuronal activity, in Origin of Cerebra2 Field Potentials (Speckmann E.-J. and Caspers H. eds.), G. Thieme, Stuttgart, pp, 151–163.

    Google Scholar 

  • Caspers H., Speckmann E.-J., and Lehmenkuhler A. (1980) Electrogene-sis of cortical DC potentials. Prog. Brain Res. 54, 3–15.

    PubMed  CAS  Google Scholar 

  • Castellucci V. F. and Goldring S. (1970) Contributron to steady potential shifts of slow depolarization in cells presumed to be glia. Elec-troencephalogr. Clin. Neurophysiol. 28, 109–118.

    CAS  Google Scholar 

  • Caton R. (1875) The electric currents of the brain. Brit. Med. J. 2, 278–278.

    Google Scholar 

  • Celesia G. G. (1976) Organization of auditory cortical areas in man. Brain 99, 403–414.

    PubMed  CAS  Google Scholar 

  • Celesia G. G. (1979) Somatosensory evoked potentials recorded directly from human thalamus and Sm I cortical area. Arch. Neural. 36, 399–405.

    CAS  Google Scholar 

  • Celesia G. G. (1982) Clinical applications of evoked potentials. In: EEectroncephulography: Basic Princtples, Clinical Applications and Related Fields, (Niedermeyer E. and Lopes da Silva F., eds.), Urban and Schwarzenberg, Baltimore, pp. 665–684.

    Google Scholar 

  • Chain F., Lesevre N., Leblanc M., Remond A., and Lhermitte F. (1972) Etude topographique des responses evoquees visuelles dans un cas de lobectomie occipitale. Rev. Neural. (Paris) 126, 372–378.

    CAS  Google Scholar 

  • Chapman C. R., Chen A. C. N., and Harkins S. W. (1979) Bram evoked potentials as correlates of laboratory pain: A review and perspective, Adv. Pam Res. Ther. 3, 791–803.

    Google Scholar 

  • Chen B. M. and Buchwald J. S. (1986) Midlatency auditory evoked responses: Differential effects of sleep in the cat. Electroencephalogr. Clin. Neurophysiol. 65, 373–382.

    PubMed  CAS  Google Scholar 

  • Cheron G. and Borenstein S.(1987) Specific gating of the early somatosensory evoked potentials during active movement. Electroencephalogr. Clin. Neurophysiol. 67, 537–548.

    PubMed  CAS  Google Scholar 

  • Chiappa K. H. (ed.) (1983) Evoked Potentials in Clinical Medicine. (Raven, New York).

    Google Scholar 

  • Chiappa K. H., Choi S. K., and Young R. R. (1980) Short-latency somato-sensory evoked potentials following median nerve stimulation in patients with neurological lesions, in Clinical Uses of Cerebral, Brain-stem and Spnal Somatosensory Evoked Potentials (Desmedt J. E., ed.) Prog. Clin. Neurophysiol., vol. 7), Karger, Basel, pp. 264–281.

    Google Scholar 

  • Childers D. and Durling A. (1975) Digital Filtering and Signal Processing (West Publishing, St. Paul, New York).

    Google Scholar 

  • Chudler E. H. (1983) The assessment of pam by cerebral evoked potentials, Pain 16, 221–244.

    PubMed  CAS  Google Scholar 

  • Ciganek L. (1975) Visual evoked responses, in Handbook of Electroencephalography and Clznical Neurophysiology, vol. 8A (Remond A., ed.), Elsevier, Amsterdam, pp. 33–59.

    Google Scholar 

  • Clark W. A. (1958) Average response computer (ARC-l). Quart. Progr. Rep., Research Laboratory of Electronics, M.I.T., Cambridge, MA, 114–117.

    Google Scholar 

  • Cobb W. A. and Dawson G. D. (1960) The latency and form in man of the occipital potential evoked by bright flashes. J. Physiol. (Land.) 152, 108–121.

    CAS  Google Scholar 

  • Cohen D. and Cuffin B. N. (1983) Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr. Clin. Neurophysrol. 56, 38–51.

    CAS  Google Scholar 

  • Cohen J. (1969) Very slow brain potentials relating to expectancy: The CNV, in Averaged Evoked Responses (Donchin E. and Lindsley D. B., eds.), NASA, Washington DC, pp. 143–163.

    Google Scholar 

  • Cohen J. (1975) The CNV in cases of hemispheric vascular lesions. Elec-troencephalogr. Clm Neurophysiol. 38, 542.

    Google Scholar 

  • Cohen J. and Walter W. G. (1966) The interactin of responses in the brain to semantic stimuli. Psychophysiology 2, 187–196.

    PubMed  CAS  Google Scholar 

  • Courchesne E., Hiilyard S. A. and Galambos R. (1975) Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalogr. Clin. Neurophysiol. 39, 131–143.

    PubMed  CAS  Google Scholar 

  • Cracco R. Q. and Bodis-Wollner I. (eds.) (1986) Evoked potentials. (Liss, New York).

    Google Scholar 

  • Cracco R. Q., andCracco J.B. (1978) Visual evoked potential in man: Early oscillatory potentials. Electroencephalogr. Clin. Neurophysiol. 45, 731–739.

    PubMed  CAS  Google Scholar 

  • Creutzfeldt 0. D., Watanabe S., and Lux H. D. (1966) Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencepha-logr. Clin. Neurophysiol. 20, 1–18.

    CAS  Google Scholar 

  • Cruccu G., Fornarelli M., Inghilleri M., andManfredi M. (1983) The limits of tooth pulp evoked potentials for pain quanitation. Physiol. Behav. 31, 339–342.

    PubMed  CAS  Google Scholar 

  • Cuffm B. N. (1986) Effects of measurement errors and noise on MEG moving dipole solutions IEEE Trans. Biomed. Eng. BME-33, 854 861.

    Google Scholar 

  • Curry S. H., Woods D. L., Low M. D. (1986) Applications of cognitive ERPs in neurosurgical and neurological patients. In: Cerebral Psychophysiology: Studies in Event-Related Potentials (EEG Suppl. 38), McCallum W. C., Zappoli R., and Denoth F., eds.) Elsevier, Amsterdam, pp. 469–484

    Google Scholar 

  • Darcey T. M. (1979) Methods for localization of electrical sources in the human brain and applications to the visual system. Ph.D. thesis, California Institute of Technology, Pasadena.

    Google Scholar 

  • Darcey T. M., Ary J. P. and Fender D. H. (1980) Spatiotemporal visually evoked scalp potentials in response to partial-field patterned stimulation. Electroencephalogr. Clm. Neurophysiol. 50, 348–355.

    CAS  Google Scholar 

  • Darcey T. M., Wieser H. G., Meles H. P., Skrandies W. and Lehmann D. (1980) Intracerebral and scalp fields evoked by visual stimulation, Electroencephalogr. Clin. Neurophysiol. 49, 111P.

    Google Scholar 

  • Davis P. A. (1939) Effects of acoustic strmuli on the waking human brain. J. Neurophysiol. 2, 494–499.

    Google Scholar 

  • Davis H. (1965) Slow cortical responses evoked by acoustic stimuli. Acta Otolaryngol. 59, 179–185.

    Google Scholar 

  • Davis H. and Hirsh S. K. (1977) Brain stem electric response audiometry (BSERA). Acta Otolaryngol. 83, 136–139.

    PubMed  CAS  Google Scholar 

  • Davis H., Mast T., Yoshie N., and Zerlin S. (1966) The slow response of the human cortex to auditory stimuli: Recovery process. Electroencephalogr. Clin. Neurophysiol. 21, 105–113.

    PubMed  CAS  Google Scholar 

  • Dawson G. D. (1950) Cerebral responses to nerve stimulation in man. Brit. Med. Bull. 6, 326–329.

    PubMed  CAS  Google Scholar 

  • Deecke L. and Kornhuber H. H. (1978) An electrical sign of participation of the mesial supplementary motor cortex in human voluntary finger movement. Brain Res. 159, 473–476.

    PubMed  CAS  Google Scholar 

  • Deecke L., Eisinger H. and Kornhuber H. H. (1980) Comparison of Bereitschaftspotential, pre-motor positivity, and motor potential preceding voluntary flexion and extension movements in man, in Motivation, Motor and Sensory Processes of the Brain Electmal Potentzals, Behavior and Climcal Use (Kornhuber H. H. and Deecke L., eds.) (Prog Brazn Res. vol. 54) Elsevler/North Holland, Amsterdam, pp. 171–176.

    Google Scholar 

  • Deecke L., Grozmger G., and Kornhuber H. H. (1976) Voluntary finger movements in man: Cerebral potentials and theory. Biol. Cybern. 23, 99–119.

    PubMed  CAS  Google Scholar 

  • Deecke L., Weinberg H., and Brickett P. (1982) Magnetic fields of the human brain accompanying voluntary movement. Be-reitschaftsmagnetfeld. Exp. Bram Res. 48, 144–148.

    CAS  Google Scholar 

  • Deecke L., Boschert J., Weinberg H. and Brickett P. (1983) Magnetic fields of the human brain (Bereitschaftsmagnetfeld) preceding voluntary foot and toe movements. Exp Bram Res. f52, 81–86.

    Google Scholar 

  • Deecke L., Englitz H. G., Kornhuber H. H., and Schmitt G. (1977) Cerebral potentials preceding voluntary movement in patients with bilateral or unilateral Parkmson akinesia, in Attention, Voluntary Contraction and Event-related Cerebral Potentials (Desmedt, J. E.ed), (Prog. Clin. Neurophysiol., Vol. 1) Karger, Basel, pp. 151–163.

    Google Scholar 

  • Deecke L., Becker W., Grozinger B., Scheid P., and Kornhuber H. (1973) Human brain potentials preceding voluntary limb movements, in Event-Related Slow Potentials of the Brain: Their Relations to Behavior (McCallum W. C. and Knott J. R., eds.) (Electroencephalogr. Clin. Neurophyszol. Suppl. 33), Elsevier, Amsterdam, pp. 87–94.

    Google Scholar 

  • Deecke L., Heise B., Kornhuber H. H., Lang M., and Lang W. (1984) Brain potentials associated with voluntary manual trackmg. Ann. NY Acad. Sci. 374, 361–372.

    Google Scholar 

  • Deecke L., Kornhuber H. H., Lang W., Lang M., and Schreiber H. (1985) Timing function of the frontal cortex in sequential motor and learning tasks. Hum. Neurobzol. 4, 143–154.

    CAS  Google Scholar 

  • Deecke L., Uhl F., Spieth F., Lang W., and Lang M. (1987) Cerebral potentials preceding and accompanying verbal and spatial tasks, in Current Trends m Event-Related Potential Research (EEG Suppl. 40) (Johnson R., Jr., Rohrbaugh J. W., and Parasuraman R., eds.) Elsevier, Amsterdam, pp. 17–23.

    Google Scholar 

  • Deiber M. P., Giard M. H., and Mauguiere F. (1986) Separate generators with distinct orientations for N20 and P22 somatosensory evoked potentials to finger stimulation? Electroencephalogr. Clin. Neurophysiol. 65, 321–334.

    PubMed  CAS  Google Scholar 

  • Delgado-Escueta A. V., and Walsh G. O. (1983) The selection process for surgery of complex partial seizures: Surface EEG and depth electrography. Res. Publ. Assoc. Res. Nerv. Merit. Dis. 61, 295–326.

    CAS  Google Scholar 

  • Desmedt J. E. (ed.) (1977a) Attention, Voluntary Contraction, and Event-Related Cerebral Pofentiuls Karger, Basel.

    Google Scholar 

  • Desmedt J. E. (1977b) Active touch exploration of extrapersonal space elicits specific electrogenesis in the right cerebral hemisphere of intact right-handed man. Proc. Natl. Acud. Sci. USA 74, 4037–4040.

    CAS  Google Scholar 

  • Desmedt J. E. (ed.) (1979) Cognitive Components in Cerebral Event-Related Potential and Selective Attention Karger, Basel.

    Google Scholar 

  • Desmedt J. E. (1981) Scalp-recorded cerebral event-related potentials in man as point of entry mto the analysis of cognitive processing, in The Orgunizution of the Cerebral Cortex (Schmitt F. O., Worden F. G., Edelman G., and Dennis S. D., eds.), MIT, Cambridge, Massachusetts pp. 441–473.

    Google Scholar 

  • Desmedt J. E. (1986) Generator sources of SEP in man, in Evoked Potentials (Cracco R. and Bodis-Wollner I., eds.), pp, 235–245.

    Google Scholar 

  • Desmedt J. E. and Bourguet M. (1985) Color imaging of parietal and frontal somatosensory potential fields evoked by stimulation of median or posterior tibia1 nerve in man. Electroencephulogr. Clin. Neurophysiol. 62, 1–19.

    CAS  Google Scholar 

  • Desmedt J. E. and Cheron G. (1980). Somatosensory evoked potentials to finger stimulation in healthy octogenarians and m young adults: Wave forms, scalp topography and transit times of parietal and frontal components. EEectroencephulogr. Clin. Neurophysiol. 50, 404–425.

    CAS  Google Scholar 

  • Desmedt J.E. and Debecker J. (1979) Wave form and neural mechanisms of the decision P350 elicited without pre-stimulus CNV or readiness potential in random sequences of near-threshold auditory clicks and finger stimuli. Electroencephalogr. Clin. Neurophysiol. 47, 648–670.

    PubMed  CAS  Google Scholar 

  • Desmedt J. E., Nguyen T. H., and Bourguet M. (1987) Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responses. Electroencephulogr. Clin. Neurophysiol. 68, 1–19.

    CAS  Google Scholar 

  • Dick J. I’. R., Cantello R., Buruma O., Gloux M., Benecke R., Day B. L., Rothwell J. C., Thompson P. D., and Marsden C. D. (1987) The bereitschaftspotential, L-DOPA and Parkinson’s disease. EIec-troencephalogr. Clin. Neurophysiol. 66, 263–274.

    CAS  Google Scholar 

  • Domalski P., Smith M. E., and Halgren E. Cross-modal repetition effects on the N4 (submitted).

    Google Scholar 

  • Donchin E. (1973) Methodological issues in CNV research. A review, in Event-Related Slow Potentials of the Brain: their Relations to Behavior (McCallum W. C. and Knott J. R., eds.) (Elecfroencephalogr. Ckn. Neurophysioi. Suppl. 33), Elsevier, Amsterdam, pp. 3–17.

    Google Scholar 

  • Donchin E. (1981) Surprise!... Surprise? Psychophysiologr. 18 493–513.

    CAS  Google Scholar 

  • Donchin E. and Coles G. H. (1988) Precommentary on Verlager’s critique of the context updating model. Behav. Brazn Sci., 11, 357–375

    Google Scholar 

  • Donchin E. and Heffley E. F., III (1978) Multnvarlate analysis of event-released potential data: A tutorial review, in Mulridisczplrnary perspectives in event-related brain potential research (EPA-600/9-77-043) (Otto D. A., ed.), US Government Printing Office, Washington DC pp. 555–572.

    Google Scholar 

  • Donchm E., Ritter W. and McCallum W. C. (1978) Cognitive psy-chophysiology: The endogenous components of the ERP, in Brain and Information: Event-Related Potentrals, Annals of the New York Academy of Sciences (Callaway E., Tueting, P., and Koslow S., eds.), New York Academy of Sciences, New York, pp. 349–411.

    Google Scholar 

  • Donchin E., Gerbrandt L. K., Lelfer L., and Tucker L. (1972) Is the contingent negative variation contingent on a motor response? Psy-chophysiology 9, 178–188.

    CAS  Google Scholar 

  • Donchin E., Otto D., Gerbrandt L. K., and Pribram K. H. (1971) While a monkey waits: Electrical events recorded durmg the foreperiod of a reaction time study. Electroencephalogr. Clzn. Neurophysiol. 31, 115–127.

    CAS  Google Scholar 

  • Donchin E., Callaway R., Cooper R., Desmedt J. E., Goff W. R., Hillyard S. A., and Sutton S. (1977) Publication criteria for studies of evoked potentials (EP) in man. (J.E. Desmedt, ed.) (Prog. Clin. Neurophysiol. vol. 1), 1–11.

    Google Scholar 

  • Doyle D. J. and Hyle M. L. (1981) Bessel filtering of brain stem auditory evoked potentials. Electroencephalogr. Chn. Neurophysiol. 51, 446–448.

    CAS  Google Scholar 

  • Ducati A., Fava E., and Motti E. D. F. (1988) Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans. Electroencephalogr. Clin. Neurophysiol. 71, 89–99.

    PubMed  CAS  Google Scholar 

  • Duffy F. H. (ed.) (1986) Topographic Mapping of Brazn Electrical Actmity. (Butterworths, Boston).

    Google Scholar 

  • Durrant J. D. and Furman J. M. R. (1988) Long-latency rotational evoked potentials in sublects with and without bilateral vestibular loss. EIecfroencephalogr. Clin. Neurophyslol. 71, 251–256.

    CAS  Google Scholar 

  • Eccles J. C. (1982) The initiation of voluntary movements by supplementary motor area. Arch. Psychiatr. Nervenkr. 231, 423–441.

    PubMed  CAS  Google Scholar 

  • Eisen A. (1982) The somatosensory evoked potential. Can. l. Neural. Sci. 9, 65–77.

    CAS  Google Scholar 

  • Elbert T., Lutzenberger W., Rockstroh B., and Birbaumer N. (1985) Removal of ocular artifacts from the EEG—a biophysical approach to the EOG. Electroencephalogr. Clin. Neurophysiol., 60, 455–46

    PubMed  CAS  Google Scholar 

  • Elul R. (1972) The genesis of the EEG. Int. Rev. Neurobiol. 15, 227–272.

    Google Scholar 

  • Emerson R. G. and Pedley T. A. (1984) Generator sources of median somatosensory evoked potentials. J. Clin. Neurophysiol. 1, 203–218.

    PubMed  CAS  Google Scholar 

  • Empson J. A. C. (1986) Response force, motivation, and the EEG readiness potential. Psychophysiol. 1986. 23, 433–434.

    Google Scholar 

  • Ertekin C. (1978) Comparison of the human evoked electrospinogram recorded from the intrathecal, epidural and cutaneous levels. Electroencephalogr. Clin. Neurophysiol. 44, 683–690.

    PubMed  CAS  Google Scholar 

  • Ertl J. and Schafer E. W. (1967) Cortical activity preceding speech. Life Sci. 6, 473–479.

    PubMed  CAS  Google Scholar 

  • Erwin R. and Buchwald J. S. (1986) Midlatency auditory evoked responses: differential effects of sleep in the human. Electroencephalogr. Clin. Neurophysiol. 65, 383–392.

    PubMed  CAS  Google Scholar 

  • Evarts E. V. and Tanji J. (1976) Reflex and intended responses in motor cortex pyramidal tract neurons of monkey. J. Neurophysiol. 39, 1069–1080.

    PubMed  CAS  Google Scholar 

  • Fischler I., Bloom P. A., Childers D. G., Arroyo A. A., and Perry N. W. (1984) Brain potentials during sentence verification: late negativity and long-term memory strength. Neuropsychologta. 22, 559–568.

    CAS  Google Scholar 

  • Ford J. M. and Pfefferbaum A. (1980) The utility of brain potentials in determining age-related changes in central nervous system and cognitive functioning, in Aging in the 1980’s: Psychological Issues, (Poon L. W., ed.), American Psychological Association, Washington DC, pp. 115–124.

    Google Scholar 

  • Fox S. E. and Ranck J, B., Jr, (1981) Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp. Brain Res. 4, 399–410.

    Google Scholar 

  • Fox S. E., Wolfson S., and Ranck J. B., Jr. (1986) Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Exp. Bruin Res. 62, 495–508.

    CAS  Google Scholar 

  • Freeman W. J, (1975) Mass Action of the Nervous System (Academic, New York).

    Google Scholar 

  • Freeman W. J. (1978) Models of the dynamics of neural populations, in Contemporary Clinical Neurophysiology (Cobb W. A. and Van Duijn H., eds.) (EEG Suppl. No. 34), Elsevier, Amsterdam.

    Google Scholar 

  • Fromm C. (1983) Contrasting properties of pyramidal tract neurons located in precentral or postcentral areas and of corticorubral neurons in the behaving monkey. Adv. Neural. 39, 329–345.

    CAS  Google Scholar 

  • Fuster J. M. (1973) Unit activity m prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. J. Neurophysiol. 36, 61–78.

    PubMed  CAS  Google Scholar 

  • Fuster J. M. (1980) The Prefrontal Cortex (Raven, New York).

    Google Scholar 

  • Fuster J. M. and Alexander G. E. (1973) Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Res. 61, 79–91.

    PubMed  CAS  Google Scholar 

  • Fuster J. M. and Jarvey J. P. (1981) Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955.

    PubMed  CAS  Google Scholar 

  • Fuster J. M., Bauer R. H., and Jervey J. P. (1982) Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp. Neural. 77, 679–694.

    CAS  Google Scholar 

  • Fuxe K. and Jonsson G. (1974) Further mapping at central 5-hydroxytryptamine neurons: Studies with the neurotoxic di-hydroxytryptamines. Adv. Blochem. Psychopharmacol. 10, 1–12.

    CAS  Google Scholar 

  • Gaillard A. W. K. (1980) Cortical correlates of motor preparation, in Attention and Performance VIII (Nickerson, R. S., ed.), Erlbaum, Hills-dale, New Jersey.

    Google Scholar 

  • Gaillard A. W. and Naatanen R. (1976) Modality effects on the contingent negative variation in a simple reaction-time task, in The Responsive Brain (McCallum, W. C. and Knott, J. R. ed.), Wright, Bristol, pp. 40–45.

    Google Scholar 

  • Galambos R., Makeig S., and Tamachoff P. J. (1981) A 40-Hz auditory potential recorded from the human scalp. Proc. Natl. Acad. Sci. USA 78, 2643–2647.

    PubMed  CAS  Google Scholar 

  • Ganglberger J. A., Haider M., Knapp E., and Schmid H. (1980) Subdural recordings of the cortex motor potentials. In: Motivation, Motor and Sensory Processes of the Brain: Electrical Potentzals, Behavior and Clinzal Use (Kornhuber, H. H., Deecke, L., eds.) (Prog. Bruin Res. vol. 54) Elsevier/North Holland, Amsterdam. pp. 57–61.

    Google Scholar 

  • Gardner E. P., Costanzo R. M., Hamalainen H. A., Warren S., and Young W. (1986) Facilitation and inhibition in somatosensory cortex: Comparison of the single unit responses and somatosensory evoked potentials (SEP), in Evoked Potentials (Cracco R. and Bodis-Wollner I., eds.), Alan R. Liss, New York, pp. 141–154.

    Google Scholar 

  • Gardner E. P., Hamalaihen H. A., Warren S., Davis J., and Young W. (1984) Somatosensory evoked potentials (SEPs) and cortical single unit responses elicited by mechanical tactile stimuli in awake monkeys. Electroencephalogr. Clin. Neurophyszol 58, 537–52.

    CAS  Google Scholar 

  • Gardner-Medwin A. R. (1976) The recall of events through the learning of associations between their parts. Proc. R. Sot. London Biol. 194, 375–402.

    CAS  Google Scholar 

  • Gasser T., Sroka L., Mocks J. (1986) The correction of EOG artifacts by frequency dependent and frequency independent methods. Psy-chophysiology 23, 704–712.

    CAS  Google Scholar 

  • Gazzaniga M. S. and Hillyard S. A. (1973) Attention mechanisms following brain bisection, in Attention and Performance, vol. 4 (Kornblum, S., ed.), Academic, New York, pp. 221–238.

    Google Scholar 

  • Gerbrandt L. K. (1977) Analysis of movement potential components, in Attenbon, Voluntary Contraction and Event-Related Cerebral Potentials (Desmedt J. E., ed.) (Progress in Clinical Neurophysiol, vol l), Karger, Basel, pp. 174–188.

    Google Scholar 

  • Gerbrandt L. K. and Fowler J. R. (1980) Arousal-related sustained potentials in neocortex and hippocampus of rats. Prog. Brain Res. 54, 109–116.

    PubMed  CAS  Google Scholar 

  • Gevins A. S. (1984) Analysis of the electromagnetic signals of the human brain: Milestones, obstacles, and goals. IEEE Trans. Boomed. Engm. BME-31, 833–850.

    Google Scholar 

  • Gevins A. S. and Aminoff M. J. (1987) Bram electrical activity: Clinical applications and methods of computer analysis. Encyclopedia of Medical Devices and Instrumentation, (Webster, J. G. ed.), Wiley, New York, pp. 1084–1107.

    Google Scholar 

  • Gevins A. S., and Cutillo B. A. (1987) Signals of cognition, in Application of Computational Analysis to Electroencephalography Handbook of Electroencephalography and Chnzcal Neurophysiology vol. 2, (Lopes da Silva F., Van Leeuwen W. S., and Remond A., eds.), Elsevier, Amsterdam, pp. 335–381.

    Google Scholar 

  • Gevins A. S. and Remond A. (eds.) (1987) Methods of analysis of brain electrical and magnetic signals, in Handbook of Electroencephalography and Clinical Neurophyszology, Revised Series, vol. 1, (Elsevier, Amsterdam).

    Google Scholar 

  • Gevins A. S., Morgan N. H., Bressler S. L., Doyle J. C., and Cutrllo B. A. (1986) Improved event-related potential estimation using statistical pattern classification. Electroencephalogr. Chn. Neurophysrol. 64, 177–186.

    CAS  Google Scholar 

  • Gevms A. S., Bressler S. L., Cutillo B. A., Doyle J. C., Morgan N. H., and Zeitlin G. M. (1984) Neurocognitive pattern analysis of an auditory and visual numeric motor control task, Part 1: Development of methods. A.F.O.S.R. Final Report, Contract No. F49620-82-K-0008.

    Google Scholar 

  • Gevins A. S., Doyle J. C., Cutillo B. A., Schaffer R. E., Tannehill R. S. and Bressler S. L. (1985) Neurocognitive pattern analysis of a visuospatial task: low-frequency evoked correlations. Psychophysiology, 22, 32–43.

    PubMed  CAS  Google Scholar 

  • Gevins A. S., Schaffer R. E., Doyle J. C., Cutillo B. A., Tannehill R. L., and Bressler S. L. (1983) Shadows of thoughts: Rapidly changing, asymmetric brain-potential patterns of a brief visuomotor task. Saewe, 220, 97–99.

    CAS  Google Scholar 

  • Gevins A. S., Cutillo B. A., Bressler, S. L., Morgan N. H., White R. M., Illes, J., and Greer D. S. (1989) Event-related covariances during a bimanual visuomotor task: II. Preparation and feedback Elec-froencephalogr. Clin. Neurophyszol. 74, 147–160.

    CAS  Google Scholar 

  • Gilden L., Vaughan H. H., Jr., and Costa L. D. (1966) Summated human EEG potentials associated with voluntary movements. Elec-froencephalogr Clin. Neurophysiol. 20, 433–438.

    CAS  Google Scholar 

  • Glaser E. M. and Ruchkin D. S. (1979) Principles of neurobiological signal analysis. (Academic, New York).

    Google Scholar 

  • Gloor P. (1985) Neuronal generators and the problem of localization in electroencephalography: Application of volume conductor theory to electroencephalography. J. CIzn. Neurophystol. 2, 327–354.

    CAS  Google Scholar 

  • Goff G. D., Matsumiya T., Allison T., and Goff W. R. (1977) The scalp topography of human somatosensory and auditory evoked potentials. Elecfroencephalogr. Clin. Neurophyszol. 42, 57–76.

    CAS  Google Scholar 

  • Goff W. R. (1974) Human average evoked potentials: Procedures for stimulating and recording, in Bioelecfric Recording Techniques Part B, EEG and Human Brain Pofenftals (Thompson R. F. and Patterson M. M. eds.), Academic, New York, pp. 101–156.

    Google Scholar 

  • Goff W. R., Allison T., and Vaughan H. G., Jr. (1978) The functional neuroanato my of event-related potentials, in Evenf-Related Bram Potentials in Man. (Callaway E., Tueting I’., and Koslow S. H., eds.), Academic, New York, pp. 1–79.

    Google Scholar 

  • Goff W. R., Allison T., Shapiro A., and Rosner B. S. (1966) Cerebral somatosensory responses evoked during sleep in man. Elecfroencephalogr. Clm. Neurophysrol. 21, 1–9.

    CAS  Google Scholar 

  • Goff W. R., Williamson P. D., Van Gilder J. C., Allison T., and Fisher T. C. (1980) Neural origins of long-latency evoked potentials recorded from the depth and cortical surface of the brain in man, in Clinical Uses of Cerebral, Brainsfem, and Spinal Somafosensoy Evoked Potentials (Desmedt J. E., ed), (Prog. Clin. Neurophystol., vol. 7) Krager, Basel, pp. 126–145.

    Google Scholar 

  • Goldberg G. (1985) Supplementary motor artea structure and function: Review and hypotheses. Behav. Brain Sci. 8, 567–616.

    Google Scholar 

  • Goldberg G., Kwan H. C., Borrett D., and Murphy J. T. (1984) Topography of the movement-associated scalp potential suggests initiation of spontaneous movement by the supplementary motor area. Arch. Phys. Med. Rehabil. 65, 662.

    Google Scholar 

  • Gombi R., Cooper R., Papakostopoulos D., and Crow H. J. (1973) Measurement of slowly changing potentials in the human brain. Electroencephalogr. Clan. Neurophyslol. 34, 109.

    Google Scholar 

  • Goodin D. S., Squires K. C., and Starr A. (1978) Long latency event-related components of the auditory evoked potential in dementia. Brain 101, 635–648.

    PubMed  CAS  Google Scholar 

  • Goodin D. S., Squires K. C., and Starr A. (1983) Variations in early and late event-related components of the auditory evoked potential with task difficulty. Elecfroencephalogr. Clin. Neurophyszol. 55, 680–686.

    CAS  Google Scholar 

  • Graham J., Greenwood R., and Lecky B. (1980). Cortical deafness. A case report and review of the literature. J. Neural. Sci. 48, 35–49.

    CAS  Google Scholar 

  • Groll-Knapp E., Ganglberger J., Haider M., and Schmid H. (1980) Stereoelectroencephalographic studies on event-related slow potentials in the human brain, in Electroencephalography and Clznical Neurophysiolugy (Lechner H. and Aranibar A., eds), Execpta Medica, Amsterdam, pp. 746–760.

    Google Scholar 

  • Grossman R.G. and Hampton T. (1968) Depolarization of cortical glial cells during electrocortical activity. Brain Res. 11, 316–324.

    PubMed  CAS  Google Scholar 

  • Grossman R. G. and Hampton T. (1970) Relatronship of cortical glial cell depolarization to electrocortical surface wave activity. Electroencephalogr. Clin. Neurophysiol. 28, 95–96.

    PubMed  CAS  Google Scholar 

  • Grossman R. G., Whrterids L., and Hampton T. L. (1969) The time course of evoked depolarization of cortical glial cells. Brain Res. 14, 401–415.

    PubMed  CAS  Google Scholar 

  • Grozinger B., Kornhuber H. H., and Kriebel J. (1977) Human cerebral potentials preceding speech production, phonation, and movements of the mouth and tongue, with reference to respiratory and ex-tracerebral potentials, in Language and Cerebral Specialization in Man: Cerebral ERPs (Desmedt J. E., ed.), Karger, Basel, pp. 87–103.

    Google Scholar 

  • Grozinger B., Kornhuber H. H., Kriebel J., Szirtes J., and Westphal K. T. I’. (1980) The Bereitschaftspotential preceding the act of speakmg. Also an analysis of artifacts, in Motivation, Motor and Sensory Processes of the Brain: Electrical Potentials, Behaviour and Clinical Use. (H. H. Kornhuber and L. Deecke, eds.) (Progress in Brain Research vol. 54), Elsevier, Amsterdam, pp. 798–804.

    Google Scholar 

  • Grunewald-Zuberbier E. and Grunewald G. (1978) Goal-directed movement potentials of human cerebral cortex. Exp. Brazn Res. 33, 135–138.

    CAS  Google Scholar 

  • Grynszpan F. and Geselowitz D. B. (1973) Model studies of the magnetocardiogram. Biophys. J, 13, 911–926.

    PubMed  CAS  Google Scholar 

  • Haldeman S., Bradley W. E., Bhatia N. N., and Johnson B. K. (1982) Pudendal evoked responses. Arch. Neurol. 39, 280–283.

    PubMed  CAS  Google Scholar 

  • Halgren E. Firing of human hippocampal units in relation to voluntary movements (in preparation).

    Google Scholar 

  • Halgren E. (1989) Insights from evoked potentials into the neuropsychological mechanisms of reading In Neurobiology of Cognition (Scheibel A. and Weschsler A., eds.), Guilford, New York, in press.

    Google Scholar 

  • Halgren E. and Smith M. E. (1987) Cognitive evoked potentials as mod-ulatory processes in human memory formation and retrieval. Hum. Neurobiol. 6, 129–140.

    PubMed  CAS  Google Scholar 

  • Halgren E., Babb T. L., and Crandall P. H. (1978) Activity of human hippocampal formation and amygdala neurons during memory testing. EEectroencephalogr. Clin. Neurophysiol. 45, 585–601.

    CAS  Google Scholar 

  • Halgren E., Squires N. K., Wilson C. L., and Crandall P. H. (1982) Brain generators of evoked potentials: the late (endogenous) components. Bull. Los Angeles Neurol. Sot. 47, 108–123.

    CAS  Google Scholar 

  • Halgren E. Stapleton J, M., Smith M., and Altafullah I. (1986) Generators of the human scalp P3(s), in Evoked Potentials (Cracco R. and Bodis-Wollner I., eds.), pp. 269–286. Alan R. Liss New York

    Google Scholar 

  • Halgren E., Squires N. K., Wilson C. L., Rohrbaugh J. W., Babb T. L., and Crandall P. H. (1980) Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events, Science 210, 803–805.

    PubMed  CAS  Google Scholar 

  • Halgren E., Wilson C. L., Squires N. K., Engel J., Jr. Walter R. D., and Crandall I’.H. (1983) Dynamics of the human hippocampal contribution to memory, in Neurobiology of the Hzppocumpus, (Seifert W., ed.) Academic, London, pp. 529–572.

    Google Scholar 

  • Hamilton C. E., Peters J. F., and Knott J. R. (1973) Task initiation and amplitude of the CNV. Electroencephalogr. Clin. Neurophysiol. 34, 587–592.

    PubMed  CAS  Google Scholar 

  • Hari R. and Ilmoniemi R. J. (1986) Cerebral magnetic fields. CRC Crit. Rev. Biomed. Eng. 14, 93–126.

    CAS  Google Scholar 

  • Hari R. and Kaukoranta E. (1985) Neuromagnetic studies of somatosenso-ry system: Prmciples and examples. Prog. Neurobrol. 24, 233–256.

    CAS  Google Scholar 

  • Hari R. and Lounasmaa O. V. (1989) Recording and interpretation of cerebral magnetic fields. Science 244, 432–436.

    PubMed  CAS  Google Scholar 

  • Hari R., Kaila K., Katila T., Tuomisto T., and Varpula T. (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: Implications for their neural generation. Electroencephulogr. Clin. Neurophysrol. 54, 561–569.

    CAS  Google Scholar 

  • Hari R., Reinikainen K., Kaukoianta E., Hamalaninen M., Slmonemi R., and Peuttlinen A. (1984a) Somatosensory evoked cerebral magnetic fields from SJ and SII in man. Electroencephdogr. Clin. Neurophysiol. 57, 254–263.

    CAS  Google Scholar 

  • Hari R., Hamalalainen M., Ilmoniemi R., Kaukoranta E., Reinikainen K., Salmmen J., Alho K., Naatanen R., and Sams M. (1984b) Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neurosci. Lett. 50, 127–132.

    PubMed  CAS  Google Scholar 

  • Hari R., Antervo A., Katila T., Poutanen T., Seppanen M., Tuomisto T., and Varpula T. (1983) Cerebral magnetic fields associated with voluntary limb movements in man. Il Nuovo Cimento 2, 484–494.

    Google Scholar 

  • Harker L. A., Hosick E., Voots R. J., and Mendel M. I. (1977) Influence of succinylcholine on middle component auditory evoked potentials. Arch. Otolaryngol. 103, 133–137.

    PubMed  CAS  Google Scholar 

  • Harmony T. (1984) Neurometric Assessment of Bruin Dysfunction in Neurological Patients (Erlbaum,Hillsdale, New Jersey).

    Google Scholar 

  • Harner P. F. and Sannit T. (1974) A Review of the International Ten-Twenty System of Electrode Placement (Grass Instrument Company, Quincy, Massachusetts).

    Google Scholar 

  • Harter M. R. and White C. T. (1970) Evoked cortical responses to checkerboard patterns: Effect of check-size as a function of visual acuity. Electroencephalogr. Clin. Neurophystol. 28, 48–54.

    CAS  Google Scholar 

  • Hashimoto I., Ishiyama Y., Yoshimoto T., and Nemoto S. (1981) Brain-stem auditory-evoked potentials recorded directly from human brain-stem and thalamus. Brain 104, 841–859.

    PubMed  CAS  Google Scholar 

  • Hashimoto I. (1984) Somatosensory evoked potentials from the human brainstem: Origins of short-latency potentials. Electroencephalogr. Clin. Neurophysiol. 57, 221–227.

    PubMed  CAS  Google Scholar 

  • Hashimoto S., Gemba H., and Sasaki K. (1981) Distribution of slow cortical potentials preceding self-paced hand and hindlimb movements in the premotor and motor areas of monkeys. Brum Res. 224, 247–259.

    CAS  Google Scholar 

  • He B., Musha T., Okamoto Y., Homma S., Nakajima Y., and Sato T. (1987) Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Trans. Biomed. Eng. BME-34, 406–414.

    Google Scholar 

  • Hecaen H. and Albert M. L. (1978) Human Neuropsychology, Wiley, New York.

    Google Scholar 

  • Hecox K. and Galambos R. (1974) Brain stem auditory evoked response in human infants and adults. Arch. Otoluryngol. 99, 30–33.

    CAS  Google Scholar 

  • Heit G., Smith M. E., and Halgren E. Human medial temporal-lobe neuronal firing during memory tasks. Bruin, in press.

    Google Scholar 

  • Heringa A., Stegeman D. F., Uijen G. J. H., and de Weerd J. P. C. (1982) Solution methods of electrical field problems in physiology. IEEE Trans. Biomed Eng. BME-29, 34–42.

    Google Scholar 

  • Herpers M. J., Caberg H. B., and Mol J. M. F. (1981) Human cerebral potentials evoked by moving dynamic random dot stereograms. Electroencephalogr. Clin. Neurophysiol. 52, 50–56.

    PubMed  CAS  Google Scholar 

  • Hillyard S. A. (1973) The CNV and human behavior. A review, in Event-Related Slow Potential of the Brain: Their Relations to Behuvzor (McCallum W. C., and Knott J. R., eds.) (Electroencephalogr. Cbn. Neurophy-siol. Suppl. 33), Elsevier: Amsterdam. pp. 161–171.

    Google Scholar 

  • Hillyard S. A. and Galambos R. (1970) Eye movement artifact in the CNV. Electroencephalogr. Clin. Neurophysiol. 28, 173–182.

    PubMed  CAS  Google Scholar 

  • Hillyard S. A. and Kutas M. (1983) Electrophyslology of cognitive processing. Annu. Rev. Psychol. 34, 33–61.

    PubMed  CAS  Google Scholar 

  • Hillyard S. A. and Picton T. W. (1988) Electrophyslology of congnition, in: Handbook of Physrology: The Nervous System V, American Physiological Society: ethesda, Maryland, pp. 519–584.

    Google Scholar 

  • Hink R. F, Kohler H., Deecke L., and Kornhuber H. H. (1982) Risk-taking and the human Bereitschaftspotential. Electroencephaiogr. Clin. Neurophysrol. 53, 361–373.

    CAS  Google Scholar 

  • Hinman C. L. and Buchwald J. S. (1983) Depth evoked potential and single unit correlates of vertex midlatency auditory evoked responses. Brain Res. 264, 57–67.

    PubMed  CAS  Google Scholar 

  • Hjorth B. (1976) Localization of foci in the scalp field, in Quantitative Analytic Studzes tn Epilepsy, (Kellaway O. and Peterson I., eds.) Raven, New York, pp. 483–492.

    Google Scholar 

  • Hosek R. S., Sances A., Jodat R., and Larson S. (1978) The contribution of intracerebral currents to the EEG and evoked potentials. IEEE Trans. Biomed. Eng. 5, 405–413.

    Google Scholar 

  • Hughes J. R, and Fino J. J. (1985) A review of generators of the brainstem auditory evoked potential: Contribution of an experimental study. J. Clin. Neurophysrol. 2, 355–381.

    CAS  Google Scholar 

  • Huttunen J., Hari R., and Leinonen L. (1987) Cerebral magnetic responses to stimulation of ulnar and median nerves. ElectroencephaIogr. CIm. Neurophysiol. 66, 391–400.

    CAS  Google Scholar 

  • Irwin D. A., Knott J. R., McAdam D. W., and Rebert C. S. (1966) Motivational determinants of the contingent negative variation. Electroencephalogr. Clin. Neurophysiol. 21, 538–543.

    PubMed  CAS  Google Scholar 

  • Jacoby L. L. (1983) Perceptual enhancement: persistent effects of an experience. J. Exp. Psychol. (Learn. Mem. Cogn.) 9, 21–38.

    CAS  Google Scholar 

  • Jarvilehto T. and Fruhstorfer H. (1970) Differentiation between slow cortical potentials associated with motor and mental acts in man. Exp. Brain Res. 11, 309–317.

    PubMed  CAS  Google Scholar 

  • Jasper H. H. (1958) The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375.

    Google Scholar 

  • Jewett D L. and Wiliston J. S. (1971) Auditory-evoked far fields averaged from the scalp of humans. Brain 94, 681–696.

    PubMed  CAS  Google Scholar 

  • John E. R., Ruchkin, D. S., and Vidal, J. J. (1978) Measurement of event-related potentials, in Event-Related Brain Potentials in Man, (Callaway E., Tueting I’., Koslow S. H., eds.), Academic, New York, pp. 93–138.

    Google Scholar 

  • John E. R., Karmel B. Z., Corning W. C., Easton, I’., Brown, D., Ahn, H., John, M., Harmony, T., Prichep, L., Toro, A., Gerson, I., Bartlett, F., Thatcher, R., Kaye, H., Valdes, H., and Schwartz, E. (1977) Neurometrics. Numerical taxonomy identifies different profiles of brain. Science 196, 1393–1410.

    PubMed  CAS  Google Scholar 

  • Johnson R. (1980) Event-related potentials accompanying voluntary movement in Rhesus monkeys, in Motivation, Motor and Sensory Processes of the Brain: Electrical Potentials, Behavior and Clinical Use. (Kornhuber, H. H., and Deecke, L., eds.) (Prog. Bruin Res., vol. 54) Elsevier/North Holland, Amsterdam, pp. 70–73.

    Google Scholar 

  • Johnson R., Jr. and Fedio, P. (1986) P300 activity in patients following unilateral temporal lobectomy: A preliminary report, in Cerebral Psy-chophysiology: Studies in Event-Related Potentials (EEG Suppl. 38), McCallum W. C., Zappoli R., and Denoth F. eds.) Elsevier, Amsterdam, pp. 552–554.

    Google Scholar 

  • Johnson R. Jr., Rohrbaugh J. W., and Parasuraman R. (eds.) (1987) Current trends in event-related potential research, in Electroencephalogr. Clin. Neurophysiol. Suppl. 40, Elsevier, Amsterdam.

    Google Scholar 

  • Jones B. E. and Moore R. Y. (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res. 127, 23–53.

    Google Scholar 

  • Julesz B. and Kropfl W. (1982) Binocular neurons and cyclopean visually evoked potentials in monkey and man. Ann. NYAcad. Sci. 388, 37–44.

    CAS  Google Scholar 

  • Jung R., Altenmuller E., and Natsch B. (1984) Zur Hemispharendominanz fur Sprache and Rechnen: Elektrophysiologische Korrelate einer Linksdominanz bei Linkshandern. Neuropsychologiu. 22, 755–775.

    CAS  Google Scholar 

  • Jung R., Hufschmidt A., and Moschallski W. (1982) Langsamehirnpoten-tiale beim schreiben: Die wechselwirkung von schreibhand und sprachdominanz bie rechtshandern. Arch. Psychiutr. Nervenkr. 232, 305–324.

    CAS  Google Scholar 

  • Just M. A. and Carpenter P. A. (1980) A theory of reading: From eye fixations to comprehension. Psychol. Rev. 87(4), 329–354.

    PubMed  CAS  Google Scholar 

  • Just M. A. and Carpenter P. A. (1987) The Psychology of Reading and Language Comprehension, Allyn and Bacon, Newton, MA.

    Google Scholar 

  • Kaga K., Hink R. F., Shinoda Y., and Suzuki J. (1980) Evidence for a primary cortical origin of middle latency auditory evoked potentials in cats. Electroencephalogr. Clin. Neurophyszol. 50, 254–266.

    CAS  Google Scholar 

  • Karahashi Y. and Goldring S. (1966) Intracellular potentials from “idle” cells in cerebral cortex of cat. Electroencephalogr. Clin. Neurophysiol. 20, 600–607.

    PubMed  CAS  Google Scholar 

  • Karis D., Fabiani M., and Donchin D. (1984) “P300” and memory: Individual differences in the von Restorff effect. Cogn. Psychol. 16, 177–216.

    Google Scholar 

  • Karrer R., Cohen J., and Tueting P. (eds.) (1984) Brain and information: Event-related potentials. Ann. NY Acud. Sci., 425

    Google Scholar 

  • Karrer R., Kohn H., and Ivins J. (1973) Large steady potential shifts accompanying phasic arousal during CNV recording in man, in Event-Related Slow Potentials of the Brain: Their Relatrons to Behavior (McCallum W C and Knott J. R., eds.) (Electroenceph. Clin. Neurophysio E. SuppI. 33), Elsevier, Amsterdam, pp. 119–124.

    Google Scholar 

  • Kato M. and Tanji J. (1972) Cortical motor potentials accompanying voluntary controlled single motor unit discharge in human finger muscle. Brain Res. 47, 103–110.

    PubMed  CAS  Google Scholar 

  • Kaufman L, and Williamson S. J. (1986) The neuromagnetic field, in Evoked Potentials, (Cracco R. C., and Bodis-Wollner B., eds.), Alan R. Liss, New York, pp. 85–98.

    Google Scholar 

  • Kavanagh R. N., Darcey T. M., Lehmann D., and Fender D. H. (1978) Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans. Biomed. Eng., 25, 421–429.

    PubMed  CAS  Google Scholar 

  • Kenvanishvili Z. S. and Von Sprecht H. (1979) Human slow auditory evoked potentials during natural and drug-induced sleep. Electroencephalogr. Clin. Neurophysiol. 47, 280–288.

    Google Scholar 

  • Kileny K., Dobson D., and Gelfand E. E. (1983) Middle-latency auditory evoked responses during open-heart surgery with hypothermia. Electroencephalogr. Clin. Neurophyslol. 55, 268–276.

    CAS  Google Scholar 

  • King D. W., So E. L., Marcus R., and Gallagher B. B. (1986) Techniques and applications of sphenoidal recording. J. Clan. Neurophysiol. 3, 51–65.

    CAS  Google Scholar 

  • Klass D. W. and Bickford R. G. (1960) Glossokinetic potentials appearing in the electroencephalogram. Electroencephalogr. Clan. Neurophyszol. 12, 188.

    Google Scholar 

  • Klee J. and Rall W. (1977) Computed potentials of cortically arranged populations of neurons. J. Neurophysiol. 40, 644–666.

    Google Scholar 

  • Knight R. T. (1984) Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin. Neurophysiol. 59, 9–20.

    PubMed  CAS  Google Scholar 

  • Knight R.T. Neural mechanisms of event related potentials evidence from lesion studies, in Eighth lnternatzonal Conference of Event Related Potentials of the Brain, (Rohrbaugh J., Johnson R., Jr., and Parasuranam R., eds.) Oxford Univ. Press, Oxford. (in press)

    Google Scholar 

  • Knight R. T., Hillyard S. A., Woods D. L., and Neville H. J. (1980) The effects of frontal and temporal-parietal lesions on the auditory evoked potential in man. Electroencephalogr. Clin. Neurophysiol. 50, 112–124.

    PubMed  CAS  Google Scholar 

  • Knight R. T., Scabini D., Woods D. L., and Clayworth C. (1988) The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP. Electroencephalogr. Clin. Neurophysiol. 70, 499–509.

    PubMed  CAS  Google Scholar 

  • Kobal G. and Hummel C. (1988) Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa. Electroencephalogr. Clin. Neurophysiol 71, 241–250.

    PubMed  CAS  Google Scholar 

  • Koles Z. J., Kasmia A., Paranlape R. B., and McLean D. R. (1989) Computed radial-current topography of the brain: patterns associated with the normal and abnormal EEG. Electroencephalogr. Clin. Neurophyszol. 72, 41–47.

    CAS  Google Scholar 

  • Kooi K. A. and Marshall R. E. (1979) Visual Evoked Potentials in the Central Disorders of the Visual System (Harper and Row, Philadelphia).

    Google Scholar 

  • Kooi K. A., Tipton A. C., and Marshall R. E. (1971) Polarities and field configurations of the vertex components of the human auditory evoked response: A reinterpretation. Electroencephalogr. Clin. Neurophyslol. 31, 166–169.

    CAS  Google Scholar 

  • Kornhuber H. H (1971) Motor functions of cerebellum and basal ganglia: the cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernettk 8, 157–162.

    CAS  Google Scholar 

  • Kornhuber H.H. (1984) Attention, readiness for action and the stages of voluntary decision—Some electrophysiological correlates in man. Exp. Brain Res. Suppl. 9, 420–429.

    Google Scholar 

  • Kornhuber H. H. and Deecke L. (1965) Hirnpotentialanderungen bei Wilkurbewegungen und passiven Bewegungen des Menschen Bereitschaftspotential und reafferente Potentiale. Pflugers Arch. 284, 1–17.

    CAS  Google Scholar 

  • Kramer A. F. (1985) The interpretation of the component structure of event-related bram potentials: An analysis of expert judgements. Psychophysiology 3, 334–344.

    Google Scholar 

  • Kraus N., Ozdamar O., Hier D., and Stein L. (1982) Auditory middle latency responses (MLRs) in patients with cortical lesions. Electroencephalogr. Clm. Neurophysiol. 54, 275–287.

    CAS  Google Scholar 

  • Kraut M. A., Arezzo J. C., and Vaughan H. G., Jr. (1985) Intracortical generators of the flash VEP in monkeys. Electroencephalogr. Clin. Neurophyszol. 62, 300–312.

    CAS  Google Scholar 

  • Kulics A. T. and Cauller L. J. (1986) Cerebral cortical somatosensory evoked responses, multiple unit activity and current sourcedensities: Their interrelationships and significance to somatic sensation as revealed by stimulation of the awake monkey’s hand. Exp. Bram Res. 62, 46–60.

    CAS  Google Scholar 

  • Kurtzberg D. and Vaughan H. G. (1982) Topographic analysis of human cortical potentials preceding self-initiated and visually triggered sac-cades. Brain Res. 243, 1–9.

    PubMed  CAS  Google Scholar 

  • Kutas M. and Donchin E. (1974) Studies of squeezing: Handedness, responding hand, response force and asymmetry of the readiness potential, Science 186, 545–548.

    PubMed  CAS  Google Scholar 

  • Kutas M. and Donchin E. (1977) The effect of handedness, of responding hand and of response force on the contralateral dominance of the readiness potential, in Attention, Voluntary Contraction and Event-Related Cerebral Potentials (Desmedt, J. E. ed.) (Prog. Clin. Neurophysiol., Vol. I), Karger, Basel, pp. 189–210.

    Google Scholar 

  • Kutas M. and Donchin E. (1980) Preparation to respond as manifested by movement-related brain potentials. Brain Res. 202, 95–115.

    PubMed  CAS  Google Scholar 

  • Kutas M. and Hillyard S. A. (1980a) Reading senseless sentences: Brain potentials reflect semantic incongruity. Science 207, 203–205.

    PubMed  CAS  Google Scholar 

  • Kutas M. and Hillyard S. A. (1980a) Event-related brain potentials to semantically inappropriate and surprisingly large words. Biol. Psychol. 11, 99–116.

    PubMed  CAS  Google Scholar 

  • Kutas M. and Hillyard S. A. (1983) Event-related brain potentials to grammatical errors and semantic anomalies. Mem. Cogn. 11, 539–550.

    CAS  Google Scholar 

  • Kutas M. and Hillyard S. A. (1984b) Brain potentrals during reading reflect word expectancy and semantic association. Nature 307, 161–163.

    PubMed  CAS  Google Scholar 

  • Kutas M., Hillyard S. A., and Gazzaniga M. S. (1988) Processing of semantic anomaly by right and left hemispheres of commissurotomy patients. Evidence from event-related brain potentials. Bruin 111, 553–576.

    Google Scholar 

  • Kutas M., McCarthy G., and Donchin E. (1977) Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science 197, 792–795.

    PubMed  CAS  Google Scholar 

  • Kutas M., Neville H. J., and Holcomb P. J. (1987) A preliminary comparison of the N400 response to semantic anomalies during reading, listening, and signing, in: The London Symposia (EEG Suppl 39), (Ellingson R. J., Murray N. M. F., Halliday A. M. eds.) Elsevier, Amsterdam, pp. 325–330.

    Google Scholar 

  • Kutas M., Van Petten C., and Besson M. (1988) Event-related potential asymmetries durmg the reading of sentences. Electroencephalogr. Clin. Neurophysiol. 69, 218–233.

    PubMed  CAS  Google Scholar 

  • Kutas M. and Van Petten C. (1987) Event-related brain potential studies of language, in Advances in Psychophysiology (Ackles P. K., Jennings J.R. and Coles M.G.H., eds.), JAI Press, Greenwich, Connecticut.

    Google Scholar 

  • Lagerlund T. D. and Sharbough F. W. (1989) Computer simulation of the generation of the electroencephalogram. Electroencephalogr. Clin. Neurophysiol, 72, 31–40.

    PubMed  CAS  Google Scholar 

  • Lang W., Lang M., Uhl F., Kornhuber A. (1987) Slow negative potential shifts in a verbal concept formation task, in: (Johnson R., Jr., Rohrbaugh J. W., and Parasuraman R., eds), Current Trends in Event-Related Brain Potential Research (Electroencephalogr. Clan. Neurophysiol., Suppl. 40) Elsevier, Amsterdam, pp. 335–340.

    Google Scholar 

  • Lang W., Lang M., Heise B., Deecke L., and Kornhuber H. H. (1984) Brain potentials related to voluntary hand tracking, motivation, and attention. Hum. Neurobzol. 3, 235–240.

    CAS  Google Scholar 

  • Laplane D., Talairach J., Meininger V., Bancaud J., and Orgogozo J. M. (1977) Clinical consequences of corticectomies involving the supplementary motor area in man. J. Neurol. Sci. 34, 310–314.

    Google Scholar 

  • Lee B. L., Luders H., Lesser R. I., Dinner D. S., and Morris H. H. (1986) Cortical potentials related to voluntary and passive finger movements recorded from subdural electrodes in humans. Ann. Neural. 20, 32–37.

    CAS  Google Scholar 

  • Lee Y. S., Lueders H., Dinner D. S., Lesser R. P., Hahn J., andKlemm G. (1984) Recording of auditory evoked potentials in man using chronic subdural electrodes. Brain 107, 115–131.

    PubMed  Google Scholar 

  • Legatt A. D., Arezzo J. C., and Vaughan H. G., Jr. (1986) Short-latency auditory evoked potentials in the monkey. II. Intracranial generators. Electroencephalogr. Clin. Neurophyszol. 64, 53–73.

    CAS  Google Scholar 

  • Lehmann D. and Julesz B. (1978) Lateralized cortical potentials evoked in humans by dynamic random-dot stereograms. Vision Res. 18, 1265–1271.

    PubMed  CAS  Google Scholar 

  • Lehmann D. and Skrandies W. (1984) Spatial analysis of evoked potentials in man—A review. Prog. Neurobiol. 23, 227–250.

    PubMed  CAS  Google Scholar 

  • Lehtonen J. B. and Koivikko M. J. (1971) The use of non-cephalic reference electrode in recording cerebral evoked potentials in man. Electroencephalogr. Clin. Neurophysiol. 31, 154–156.

    PubMed  CAS  Google Scholar 

  • Lesevre N. and Joseph J. P. (1979) Modifications of the pattern-evoked potential (PEP) in relation to the stimulated part of the visual field (clues for the most probable origin of each component). Elec-troencephalogr. Clin. Neurophysiol. 47, 183–203.

    CAS  Google Scholar 

  • Leung L. S. (1979) Potentials evoked by alvear tract in hippocampal CA1 region of rats. II. Spatial field analysis. J. Neurophysiol. 42, 1571–1589.

    PubMed  CAS  Google Scholar 

  • Libet B., Wright E. W., Jr., and Gleason C. A. (1982) Readiness-potentials preceding unrestricted “spontaneous” vs. preplanned voluntary acts. Electroencephalogr. Clin. Neurophysiol. 54, 322–335.

    PubMed  CAS  Google Scholar 

  • Libet B., Gleason C. A., Wright E. W., Jr., and Pearl D. K. (1983 a) Time conscious intention to act in relation to onset of cerebral activities (readiness-potential): The unconscious initiation of a freely voluntary act. Brain 106, 623–642.

    PubMed  Google Scholar 

  • Libet B., Wright E. W., Jr. and Gleason C. A (1983b) Preparation-or intention-to-act in relation to pre-event potentials recorded at the vertex. Electroencephalogr. Clin. Neurophysiol. 56, 367–372.

    PubMed  CAS  Google Scholar 

  • Loiselle L., Stamm J. S., Marinsky S., and Whipple S. C. (1980) Evoked potential and behavioral signs of attentive dysfunction in hyperactive boys. Psychophyszology 17, 193–201.

    CAS  Google Scholar 

  • Lopesda Silva F. and van Rotterdam A. (1982) Biophysical aspects of EEG and MEG generation, in: Electroencephalography: Basic Princzples, Clinical Application and Related Fields (Niedermeyer E., Lopesda Silva F., eds), Urban & Schwarzenberg, Baltimore, 15–26.

    Google Scholar 

  • Lopesda Silva F. H., Storm vanLeeuwen W., and Remond A. (1986) Clmical applications of computer analysis of EEG and other neurophysiological signals, in Handbook of Electroencephalography and Clznical Neurophysiology, Revzsed Series, vol. 2 (Elsevier, Amsterdam).

    Google Scholar 

  • Lorentede No R. (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J, Psychol. Neurol. 45, 113–177.

    Google Scholar 

  • LorentedeNo, R. (1947) A study of nerve physiology, in Studies from Rockefeller Inst Med. Res., vol. 132, pt. II, New York, Rockefeller Institute of Medical Research.

    Google Scholar 

  • Loveless N. (1979) Event-related slow potentials of the brain as expressions of orienting function, in The Orienting Reflex tn Humans (Kimmel H. D., van Olst E. H., Orlebeke J. F., eds.), Erlbaum, Hillsdale, New Jersey, pp. 77–100.

    Google Scholar 

  • Loveless N. E. and Sanford A. J. (1973) The CNVbaseline: Considerations of internal consistency of data. Electroencephalogr. Clin. Neurophysiol. Suppl. 33, 19–23.

    Google Scholar 

  • Low M. D. (1979) Event-related potentials and the electroencephalogram in patients with proven brain lesions, in Cognitive Components in Cerebral Event-Related-Potentials und Selective Attention (Desmedt J. E., ed.), Karger, Basel, pp. 258–264.

    Google Scholar 

  • Low M. D. and Purves S. J. (1975) Sensory evoked potentials, CNV and the EEG in patients with proven brain lesion. Electroencephalogr. Clan. Neurophysiol. 39, 208.

    Google Scholar 

  • Low M. D. and Swift S. J. (1971) The contingent negative variation and the resting DC potential of the human brain: effects of situational anxiety. Neuropsychol. 9, 203–208.

    CAS  Google Scholar 

  • Low M. D., Borda R. P., Frost J. D., and Kelleway P. (1966) Surface negative slow potential shift associated with conditioning in man. Neurology (NY) 16, 771–782.

    Google Scholar 

  • Low M. D., Coats A. C., Rettig G. M., and McSherry J. W. (1967) Anxiety, attentiveness-alertness: A phenomenological study of the CNV. Neuropsychol. 5, 379–384.

    Google Scholar 

  • Lueders H., Lesser R., Hahn J., Little J., and Klem G. (1983) Subcortical somatosensory evoked potentials to median nerve stimulation. Brain 106, 341–372.

    PubMed  Google Scholar 

  • Lutzenberger W. Birbaumer N., Elbert T., and Rockstroh B. (1980) Self-regulation of slow cortical potentials in normal subjects and patients with frontal lobe sessions. Prog. Bruin Res. 54, 427–430.

    CAS  Google Scholar 

  • Lux R. L., Smith C. R., Wyatt R. F., and Abildskov J. A. (1978) Limited lead selection for estimation of body surface potential maps in electrocardiography. IEEE Trans Boomed, Eng. 25, 270–276.

    CAS  Google Scholar 

  • McAdam D. W. (1969) Increases in CNS excitability during negative cortical slow potentials in man. Electroencephalogr. Clin. Neurophyslol. 26, 216–219.

    CAS  Google Scholar 

  • McAdam D. W. and Rubin E. H. (1971) Readiness potential, vertex positive wave, contingent negative variation, and accuracy of perception. Electroencephalogr. Clin. Neurophyslol. 30, 511–517.

    CAS  Google Scholar 

  • McAdam D. W. and Seales D. M. (1969) Bereitschaftspotential enhancement with increased level of motivation. Electroencephalogr. Clin. Neurophsyiol. 27, 73–75.

    CAS  Google Scholar 

  • McAdam D. W. and Whitaker H. A. (1971) Language production: Electroencephalographic localization in the normal human brain. Science 172, 499–502.

    PubMed  CAS  Google Scholar 

  • McAdam D.W., Irwm D. A., Robert C. S., and Knott J. R. (1966) Conative control of the contingent negative variation. Electroencephalogr. Clin. Neurophysiol. 21, 194–195.

    PubMed  CAS  Google Scholar 

  • McCallum W. C. (1979) Cognitive aspects of slow potential changes, in Prog. Clm. Neurophysiol, vol. 6 (Desmedt J. E., ed.), Karger, Basel, pp 151–171

    Google Scholar 

  • McCallum W. C. and Cummins B. (1973) The effects of brain lesions on the contingent negative variation in neurosurgical patients. Elec-troencephalogr. Clin. Neurophysiol. 35, 449–456.

    CAS  Google Scholar 

  • McCallum W.C. and Curry S. H. (1981) Late slow wave components of auditory evoked potentials: Their cognitive significance and interaction Electroencephalogr. Clin. Neurophysiol. 51, 123–137.

    PubMed  CAS  Google Scholar 

  • McCallum W. C. and Papakostopoulos D. (1976) Distribution of CNV and other slow potential changes in human brainstem structures, in The Responsive Brain (McCallum W. C. and Knott J. R., eds.), Wright, Bristol, pp. 205–210.

    Google Scholar 

  • McCallum W. C., Farmer S. F., and Pocock P. K. (1984) The effects of physical and semantic incongruities on auditory event-related potentials. Electroencephalogr. Clin. Neurophysiol. 59, 477488.

    Google Scholar 

  • McCallum W. C., Papakostopoulos D., Gombi R., Winter A. L., Copper R., and Griffith H. B. (1973) Event related slow potential changes in human brain stem. Nature 252, 465–467.

    Google Scholar 

  • McCarthy G. and Wood C. C. (1985) Scalp distributions of event-related potentials: An ambiguity associated with analysis of variance models. Electroencephalogr. Clin. Neurophysiol., 62, 203–208.

    PubMed  CAS  Google Scholar 

  • McCarthy G. and Wood C. C. (1987) Intracranial recordings of endogenous ERPs in humans, in The London Symposia (Ellingson R. J., Murray N. M. F., Halliday, A. M., eds.) (EEG Suppl. 39), Elsevier, Amsterdam, pp. 331–337.

    Google Scholar 

  • McCarthy G., Wood C. C., Williamson P.D., and Spencer D. D. (1989) Task-dependent field potentials in human hippocampal formation. 1. Neuroscience, in press.

    Google Scholar 

  • McGillem C. D., Aunon J. I., and Pomalaza C. A. (1985) Improved waveform estimation procedures for event-related potentials. IEEE Trans. Biomed. Eng. BME-32, 371–379.

    Google Scholar 

  • MacKay D. M. (1983) On-line source-density computation with a minimum of electrodes. Electroencephalogr. Clin. Neurophyszol., 56, 696–698.

    CAS  Google Scholar 

  • MacKay D. M. (1984) Source density analysis of scalp potentials during evaluated action. Exp. Brain Res. 54, 73–94.

    PubMed  CAS  Google Scholar 

  • Maclin E., Okada Y. C., Kaufman L., and Williamson S. J. (1983) Retinotopic map on the visual cortex for eccentrically placed patterns: first noninvasive measurement. II Nuovo Cimento 2, 410–419.

    Google Scholar 

  • McSherry J. W. (1973) Physiological Origins A review, in Event-Related Slow Potentials of the Brain: Their relatzons to Behavior (McCallum W. C. and Knott J. R., eds.), (Electroencephalogr. Clan. Neurophyszol., Suppl. 33) pp. 53–61. McSherry J. W., andBordaR. P. (1973) The intracortical distribution of the CNV in rhesus monkey, in Event-related slow potentials of the brain: their relations to behavior (McCallum W. C. and Knott J. R., eds.) (Electroencephalogr. Clin. Neurophysiol., Suppl. 33), pp. 69-74.

    Google Scholar 

  • Mandler G. (1980) Recognizing: the judgement of previous occurrence. Psychol.Rev. 87, 23–81.

    Google Scholar 

  • Margerison J. H. and Corsellis J. A. N. (1966) Epilepsy and the temporal lobes. Brain 89, 499–530.

    Google Scholar 

  • Marquardt D. W. (1964) Confidence region calculations. IBM Share Program Catalog No. 3094, Appendix Exhibit B. Marsh G. R. and Thompson L. W, (1973) Effect of verbal and non-verbal psychological set on hemispheric asymmetries in the CNV, in Event-Related Slow Potentials of the Brain: Their Relations to Behavior (McCallum W. D., and Knott J. R., eds.) (Electroenceph. Clin. Neurophysiol. Suppl. 33), Elsevier, Amsterdam, pp. 195–200.

    Google Scholar 

  • Marton M., Szirtes J., and Breuer P. (1985a) Electrocortical signs of word categorization in saccade-related brain potentials and visual evoked potentials. Int. J. Aychophysiol. 3, 131–144.

    CAS  Google Scholar 

  • Marton M., Szirtes J., Donauer N., and Breuer P. (1985b) Saccade-related brain potentials in semantic categorization tasks. Biol. Psychol. 20, 163–184.

    PubMed  CAS  Google Scholar 

  • Maruyama Y., Shimoji K., Shimizu H., Kuribayashl H., and Fujioka H. (1982) Human spinal cord potentials evoked by different sources of stimulation and conduction velocities along the cord. J. Neurophyszol. 48, 1098–1107.

    CAS  Google Scholar 

  • Matsuo F., Peters J. F., and Reilly E. L. (1975) Electrical phenomena associated with movements of the eyelid. Electroencephalogr. Clrn. Neurophysiol. 38, 507–511.

    CAS  Google Scholar 

  • Mauguiere F., Courjon J., and Schott B. (1983a) Dissociation of early SEP components in unilateral traumatic section of the lower medulla. Ann. Neurol. 13, 309–313.

    PubMed  CAS  Google Scholar 

  • Mauguiere F., Desmedt J. E., and Courjon J. (1983b) Neural generators of N18 and P14 far field somatosensory evoked potentials: Patients with lesion of thalamus or of thalamo-cortical radiations. Electroencephalogr. Clin. Neurophysiol. 56, 283–292.

    PubMed  CAS  Google Scholar 

  • Mauguiere F., Desmedt J. E., and Courjon J. (1983c) Astereognosis and dissociated loss of frontal or panetal components of somatosensory evoked potentials in hemispheric lesions: Detailed correlations with clinical signs and computerized tomography scanning. Brain 106, 271–311.

    PubMed  Google Scholar 

  • Meador K. J., Loring D. W., King D. W., Gallagher B. B., Gould M. J., Flanigan H. F., and Smith J. R. (1989) Limbic evoked potentials predict site of epileptic focus. Neural. 37, 494–497.

    Google Scholar 

  • Meifs J. W. H., Bosch F. G. C., Peters M.J., and Lopes daSilvaF. H. (1987) On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartmental model of the head. Electroencephalogr. Clin. Neurophysiol. 66, 286–298.

    Google Scholar 

  • Mendel M. I. and Goldstein R. (1971) Early components of the averaged electroencephalic response to constant level clicks during all-night sleep. J. Speech Hear. Res. 14, 829–840.

    PubMed  CAS  Google Scholar 

  • Mendel M. I., Hosick E. C., Windman T., Davis H., Hirsh S. K., and Dmges D. F. (1975) Audiometric comparison of the middle and late components of the audit auditory evoked potentials awake and asleep. Electroencephalogr. Cltn. Neurophysiol. 38, 27–33.

    CAS  Google Scholar 

  • Mitzdorf U. (1985) Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG-phenomena. Physlol. Rev. 65, 37–100.

    CAS  Google Scholar 

  • Mitzdorf U. (1986) The physiological causes of VEP: Current source density analysis of electrically and visually evoked potentials, in Evoked Potentials (Cracco R. and Bodis-Wollner I., eds.), Alan R. Liss, New York, pp. 141–154.

    Google Scholar 

  • Moller A. R. and Jannetta P. J. (1986) Simultaneous surface and direct brainstem recordings of brainstem auditory evoked potentials (BAEP) in man, in Evoked Potentials (Cracco R. and Bodis-Wollner I., eds.), Alan R, Liss, New York, pp. 227–234.

    Google Scholar 

  • Moller A. R., Jannetta P. J., and Burgess J. E. (1986) Neural generators of the somatosensory evoked potential. Recording from the cuneate nucleus in man and monkeys. Electroencephalogr. Clin Neurophysiol. 65, 241–248.

    PubMed  CAS  Google Scholar 

  • Moore E. J. (ed.) (1983) Brain-stem Evoked Response (Grune and Stratton, New York).

    Google Scholar 

  • Morgan N. H. and Gevins A. S. (1986) Wigner distributions of human event-related brain potentials. IEEE Trans. Boomed. Eng. BME-33, 854–861.

    Google Scholar 

  • Moruzzi G. (1972) The sleep waking cycle. Ergebn Physzol. 64, 1–165.

    CAS  Google Scholar 

  • Naatanen R. and Gaillard A. W. K. (1983) The orienting reflex and the N2 deflection of the event-related potential (ERP), in Tutorials in ERP Research: Endogenous Components (Gaillard A. W. K. and Ritter W., eds.), Elsevier/North-Holland, Amsterdam, p. 119.

    Google Scholar 

  • Naatanen R. and Picton T. W. (1986) N2 and automatic versus controlled processes, in Cerebral Psychophysrology: Studies in Event-Related Potentials (EEG Suppl. 38) (McCallum W. C., Zappoli, R., Denoth F., eds.), Elsevier, Amsterdam, pp. 169–186.

    Google Scholar 

  • Naatanen R., Simpson M., and Loveless N. E. (1982) Stimulus deviance and evoked potentials. Biol. Psychol. 14, 53–98.

    PubMed  CAS  Google Scholar 

  • Naitoh P., Johnson C. L., and Lubin A. (1971) Modification of surface negative slow potential (CNV) in the human brain after total sleep loss. Electroencephalogr. Clin. Neurophysiol. 30, 17–22.

    PubMed  CAS  Google Scholar 

  • Nakanishi T., Shimada Y., Sakuta M., and Toyokura Y. (1978) The initial positive component of scalp-recorded somatosensory evoked potentials in normal subjects and in patients with neurological disorders. Electroencephalogr. Clin. Neurophysd. 45, 26–34.

    CAS  Google Scholar 

  • Neafsey E. J., Hull C. D., and Buchwald N. A. (1978) Preparation for movement in the cat. I. Unit activity in the cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 44, 706–713.

    PubMed  CAS  Google Scholar 

  • Nelson D. A. and Lassman F. M. (1968) Effects of intersignal interval on the human auditory evoked response. J. Acoust. Soc. Am. 44, 1529–1532.

    PubMed  CAS  Google Scholar 

  • Nenov V. I., Read W., Halgren E., and Dyer M. G. (1990) The effects of threshold modulation on recall and recognition in a sparse auto-associative memory: Implications for hippocampal physiology (submitted).

    Google Scholar 

  • Nenov V. I., Halgren E., Smith M. E., Badier J. M., Ropchan J. R., Blahd W. H., and Mandelkern M. (1989) Metabolic localization of brain potentials to words (submitted).

    Google Scholar 

  • Neville N. J. and Foote S. L. (1984) Auditory event-related potentials in the squirrel monkeys: parallels to human late wave responses. Brain Res. 289, 107–116.

    Google Scholar 

  • Neville H. J., Kutas M., Chesney G., and Schimdt A. C. (1986) Eventrelated brain potentials during initial encoding and recognition memory of congruous and incongruous words. J. Mem. Lang. 25, 75–92.

    Google Scholar 

  • Niki H. (1974) Prefrontal unit activity during delayed alternation in the monkey. II. Relation to absolute versus relative direction of response. Brain Res. 68, 197–204.

    PubMed  CAS  Google Scholar 

  • Niki H. and Watanabe M. (1976) Prefrontal unit activity and delayed response: Relation to cue localization versus direction of response. Brain Res. 105, 79–80.

    PubMed  CAS  Google Scholar 

  • Niki H., Sakai M., and Kubota K. (1972) Delayed alternation performance and unit activity of the caudate head and medial orbitofrontal gyrus in the monkey. Brain Res. 38, 343–353.

    PubMed  CAS  Google Scholar 

  • Nunez P. L. (1981) Electric Fields of the Brain Oxford Univ. Press, New York.

    Google Scholar 

  • Nunez P. L. (1986) The brain’s magnetic field: Some effects of multiple sources on localization methods. Electroencephalogr. Clin. Neurophy-siol. 63, 75–82.

    CAS  Google Scholar 

  • Nunez P. L. (1987) Removal of reference electrode and volume conduction effects by spatial deconvolution of evoked potentials using a three-concentric sphere model of the head, in The London Symposia (R. J. Ellingson, N. M. F. Murray, A. M. Halliday, eds.) (EEG Suppl. 39), Elsevier, Amsterdam, pp. 143–147.

    Google Scholar 

  • Okada Y. (1982) Discrimination of localized and distributed current dipole sources and localized single and multipole sources, in Biomagnetism: Applications and Theory. (Weinberg H., Stroink G., Katila T., eds.), Pergamon, New York, pp. 266–272.

    Google Scholar 

  • Okada Y. C., Kaufman L., and Williamson S. J. (1983) The hippocampal formation as a source of the slow endogenous potentials. Electroencephalogr. Clin. Neurophysiol, 55, 417–426.

    PubMed  CAS  Google Scholar 

  • Okada Y. C., Williamson S. J., and Kaufman L. (1982) Magnetic field of the human sensorimotor cortex. Int. J. Neurosci. 17, 33–38.

    PubMed  CAS  Google Scholar 

  • O′Keefe J. and Nadel L. (1978) The Hippocampus as a Cognitive Map (Clarendon, Oxford).

    Google Scholar 

  • Orgogozo J. M. and Larsen B. (1979) Activation of the supplementary motor area during voluntary movement suggests it works as supramotor area. Science 206, 847–850.

    PubMed  CAS  Google Scholar 

  • Ornitz E. M., Ritvo E. R., Carr E. M., Panman L. M., and Walter R. D. (1967) The variability of the auditory averaged evoked response during sleep and dreaming in children and adults. Electroencephalogr. Clin. Neurophysiol. 22, 514–524.

    PubMed  CAS  Google Scholar 

  • Osselton J. W. (1965) Acquisition of EEG data by bipolar, unipolar and average reference methods: A theoretical comparison. Electroencephalogr. Clin. Neurophyslol., 19, 527–528.

    CAS  Google Scholar 

  • Osterhammel P. H., Davis H., Wier C. C., and Hirsh S. K. (1973) Adult auditory evoked vertex potentials in sleep. Audiology 12, 116–128.

    PubMed  CAS  Google Scholar 

  • Otto D. A. and Leifer L. J. (1973) The effects of modifying response and performance feedback parameters on the CNV in humans. EEectroencephalogr. Clin. Neurophysiol. Suppl. 33, 29–37.

    Google Scholar 

  • Owens J. H. and Davis H. (eds.) (1985) Evoked Potentzal Testing: Clinical Applications. Grune and Stratton, Orlando

    Google Scholar 

  • Ozdamar O. and Kraus N. (1983) Auditory middle-latency responses in humans. Audiology 22, 34–49.

    PubMed  CAS  Google Scholar 

  • Ozdamar O., Kraus N., and Curry F. (1982) Auditory brain stem and middle latency responses in a patient with cortical deafness. Elec-troencephalogr. Clin. Neurophysiol. 53, 224–230.

    CAS  Google Scholar 

  • Paller K. A., Kutas M., Shimamura A. P., and Squire L. R. (1987) Brain responses to concrete and abstract words reflect processes that correlate with later performance on a test of stem-completion priming. Current Trends in Event-Related Potential Research (EEG Suppl., 40) (Johnson R., Jr., Rohrbaugh J. W. and R. Parasuraman, eds.), Elsevier, Amsterdam, pp. 360–365.

    Google Scholar 

  • Paller K. A., Zola-Morgan S., Squire L. R., and Hillyard S. A. (1984) Monkeys with lesions of hippocampus and amygdala exhibit event-related brain potentials that resemble the human P300 wave. Sot. Neurosci. Abstr. 10, 849

    Google Scholar 

  • Panter C., Hoke M., Lehnertz K., Lutkenhoner B., Anogianakis G., and Wittkowski W. (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Elec-troencephalogr Clin. Neurophysiol. 69, 160–170.

    Google Scholar 

  • Papakostopoulos D. and Crow H. J. (1976) Electrocorticographic studies of the contingent negative variation and “P300” in man, in The Responsive Brain (McCallum W. C. and Knot J. R., eds.), Wright, Bristol, pp. 205–210.

    Google Scholar 

  • Papakostopoulos D. and Crow H. J. (1980) Direct recording of the somato-sensory evoked potentials from the cerebral cortex of man and the difference between precentral and postcentral potentials. Prog. Clin. Neurophysiol. 7, 15–26.

    Google Scholar 

  • Papakostopoulos D., Cooper R., and Crow H. J. (1975) Inhibition of cortical evoked potentials and sensation by self-initiated movement in man. Nature 258, 321–324.

    PubMed  CAS  Google Scholar 

  • Papanicolaou A. C. and Johnstone J. (1984) Probe evoked potentials: Theory, method and applications. Int. 1. Neurosci. 24, 107–131.

    CAS  Google Scholar 

  • Parving A., Salomon G., Elberling C., Larsen B., and Lassen N. A. (1980) Middle components of the auditory evoked response in bilateral temporal lobe lesions. Scand. Audiol. 9, 161–167.

    PubMed  CAS  Google Scholar 

  • Peronnet F., Giard M. H., Bertrand O.,and Pernier J. (1984) The temporal component of the auditory evoked potential: A reinterpretation. Electroencephalogr. Clin. Neurophysiol. 59, 67–71.

    PubMed  CAS  Google Scholar 

  • Perrault N. and Picton T. W. (1984a) Event-related potentials recorded from the scalp and nasopharynx. I. Nl and P2. Electroencephalogr. Clin. Neurophyszol. 59, 177–194.

    CAS  Google Scholar 

  • Perrault N. and Picton T. W. (1984b) Event-related potentials recorded from the scalp and nasopharynx. II. N2, P3 and slow wave. Electroencephalogr. Clan. Neurophysiol. 59, 261–278.

    CAS  Google Scholar 

  • Petrig B., Julesz B., Kropfl W., Baumgartner G., and Anliker M. (1981) Development of stereopsis and cortical binocularity in human in-fants: Electrophysiological evidence. Science 213, 1402–1405.

    PubMed  CAS  Google Scholar 

  • Pfefferbaum A., Horvath T. B., Roth W. T., and Kopell B. S. (1979) Event-related potential changes in chronic alcoholics. Electroencepha-logr. Clin. Neurophysiol. 47, 637–647.

    CAS  Google Scholar 

  • Picton T. W. (1986) Abnormal brainstem auditory evoked potentials: A tentative classification, in Evoked potentials (Cracco R. and Bodis-Wollner I., eds,), pp. 373–389. Arliss, New York.

    Google Scholar 

  • Picton T. W. (1987) The recording and measurement of evoked potentials, in A Textbook of Clinical Neurophysfology. ( Halliday A. M., Butler S. R., and Paul R., eds.) Wiley, New York, pp. 23–40.

    Google Scholar 

  • Picton T. W. and Hillyard S. A. (1972) Cephalic skin potentials in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 33, 419–424.

    PubMed  CAS  Google Scholar 

  • Picton T. W. and Hillyard S. A. (1974) Human auditory evoked potentials. II Effects of attention. Electroencephalogr. Clin. Neurophysiol. 36, 191–199.

    PubMed  CAS  Google Scholar 

  • Picton T. W. and Hink R. F. (1974) Evoked potentials: How? What? and Why? Am. J. EEG Technol. 14, 944.

    Google Scholar 

  • Picton T. W. and Stuss D. T. (1980) The component structure of the human event-related potentials. Prog. Bruin Res. 54, 17–49.

    CAS  Google Scholar 

  • Picton T. W., Hillyard S. A., and Galambos R. (1976) Habituation and attention in the auditory system, in Handbook of Sensory Physiology, vol. 5, Auditory system, Part 3 (Clinical and special topics), (Keidel W. D. and Neff W. D., eds.), pp. 343–389 Springer Verlag, Berlin.

    Google Scholar 

  • Picton T. W., Hillyard S. A., Krausz H. I., and Galambos R. (1974) Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr. Clin. Neurophysiol. 36, 179–190.

    PubMed  CAS  Google Scholar 

  • Picton T. W., Hink R. F., Perez-Abalo M., Linden R. D., and Wiens A, S. (1984) Evoked potentials: How now? J. Electrophysiol. Tech., 10, 177–221.

    Google Scholar 

  • Pieper C. F., Goldring S., Jenny A. B., and McMahon J. P. (1980) Comparative study of cerebral cortical potentials associated with voluntary movements in monkey and man. Electroencephalogr. Clin. Neurophysiol. 48, 266–292.

    PubMed  CAS  Google Scholar 

  • Pirch J. H. (1980) Event related slow potentials in rat cortex during a reaction time task: cortical area differences. Brain Res. Bull. 5, 199–201.

    PubMed  CAS  Google Scholar 

  • Pirch J. H., Corbus M. J., and Rigdon G. C. (1983) Single-unit and slow potential responses from rat frontal cortex during associative conditioning. Exp. Neural. 82, 118–130.

    CAS  Google Scholar 

  • Pirch J. H., Corbus M.J., Rigdon G. C., and Lynes W. H. (1986) Generation of cortical event-related slow potentials in the rat involves nucleus basalis chrolinergic innervation. Electroencephalogr. Clin. Neurophysiol. 63, 464–475.

    PubMed  CAS  Google Scholar 

  • Polich J. M., McCarthy G., Wang W. S., and Donchin E. (1983) When words collide: Orthographic and phonological interference during word processmg. Biol. Dsychol. 16, 155–180.

    CAS  Google Scholar 

  • Porjesz B., Begleiter H., and Samuelly I. (1980) Cognitive deficits in chronic alcholics and elderly subjects assessed by evoked brain potentials. Acta Psychiatr. Scand. Suppl. 286, 62.

    Google Scholar 

  • Pratt H. and Starr A. (1981) Mechanically and electrically evoked somato-sensory potentials in humans: Scalp and neck distributions of short latency components. Electroencephalogr. Clin. Neurophysiol. 51, 138–147.

    PubMed  CAS  Google Scholar 

  • Pratt H., Bleich N., and Berliner E. (1982) Short latency visual evoked potentials in man. Electroencephalogr. Clin. Neurophysiol. 54, 55–62.

    PubMed  CAS  Google Scholar 

  • Prichep L. S., Sutton S., and Hakerem G (1976) Evoked potentials in hyperkinetic and normal children under certainty and uncertainty: A placebo and methylphenidate study. Psychophysiology 13, 419–428.

    PubMed  CAS  Google Scholar 

  • Prim M., Ojemann G., and Lettich E. (1983) Human cortical patterns of “P300” potentials to novel visual items. Soc. Neurosci. Abstr. 9, 655.

    Google Scholar 

  • Pritchard W. S. (1981) Psychophysiology of P300. Psychol. Bull 89, 506–540.

    PubMed  CAS  Google Scholar 

  • Pritchard W. S., Shappell S. A., and Brandt M. E. (1988) Psychophysiology of N200/N400: a review and classification scheme. In: Advances in Psychophysiology (Ackles P. K., Jennings J. R. and Coles M. G. H., eds.), JAI Press, Greenwich, CT, in press.

    Google Scholar 

  • Purpura D. P. (1959) Nature of electrocortical potentials and synaptic organizations in cerebral and cerebellar cortex. Int. Rev. Neurobiol. 1, 47–163.

    PubMed  CAS  Google Scholar 

  • Raeva S. (1986) Localization in human thalamus of units triggered during “verbal commands”,N voluntary movements and tremor. Electroencephalogr. Clin. Neurophysiol. 63, 160–173.

    PubMed  CAS  Google Scholar 

  • Ranck J. B. Jr. (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rates. Part 1: behavioral correlates and firing repertoires. Exp. Neural. 41, 462–531.

    Google Scholar 

  • Rapin I., Schimmel H., and Cohen M. M. (1972) Reliability in detecting the auditory evoked response (AER) for audiometry in sleeping subjects. Electroencephalogr. Clin. Neurophysiol. 32, 521–528.

    PubMed  CAS  Google Scholar 

  • Rebert C. S. (1972) Cortical and subcortical slow potentials in the monkey’s brain during a preparatory interval. Electroencephulogr. Clan. Neurophysiol. 33, 389–402.

    CAS  Google Scholar 

  • Rebert C. S. (1973a) Slow potential correlates of neuronal population responses m the cat′s lateral geniculate nucleus. Electroencephalogr. Clin. Neurophysiol. 35, 511–515.

    PubMed  CAS  Google Scholar 

  • Rebert C. S. (1973b) Elements of a general cerebral system related to CNV genesis, in Event-Related Slow Potentials of the Brain: Their Relations to Behavior (McCallum W. C. and Knott J. R., eds.) (Electroencephalogr. Clan. Neurophysiol.), pp. 63–67.

    Google Scholar 

  • Rebert C S. (1977) Intracerebral slow potentials changes in monkeys during the foreperiod of reaction time, in Attention, Voluntary Contraction and Event-Related Cerebral Potentials (Desmedt, J. E. ed.) (Prog. Clin. Neurophysiol., vol. l), Karger, Basel, pp. 242–253.

    Google Scholar 

  • Rebert C. S. (1980) Neurobehavioral aspects of brain slow potentials, in Motivation, Motor and Sensory Processes of the Brain (Kornbuber H. H. and Deecke L., eds.) (Prog. in Brain Res., vol. 54), Elsevier/North Holland, Amsterdam, pp. 381–402.

    Google Scholar 

  • Regan D. (1972) Evoked Potentrals m Psychology, Sensory Physiology and Clintcal Medicine (Chapman and Hall, London).

    Google Scholar 

  • Regan D. (1981) Evoked potential studies of visual perception. Can. J, Psychoi 35, 77–112.

    CAS  Google Scholar 

  • Regan D. (1982) Comparison of transient and steady-state methods. Ann. NY Acad. Sci. 388, 45–71.

    PubMed  CAS  Google Scholar 

  • Regan D. and Richards W. (1971) Independence of evoked potentials and apparent size. Vision Res. 11, 679–684.

    PubMed  CAS  Google Scholar 

  • Remond A. (1956) Integration temporelle et integration spatiale a l′aide d’un meme appareil. Rev. Neurol. (Paris) 95, 585–586.

    Google Scholar 

  • Remond A. (1962) Correction des enregistrements elementaires en vue des presentations spatiotemporelles des EEG. Rev. Neural. (Paris) 107, 135–136.

    Google Scholar 

  • Renault B. (1983) The visual emitted potentials: Clues for information processing, in Tutorials in ERP Research: Endogenous Components (Gaillard A. W. K. and Ritter W., eds.), ElsevierlNorth Holland, Amsterdam, p. 159.

    Google Scholar 

  • Renault B. and Lesevre N. (1978) Topographical study of the emitted potential obtained after omission of an expected visual stimulus, in Multidzsciplinay Perspectives In Event-Related Braln Potential Research (EPA 600/9-77-043) (D. A. Otto, ed.), US Govt. Printing Office, Washington, DC, p. 202–208.

    Google Scholar 

  • Richer F., Barth D. S., and Beatty J. (1983) Neuromagnetic localization of two components of the transient visual evoked response to patterned stimulation. I1 Nuovo Cimento 2, 420–428.

    Google Scholar 

  • Richer F., Johnson R. A., and Beatty J. (1983) Sources of late components of the brain magnetic response. Neurosci. Abstr. 9, 656.

    Google Scholar 

  • Rigdon G. C. and Pirch J. H. (1986) Nucleus basalis involvement in conditioned neuronal responses in the rat frontal cortex. J. Neurosci. 6, 2535–2542.

    PubMed  CAS  Google Scholar 

  • Ritter W., Vaughan H. G., Jr., and Simson R. (1983) On relating event-related potential components to stages of information processing, in Tutorials in ERP Research: Endogenous Components (Gaillard A. W. K. and Ritter W., eds.), Elsevier/North Holland, Amsterdam, p, 143.

    Google Scholar 

  • Ritter W., Simson R., Vaughan H. G., Jr., and Macht M. (1982) Manipulation of event-related potential manifestations of information processing stages. Science 218, 909–911.

    PubMed  CAS  Google Scholar 

  • Ritter W., Ford J. M., Gaillard A. W. K., Harter M. R., Kutas M., Naatanen R., Polich J., Renault B., and Rohrbaugh J. (1984) Cognition and event-related potentials: The relation of negative potentials and cognitive processes, in Brarn and Informatzon: Event-Related Potentials (Karrer R., Cohen J., and Tueting P., eds), pp. 24–38.

    Google Scholar 

  • Rockstroh B., Elbert T., Birbaumer N., and Lutzenberger W. (1982) Slow Brain Potentmls and Behavior Urban and Schwartzenberg, Baltimore.

    Google Scholar 

  • Rohrbaugh J. W., Synduldo K., and Lindsley D. B. (1976) Brain wave components of the contingent negative variation in humans. Science 191, 1055–1057.

    PubMed  CAS  Google Scholar 

  • Rohrbaugh J. W., Syndulko K., and Lindsley D. B. (1978) Cortical slow negative waves following non-paired stimuli: Effects of task factors, Electroencephalogr. Clin. Neurophyslol. 45, 551–567.

    CAS  Google Scholar 

  • Rohrbaugh J. W., Syndulko K., Sanquist T. F., and Lindsley D. B. (1980) Synthesis of the contingent negative variation brain potential from noncontingent stimulus and motor elements. Science 208, 1165–1168.

    PubMed  CAS  Google Scholar 

  • Roland P. E. (1985) Cortical organization of voluntary behavior in man. Hum. Neurobiol. 4, 155–167.

    PubMed  CAS  Google Scholar 

  • Rolls E. T. (1983) The initiation of movements, in Experimental Brain Research, Suppl. 7, Springer-Verlag, Berlin, Heidelberg, pp. 97–113.

    Google Scholar 

  • Romani G. L., Williamson S. J., Kaufman, L., and Brenner D. (1982) Characterization of the human auditory cortex by the neuromagnetic method. Exp. Brain Res. 47, 381–393.

    PubMed  CAS  Google Scholar 

  • Rosenkilde C. E., Bauer R. H., andFuster J. M. (1981) Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Res. 209, 375–394.

    PubMed  CAS  Google Scholar 

  • Rosler F., Sutton S., Johnson R., Jr., Mulder G., Fabiani M., Plooij-Van Gorse E., and Roth W. T. (1986) Endogeneous ERP components and cognitive components: a review, in Cerebral itPsychophysiology: Studies in Event-Related Potentials (EEG Suppl. 38) (McCallum W. C., Zappoli R., Denoth F., eds.) Elsevier, Amsterdam, pp. 51–92.

    Google Scholar 

  • Roth E. T., Pfefferbaum A., Horvath T. B., Berger P. A., and Kopell B. S. (1980) P3 reduction in auditory evoked potentials of schizophrenics. Electroencephalogr. Clin. Neurophysiol. 49, 497–505.

    PubMed  CAS  Google Scholar 

  • Rowland V. (1968) Cortical steady potential in reinforcement and learning. Prog. Physiol. Psychol. 2, 1–77.

    Google Scholar 

  • Ruchkin D. S. and Sutton S. (1979) CNV and P300 relationships for emitted and for evoked cerebral potentials, in Prog. Ckn. Neurophysiol., vol. 6 (Desmedt J. E., ed.), Karger, Basel, pp. 119–131.

    Google Scholar 

  • Rugg, M., Kok A., Barrett G., and Fischler I. (1986) ERPs associated with language and hemispheric specialization, in Cerebral Psychophysiolo-gy: Studies in Event-Related Potentials (EEG Suppl. 38) (McCallum W. C., Zappoli R., Denoth F., eds.) Elsevier, Amsterdam, pp. 273–300.

    Google Scholar 

  • Rugg M. D. and Nagy M. E. (1987) Lexical contribution to non-word repetition effects: Evidence from event-related potentials. Mem. Cog-nit. 15, 473–481.

    CAS  Google Scholar 

  • Rugg M. D., Furda J., and Lorist M. (1988) The effects of task on the modulation of event-related potentials by word repetition, Psy-chophysiology 25, 55–63.

    CAS  Google Scholar 

  • Ruhm H., Walder E., and Flanigm H. (1967) Acoustically-evoked potentials in man: Mediation of early components. Laryngoscope 77, 806–822.

    PubMed  CAS  Google Scholar 

  • Sakata H., Takoka Y., Kawarasaki A., and Shibutani H. (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the Rhesus monkey. Brain Res. 64, 85–102.

    PubMed  CAS  Google Scholar 

  • Salamy A. and McKean C. M. (1977) Habituation and dishabituation of cortical and bramstem evoked potentials. Int. 1. Neurosci. 7, 175–182.

    Google Scholar 

  • Sanquist T. F., Beatty J. T., and Lindsley D. B. (1981) Slow potential shifts of human brain during forewarned reaction. Electroencephalogr. Clin. Neurophysiol. 51, 639–649.

    PubMed  CAS  Google Scholar 

  • Sanqmst T. F., Rohrbaugh J. W., Syndulko K., and Lindsley D. B. (1980) Electrocortical signs of levels of processmg: perceptual analysis and recognition memory. Psychophysiology 17, 568–576.

    Google Scholar 

  • Sano K., Miyake H., and Mayanagi Y. (1967) Steady potentials in various stress conditions in man. Electroencephalogr. Clin. Neurophysiol., Suppl. 25, 264–275.

    Google Scholar 

  • Sasaki K. (1976/1977) Electrophysiologic studies on the cerebellothalamocortical projections. Appl. Neurophysiol. 39, 239–259.

    PubMed  Google Scholar 

  • Schafer E. W. P. (1967) Cortical activity preceding speech: Semantic specificity. Nature 216, 1338–1339.

    PubMed  CAS  Google Scholar 

  • Schafer E. W. P., Amochaev A., and Russell M. J. (1981) Knowledge of stimulus, timing attenuates human evoked cortical potentials. Electroencephalogr. Clin. Neurophysiol. 52, 9–17.

    PubMed  CAS  Google Scholar 

  • Scherg M. (1984) Spatio-temporal modeling of early auditory evoked potentials. Rev. Laryngol. Otol. Rhinol. (Bard), 105, 163–170.

    CAS  Google Scholar 

  • Scherg M. and VonCramon D. (1985) Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 62, 32–44.

    PubMed  CAS  Google Scholar 

  • Schimmel H. (1967) The (±) reference: accuracy of estimated mean components in average response studies. Science 164, 92–94.

    Google Scholar 

  • Schlag J. (1973) Generation of brain evoked potentials. Bioelectric recording techniques, Part A, Cellular processes and brain potentials, Academic, New York.

    Google Scholar 

  • Schlag J. and Schlag-Rey M. (1987) Evidence for a supplementary eye field. 1, Neurophysiol. 57, 179–200.

    CAS  Google Scholar 

  • Schneider M. R. (1974) Effect of inhomogeneities on surface signals coming from a cerebral current-dipole source. IEEE Trans. Blamed. Eng. 21, 52–54.

    CAS  Google Scholar 

  • Schreiber H., Land M., Lang W., Kornhuber A., Heise B., Keidel M., Deecke L., and Kornhuber H. H. (1983) Frontal hemispheric differences in the Bereitschaftspotential associated with writing and drawing. Hum. Neurobiol. 2, 197–202.

    PubMed  CAS  Google Scholar 

  • Schwent V.L. and Hillyard S. A. (1975) Evoked potential correlates of selective attention with multi-channel auditory inputs. Electroencephalogr. Clin. Neurophysiol. 38, 131–138.

    PubMed  CAS  Google Scholar 

  • Schwent V. L., Hillyard S. A., and Galambos R. (1976) Selective attention and the auditory vertex potential. I. Effects of stimulus delivery rate. Electroencephalogr. Clin. Neurophysiol. 40, 604–614.

    PubMed  CAS  Google Scholar 

  • Seaba P. (1980) Electrical safety. Am. J, EEG Technol. 20, 1–13.

    CAS  Google Scholar 

  • Semlitsch H., Anderer P., Schuster P., and Presslich O. (1986) A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology 23, 695–703.

    PubMed  CAS  Google Scholar 

  • Sgro J.A. and Emerson R. G. (1985) Phase synchronized triggering: A method for coherent noise elimination in evoked potential recording. Electroencephalogr. Clin, Neurophyslol. 60, 464–468.

    CAS  Google Scholar 

  • Shibasaki H. (1975) Movement-associated cortical potentials in unilateral cerebral lesions. J. Neural. 209, 189–198.

    CAS  Google Scholar 

  • Shibasaki H. and Kato M. (1975) Movement associated cortical potentials with unilateral and bilateral simultaneous hand movement. J. Neural. 208, 191–199.

    CAS  Google Scholar 

  • Shibasaki H., Barrett G., Halliday E., and Halliday A. M. (1980a) Components of the movement-related cortical potential and their scalp topography. Electroencephalogr. Clin. Neurophysiol. 49, 213–226.

    PubMed  CAS  Google Scholar 

  • Shibasaki H., Barrett G., Halliday E., and Halliday A. M. (1980b) Cortical potentials following voluntary and passive finger movements. Electroencephalogr. Clin. Neurophyslol. 50, 201–213.

    CAS  Google Scholar 

  • Shibasaki H., Barrett G., Halliday E., and Halliday A. M. (1981) Cortical potentials associated with voluntary foot movement in man. Elec-troencephalogr. Clan. Neurophysiol. 52, 507–516.

    CAS  Google Scholar 

  • Simson R., Vaughan H. G., Jr., and Ritter W. (1977a) The scalp topography of potentials in auditory and visual discrimination tasks. Elec-troencephalogr. Cbn. Neurophysiol. 42, 528–535.

    CAS  Google Scholar 

  • Simson R., Vaughn H. G., Jr., and Rrtter W. (1977b) The scalp topography of potentials in auditory and visual go/no go tasks. Electroencephalogr. Clin. Neurophysiol. 43, 864–875.

    Google Scholar 

  • Sindrup E., Thygesen N., Kristensen O., and Alving J, (1981) Zygomatic electrodes: Their use and value in complex partial epilepsy, in Advances in Epzleptology: XlIth Epilepsy International Symposium, (Dam M., Gram L., and Penry J. I. S., eds.), Raven, New York.

    Google Scholar 

  • Skinner J. E. (1971) Abolition of a conditioned, surface-negative, cortical potential during cryogenic blockade of the nonspecific thalamocortical system. Electroencephalogr. Clin. Neurophysiol. 31, 197–209.

    PubMed  CAS  Google Scholar 

  • Skinner J. E. and King G. L. (1980) Contribution of neuron dendrites to extracellular sustained potential shifts. Prog. Brain Res. 54, 89–102.

    PubMed  CAS  Google Scholar 

  • Skinner J. E. and Yingling C.D. (1976) Regulation of slow potential shifts in nucleus reticularis thalami by the mesencephalic reticular formatron and the frontal granular cortex. Electroencephalogr Clin. Neurophysiol. 40, 288–296.

    PubMed  CAS  Google Scholar 

  • Skinner J. E. and Yingling C. D. (1977) Central gating mechanisms that regulate event-related potentials and behavior. A neural model for attention, in Attention, Voluntary Contraction and Event-Related Cerebral Potentials (Desmedt, J. E., ed.) (Prog. Clan. Neurophysiol., vol. 1), Karger, Basel, pp. 28–68.

    Google Scholar 

  • Skinner J. E., Reed J. C., Welch K. M. A., and Nell J. (1978) Cutaneous shock produces correlated shifts in slow potential amplitude and cyclic 3-5 adenosine monophosphate level in parietal cortex of the conscious rat. J. Neurochem. 30, 699–704.

    PubMed  CAS  Google Scholar 

  • Skrandies W. and Lehmann D. (1982) Spatial principal components of multichannel maps evoked by lateral visual half-field stimuli. Electroencephalogr. Clin. Neurophysiol. 54, 297–305.

    Google Scholar 

  • Slimp J. C., Tamas L. B., Stolov W. C., and Wyler A. R. (1986) Somatosensory evoked potentials after removal of somatosensory cortex in man. Electroencephalogr. Clin. Neurophysiol. 65, 111–117.

    PubMed  CAS  Google Scholar 

  • Smith D. B., Sidman R. D., Henke J. S., Flanigin H., Labiner D., and Evans L. N. (1983) Scalp and depth recordings of induced deep cerebral potentials. Electroencephalogr. Clin. Neurophysiol. 55, 145–150.

    PubMed  CAS  Google Scholar 

  • Smith M. E. and Halgren E. (1987a) Event-related potentials elicited by familiar and unfamiliar faces, in Current Trends in Event-Related Potential Research (Johnson R., Jr., Purasuraman R., andRohrbaugh, J. W., eds.) Electroencephalogr. Clin, Neurophysiol. Suppl. 40), Elsevier, Amsterdam, pp. 422–42

    Google Scholar 

  • Smith M. E. and Halgren E. (198710) ERPs during lexical decision: Effects of repetition, word frequency, pronounceability, and concreteness, in Current Trends in Event-Related Potential Research (Johnson R., Jr., Purasuraman R., and Rohrbaugh J. W., eds.) Electroencephulogr. Clin. Neurophystol. Suppl. 40), Elsevier, Amsterdam, pp. 417–421.

    Google Scholar 

  • Smith M. E. and Halgren E. (1989) Dissociation of recognition memory components following temporal lobe lesions. J. Exp. Psychol. (Learn. Mem. Cogn. 15, 50–60.

    CAS  Google Scholar 

  • Smith M E and Halgren E. (1988) Attenuation of a sustained visual processing negativity after lesions that include the inferotemporal cortex. Electroencephulogr. Clin. Neurophysiol. (in press). 70, 366–370.

    CAS  Google Scholar 

  • Smith M. E., Halgren E., Sokolik M., Baudena P., Mussolino A., Liegeois-Chauvel C., and Chauvel P. Initial survey of the intracranial voltage distribution of endogenous potentials elicited during auditory discrimination (submitted).

    Google Scholar 

  • Smith M. E., Stapleton J. M., and Halgren E. (1986) Human medial temporal lobe potentials evoked in memory and language tasks. Electroencephulogr. Clin. Neurophysiol. 63, 145–159.

    CAS  Google Scholar 

  • Smith M. E., Halgren E., Sokolik M., Baudena P., Mussolino A., Liegeois-Chauvel C., and Chauvel P. (1988) Intracranial distribution of human cognitive potentials, Sot. Neurosci. Abstr. 14, 1014.

    Google Scholar 

  • Somjen G. G. (1973) Electrogenesis of sustained potentials. Prog. Neurobiol. 1, 199–237.

    CAS  Google Scholar 

  • Somjen G. G. (1979) Extracellular potassium in the mammalian central nervous system. Annu. Rev. Physiol. 41, 159–177.

    PubMed  CAS  Google Scholar 

  • Soso M. J. and Fetz E. E. (1980) Responses of identified cells in post-central cortex of awake monkeys during comparable active and passive joint movements. J. Neurophysiol. 43, 1090–1110.

    PubMed  CAS  Google Scholar 

  • Speckmann E. J. and Caspers H. (eds.) (1979) Origin of Cerebral Field Potentials (George Thieme: Stuttgart.)

    Google Scholar 

  • Speckmann E. J., Caspers H., and Janzen R. W. C. (1978) Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges, in Architectonics of the Cerebral Cortex (Brazier M. A. B. and Petsche H., eds.), Raven, New York, pp. 191–

    Google Scholar 

  • Spehlmann R. (1985) Evoked Potential Primer. (Butterworth, Boston.)

    Google Scholar 

  • Spekreijse J., Vander Tweel L. H., and Zuidema T. (1973) Contrast evoked responses in man. Vision Res. 13, 1577–1601.

    PubMed  CAS  Google Scholar 

  • Spencer W. A. and Kandel E. R (1962) Hippocampal neuron responses to selective activation of recurrent collaterals of hippocampofugal ax-ons. Exp Neural. 4, 140–161.

    Google Scholar 

  • Spencer W. A. and Kandel E. R. (1969) Synaptic inhibition in seizures, in Basic Mechanisms of the Epilepsies (Jasper H. H., Ward A. A., and Pope A., eds.), Little, Brown and Co., Boston. p 575.

    Google Scholar 

  • Sperling M. R. andEngelJ., Jr. (1985) The EEG from the temporal lobes: A comparison of rear, anterior temporal, and nanopharyngeal electrodes Ann. Neural. 17, 510–513.

    CAS  Google Scholar 

  • Sperling M. R. and Engel J., Jr. (1986) Sphenoidal electrodes. J. Clan. Neurophysiol. 3, 67–63.

    CAS  Google Scholar 

  • Spitz M. C., Emerson R. G., andPedley T. A. (1986) Dissociation of frontal NlOO from occipital I’100 in pattern reversal visual evoked potentials. Electroencephalogr. Clin. Neurophystol. 65, 161–168.

    CAS  Google Scholar 

  • Spydell J. D., Pattie G., and Goldie W. D. (1985) The 40 Hertz auditory event-related potential: normal values and effects of lesions. Electroencephalogr. CEin. Neurophysiol. 62, 192–202.

    Google Scholar 

  • Squire L. R. (1982) The neuropsychology of human memory. Annu. Rev. Neurosci. 5, 241–273.

    PubMed  CAS  Google Scholar 

  • Squires N. K., Squires K. C., and Hillyard S. A. (1975) Two vaneties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 83, 387–401.

    Google Scholar 

  • Squires N. K., Halgren E., Wilson C. L., and Crandall P. H. (1983) Human endogenous limbic potentials: cross-modality and depth/surface comparisons in epileptic subjects, in Tutorials in ERP Research: Endogenous Components (Gaillard A. W. K. and Ritter W., eds.), North Holland, Amsterdam, pp. 217–232.

    Google Scholar 

  • Squires K. C., Chippendale T. J., Wrege K. S., Goodin D. S., and Starr A. (1980) Electrophyslological assessment of mental function in aging and dementia, in Aging in the 1980′s: Psychological Issues, (Poon L. W., ed), American Psychological Association, Washington, DC, pp. 125–

    Google Scholar 

  • Srebro R. (1985a) Localization of visually evoked cortical activity in humans. J. Physlol. (London) 360, 233–246.

    CAS  Google Scholar 

  • Srebro R. (1985b) Localization of cortical actrvity associated with visual recognition in humans. J. Physiol (London) 360, 247–259.

    CAS  Google Scholar 

  • Stamm J. S. and Rosen S. C. (1972) Cortical steady potential shifts and anodal polarization during delayed response performance. Acta Neurobiol. Exp (Warsz) 32, 193–209.

    CAS  Google Scholar 

  • Stapleton J. M. and Halgren E. (1987) Endogenous potentials evoked in simple cognitive tasks: Depth components and task correlates. Elec-troencephalogr. Clin. Neurophysiol. 67, 44–52.

    CAS  Google Scholar 

  • Stapleton J. M., Hasen E., and Moreno K. A. (1987a) Endogenous potentials after anterior temporal lobectomy. Neuropsychologia 25, 549–557.

    PubMed  CAS  Google Scholar 

  • Stapleton J. M., O’Reilly T., and Halgren E. (1987b) Endogenous potentials in simple cognitive tasks: Scalp topography. Int. J. Neurosci. 36, 75–88.

    PubMed  CAS  Google Scholar 

  • Starr A. (1985) Auditory pathway origins of scalp-derived auditory brain-stem responses, in Evoked Potentials. Neurophysiological and Clinical Aspects (Morocutti C. and Rizzo P. A., eds), Elsevier, Amsterdam, pp. 133–143.

    Google Scholar 

  • Stephenson W. A. and Gibbs F. A. (1951) A balanced non-cephalic reference electrode. Electroencephalogr. Clin. Neurophysiol. 3, 237–240.

    PubMed  CAS  Google Scholar 

  • Steriade M. and Deschenes M. (1984) The thalamus as a neuronal oscillator. Brain Res. 320, l–63.

    Google Scholar 

  • Straschill M. and Takahashi H. (1980) Slow potentials in the human subthalamus associated with rapid arm movements, in Motivation, Motor and Sensory Processes of the Brain: Electrical Potentials, Behavior and Clinical Use (Kornhuber H. H. and Deecke L., eds.) (Progress in Brain Research, vol. 54) ElsevierlNorth Holland, Amsterdam p. 135.

    Google Scholar 

  • Streletz L. J., Katz L., Hohenberger M., and Cracco R. Q. (1977) Scalp recorded auditory evoked potentials and sonomotor responses: An evaluation of components and recording techniques. Electroencephalogr. Clin. Neurophysiol. 43, 192–206.

    PubMed  CAS  Google Scholar 

  • Streletz L. J., Bae S. H., Roeshman R. M., Schatz N. J., and Savino P. J. (1981) Visual evoked potentials in occipital lobe lesions. Arch. Neurol. 38, 80–85.

    PubMed  CAS  Google Scholar 

  • Stuss D. T., Sarazin F. F., Leech E. E., and Picton T. W. (1983) Eventrelated potentials during naming and mental rotation. Electroencephalogr. Chn. Neurophysiol. 56, 133–146.

    CAS  Google Scholar 

  • Surwillo W. W. (1977) Cortical evoked response recovery functions: Physiological manifestations of the psychological refractory period? Psy-chophysiology 14, 32–39.

    CAS  Google Scholar 

  • Suzuki H. and Azuma M. (1977) Prefrontal neuronal activity during gazing at a light spot in the monkey. Brain Res. 126, 497–508.

    PubMed  CAS  Google Scholar 

  • Suzuki I. and Mayanagi Y. (1984) Intracranial recording of short latency somatosensory evoked potentials in man: identification of origin of each component. Electroencephalogr. Clin. Neurophysd. 59, 286–296.

    CAS  Google Scholar 

  • Syndulko K. and Lindsley D. B. (1977) Motor and sensory determinants of cortical slow potential shifts in man, in Progress in Clinical Neurophysiology (Desmedt J. E., ed.), Karger, Basel, pp. 97–131.

    Google Scholar 

  • Syndulko K., Pettler-Jennings P., Cohen S. N., Cummings J., Halgren E., and Tourtellotte W. W. (1984) P300 in memory disorders of diverse etrology, in Proceedings of the American Academy of Neurology, 36th Annual Meeting, Abstract 298.

    Google Scholar 

  • Syndulko K., Hansch M. A., Cohen S. N., Pearce J. W., Goldberg Z., Montan B., Tourtellotte W. W., and Potvin A. R. (1982) Long-latency event related potentials in normal aging and dementia, in Advances in Neurology vol. 32, (Courjon J., Maugiere F., and Revol M, eds.), Raven, New York, pp. 279–286.

    Google Scholar 

  • Szirtes J., and Vaughan H. G., Jr. (1977) Characteristics of cranial and facial potentials associated with speech production. Electroencepha-logr. Clin. Neurophysiol. 43, 386–396.

    CAS  Google Scholar 

  • Talairach J., Szikla G., Tournoux P., Prossalentis A., Bordas-Ferrer M., Covello L., Jacob M., and Mempel E. (1967) Atlas d-Anatomie Stereotaxique du Telencephale. (Masson et Cie, Paris).

    Google Scholar 

  • Tamas L. B. and Shibasaki H. (1985) Cortical potentials associated with movement: A review. J. Clin. Neurophysiol. 2, 157–171.

    PubMed  CAS  Google Scholar 

  • Tanji J. (1984) The neuronal activity in the supplementary motor area of primates. Trends Neurosci. 7, 282–285.

    Google Scholar 

  • Tanjr J. and Kurata K. (1982) Comparison of movement-related activity in two cortical motor areas of primates, J. Neurophysiol. 48, 633–653.

    Google Scholar 

  • Tanji J., Taruguchi K., and Saga T. (1980) Supplementary motor area: neural response to motor instructions. J. Neurophysiol. 43, 60–68.

    PubMed  CAS  Google Scholar 

  • Taylor M. (1978) Bereitschaftspotential during the acquisition of a skilled motor task. Electroencephalogr. Clin. Neurophysiol. 45, 568–576.

    PubMed  CAS  Google Scholar 

  • Thatcher R. W., Krause P. J., and Hrybyk M. (1986) Cortrco-cortrcal associations and EEG coherence: A two-compartmental model. Electroencephalogr. Clin. Neurophysiol., 64, 123–143.

    PubMed  CAS  Google Scholar 

  • Thickbroom G. W., Carroll W. M., and Mastaglia F. L. (1985a) Dipole source derivation. Application to the half-field pattern evoked potential. Int. J. Biomed. Comput., 16, 17–28.

    PubMed  CAS  Google Scholar 

  • Thickbroom G. W., Mastaglra F. L., Carroll W. M., and Davies H. D. (1985b) Cerebral potentials accompanying visually triggered finger movement in man. Electroencephalogr. Clin. Neurophysiol. 62, 209–108.

    PubMed  CAS  Google Scholar 

  • Timsrt-Berthier M., Gerono A., and Rousseau J. (1977) CNV variations of amplitude and duration during low level arousal: The “distraction-arousal” hypothesis reconsidered. Electroencephalogr. Clin. Neurophy-siol. 43, 471.

    Google Scholar 

  • Tsubokawa T. and Moriyasu N. (1978) Motivational slow negative potential shift (CNV) related to thalamotomy. Appl. Neurophysiol. 41, 202–208.

    PubMed  CAS  Google Scholar 

  • Tsubokawa T., Katayama T., Nishimoto H., Kotani A., and Moriyasu N. (1976/1977) Emotional slow negative potential shift (CNV) in the thalamus. Appl. Neurophysiol. 39, 261–267.

    PubMed  Google Scholar 

  • Tsuji S., Shibasaki H., Kato M., Kuroiwa Y., and Shima F. (1984) Sub-cortical, thalamic and cortical somatosensory evoked potentials to median nerve stimulation. Electroencephalogr. Clan. Neurophysiol. 59, 465–476.

    CAS  Google Scholar 

  • Tukey J. W. (1978) A data analysts’s comments on a variety of points and issues, in Event-Related Bruin Potentials in Man (Callaway E., Tueting P., and Koslow S. H., eds.), Academic, New York, pp. 139–154.

    Google Scholar 

  • Vanderwolf C. H. (1975) Neocortical and hippocampal activation in relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine. J. Camp. Physiol. Psychol. 88, 300–323.

    CAS  Google Scholar 

  • Vanderwolf C. H. and Baker G. B. (1986) Evidence that serotonin mediates noncholinergic neorcortical low voltage fast activity, noncholinergic hippocampal rhythmic slow activity, and contributes to behavior. Bruin Res. 374, 342–356.

    CAS  Google Scholar 

  • Vanderwolf C. H., Kramis R., Gillespie L. A., and Bland B. H. (1975) Hippocampal rhythmical slow activity and neocortical low voltage fast activity: relation to behavior. In: The Hippocampus: Neurophysiology and Behavior (Isaacson R. L. and Pribram K. H., eds.), Plenum, New York, pp. 101–128.

    Google Scholar 

  • Vanderwolf C. H., Leung L. W. S., and Stewart D. J. (1985) Two afferent pathways mediating hippocampal rhythmical slow activity, in Electrical Activity of the Archicortex (Buzsaki G. and Vanderwolf, C. H., eds.), Akademial Kiado, Budapest, pp. 47–66.

    Google Scholar 

  • VanHoesen G, W. (1982) The parahippocampal gyrus: New observations regarding its cortical connections in the monkey. Trends Neurosci. 5, 345–350.

    Google Scholar 

  • van Lith G. H. M., van Marle G. W., and Vijfvinkel-Bruinenga S. (1979) Two disadvantages of a television system as pattern stimulator for evoked potentials. Dot. Ophthalmol. 48, 261–266.

    Google Scholar 

  • Vaughan, H. G. (1966) The perceptual and physiologic significance of visual evoked responses recorded from the scalp in man, in Clinical Electroretinography (Burian H. M. and Jacobson J. H., eds.), Oxford, Pergamon Press, pp. 203–223.

    Google Scholar 

  • Vaughan H. G. (1969) The relationship of brain activity to scalp recordings of event related potentials, in Average Evoked Potentials (Donchin E. and Lindsley D. B., eds.), NASA, Washmgton,DC, pp. 45–75.

    Google Scholar 

  • Vaughan H, G. (1974) The analysis of scalp-recorded potentials. in Bioelectric Recorclmg Techniques, Part B. Electroencephalography and human brain potentials (Thompson R. F. and Patterson M. M., eds.), Academic, New York pp. 158–207.

    Google Scholar 

  • Vaughan H. G. (1975) The motor potentials, in Handbook of Electroencephalography and Clwcal Neurophysiology, vol. 8A Elsevier, Amsterdam, pp. 86–92.

    Google Scholar 

  • Vaughan H.G, and Gross E. G. (1969) Cortical responses to light m unanesthetized monkeys and their alteration by visual system lesions. Exp. Brain Res. 8, 19–36.

    PubMed  Google Scholar 

  • Vaughan H. G., Jr., (1969) The relationship of brain activity to scalp recordings of event-related potentials, in Average Evoked Potentials (Donchin E. and Lindsley D. B., eds.), NASA Sp-191, Washington DC, pp. 45–94.

    Google Scholar 

  • Vaughan H. G., Jr. and Hull R. C. (1965) Functional relation between stimulus intensity and photically evoked cerebral responses in man. Nature 206, 720–722.

    PubMed  Google Scholar 

  • Vaughan H. G., Jr. and Ritter W. (1970) The sources of auditory evoked responses recorded from the human scalp. Electroencephalogr. Clin. Neurophysiol. 28, 360–367.

    PubMed  Google Scholar 

  • Vaughan H. G., Jr., Bossom J., and Gross E. G. (1970) Cortical motor potential in monkeys before and after upper limb deafferentation. Exp. Neurol. 26, 253–262.

    PubMed  Google Scholar 

  • Vaughan H. G., Jr., Costa L.D., and Ritter W. (1968) Topography of the human motor potential. Electroencephalogr. Clin. Neurophysiol. 25, l–10.

    Google Scholar 

  • Velasco F., Velasco M., Cepeda C., and Munoz H. (1980) Wakefulness-sleep modulation of cortical and subcortical somatic evoked potentials. Electroencephalogr. Clin. Neurophysiol. 48, 64–72.

    PubMed  CAS  Google Scholar 

  • Velasco M., Velasco F., Romo R., and Alamanza S. (1984) Subcortical correlates of the auditory brain stem potentials in the monkey: Bipolar EEG and multiple unit activity responses. Int. J. Neurosci. 22, 235–252.

    PubMed  CAS  Google Scholar 

  • Velasco M., Velasco R., Almanza X., and Coats A. C. (1982) Subcortical correlates of the auditory brain stem potentials in man: Bipolar EEG and multiple unit activity and electrical strmulation. Electroencephalogr. Clan. Neurosphysrol. 53, 133–142.

    CAS  Google Scholar 

  • Verleger R. (1988) Event-related potentials and memory: A critique of the context updating hypothesis and an alternative interpretation of P3. Behav. Brain Sci. 11, 343–427.

    Google Scholar 

  • Verleger R. and Cohen R. (1978) Effects of certainty, modality shift and guess outcome on evoked potentials and reaction times in chronic schizophrenics. Psychol. Med 8, 81–93.

    PubMed  CAS  Google Scholar 

  • Voorn F. J., Adamse H., Kop P. F. M., and Brunia C. H. M. (1987) Hippocampal potentials related to signal stimuli in unrestrained rats, in Current Trends in Event-Related Potential Research (Johnson R., Jr., Rohrbaugh J. W., and Parasuraman R., eds.) (EEG Suppl. 40), Elsevier, Amsterdam, pp. 493–498.

    Google Scholar 

  • Walaas I. (1983) The hippocampus, in Chemical Neuroanatomy (Emson P. C., ed.), Raven, New York, pp. 337.

    Google Scholar 

  • Walter D. O., Etevenon P., Pidoux B., Trotrat D., and Guillou S. (1984) Computerized topo-EEG spectral maps: difficulties and perspectives. Neuropsychologia 11, 264–272.

    CAS  Google Scholar 

  • Walter W. G. (1964) The convergence and interaction of visual, auditory and tactile responses in human nonspecific cortex. Ann. NY Acad. Sci. 112, 320–361.

    PubMed  CAS  Google Scholar 

  • Walter W. G. (1965) Brain responses to semantic stimuli. J. Psychosom. Res. 9, 51–61.

    PubMed  CAS  Google Scholar 

  • Walter W. G. (1975) Evoked response general, in Handbook of Electroencephalography and Clinical Neurophysiology, vol. 8A, Elsevier, Amsterdam, pp. 20–32.

    Google Scholar 

  • Walter W. G., Cooper R., Aldridge V. J., McCallum W. C., and Winter A. L. (1964) Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature 203, 380–384.

    PubMed  CAS  Google Scholar 

  • Weinberg H. (1973) The contingent negative variation: its relation to feedback and expectant attention, in Event-Related Slow Potentials of the Brain: Their Relations to Behavior (McCallum W. D. and Knott J. R., eds.) Electroencephalogr. Clin. Neurophysiol. Suppl. 33), Elsevier, Amsterdam, pp. 219–228.

    Google Scholar 

  • Weinberg H. and Brlckett P. (1983) Slow magnetic fields of the brain preceding movements and speech. II Nuovo Cimento 2, 495–504.

    Google Scholar 

  • Weinberg H., Michalewski H., and Koopman R. (1976) The influence of discriminations on the form of the contingent negative variation. Neuropsychologia 14, 87–95.

    PubMed  CAS  Google Scholar 

  • Weimich M., Wise S. P., and Mauritz K. H. (1984) A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107, 385–414.

    Google Scholar 

  • Whittaker S. G. and Siegfried J. B. (1983) Origin of wavelets in the visual evoked potential. Electroencephalogr. Clin. Neurophysiol. 55, 91–101.

    PubMed  CAS  Google Scholar 

  • Wilder M. B., Farley G. R., and Starr A. (1981) Endogenous late positive component of the evoked potential in cats corresponding to P300 in humans. Science 211, 605–607.

    PubMed  CAS  Google Scholar 

  • Wilke J. T. and Lansing R. W. (1973) Variations in the motor potential with force exerted during voluntary arm movements in man. Electroencephalogr. Clrn. Neurophysiol. 35, 259–265.

    CAS  Google Scholar 

  • Williamson S. J. and Kaufman L. (1981) Biomagnetism. J, Magnet. Msg. Mat. 22, 129–202.

    Google Scholar 

  • Wise S. P. (1984) The nonprimary motor cortex and its role in the cerebral control of movement, in The Nonprimary Motor Cortex and Its Role in the Cerebra2 Control of Movement (Edelman G. M., Gall W. E., and Cowan W. M., eds.), Wiley, New York, pp. 524–555.

    Google Scholar 

  • Wolpaw J. R. (1979) Smgle unit activity vs. amplitude of the epidural evoked potential in primary auditory cortex of awake cats. Electroencephalogr. Clan. NeurophysioI. 47, 372–376.

    CAS  Google Scholar 

  • Wolpaw J. R. and Penry J. K. (1975) A temporal component of the auditory evoked response. Electroencephalogr. Clan. Neurophyslol. 39, 609–620.

    CAS  Google Scholar 

  • Wood C. C. (1982) Application of dipole localization methods to human evoked potentials. Ann. NY Acad. Sci. 388, 139–159.

    PubMed  CAS  Google Scholar 

  • Wood C. C. (1987) Generators of event-related potentials, in A. Textbook of Clinical Neurophysiology (Halhday A. M., Butler S. R., Paul R., eds.), Wiley, New York, pp. 535–568.

    Google Scholar 

  • Wood C. C. and McCarthy G. (1984) Principal component analysis of event-related potentials: Simulation studies demonstrate misallocation of variance across components. Electroencephalogr. Clin. Neurophysiol. 59, 249–260.

    PubMed  CAS  Google Scholar 

  • Wood C. C., and McCarthy G. (1985) A possible frontal lobe contribution to scalp P300. Soc. Neurosa. Abstr. 11, 879.

    Google Scholar 

  • Wood C.C. and Wolpaw J. R. (1982) Scalp distribution of human auditory evoked potentials. II. Evidence for over-lapping sources and involvement of auditory cortex. Electroencephalogr. Clin. Neurophysiol. 54, 25–38.

    PubMed  CAS  Google Scholar 

  • Wood C. C., Cohen D., Cuffin 8. N., Yarita M., and Allison T. (1985) Electrical sources in human somatosensory cortex: Identification by combined magnetic and potential recordings. Science 227, 1051–1053.

    PubMed  CAS  Google Scholar 

  • Wood C. C., McCarthy G., Allison T., Goff W. R., Williamson P. D., and Spencer D. D. (1982) Endogenous event-related potentials following temporal lobe excisions m humans. Sot. Neurosci. Abstr. 8, 976.

    Google Scholar 

  • Wood C. C., McCarthy G., Kim J. H., Spencer D. D., and Williamson P. D. (1988) Abnormalities in temporal lobe event-related potentials predict hippocampal cell loss in temporal lobe epilepsy. Society for Neuroscience Abstracts 14, 5 (Abstract).

    Google Scholar 

  • Wood C. C., McCarthy G., Squires N. K., Vaughan H. G., Woods D. L., and McCallum W. C. (1981) Anatomical and physiological substrates of event related potentials: Two case studies. Papers presented at the Sixth Int. Conf. on Event-Related Potentials, Lake Forest, Illinois.

    Google Scholar 

  • Wood C. C., Spencer D. D., Allison T., McCarthy G., Williamson P. D., and Goff W. R. (1988) Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J, Neurosurg. 68, 99–111.

    CAS  Google Scholar 

  • Woodbury J. W. (1960) Potentials in a volume conductor, in Medical Physiology and Biophysics (Ruth T. C. and Fulton J. F., eds.), Saunders, Philadelphia, pp. 83–91

    Google Scholar 

  • Woody C. D. (1967) Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals. Med. Biol. Eng., 5, 539–553.

    Google Scholar 

  • Yabe H., Mita M., Aoki N., and Mimatsu Y. (1981) Temporal depressron of EMG activity prior to a rapid voluntary movement in man. Elec-troencephalogr. Clin. Neurophysiol. (Suppl.)52, S64.

    Google Scholar 

  • Yagi A. (1981) Averaged cortical potentials (lambda responses) time-locked to onset and offset of saccades. Physiol. Psychol. 9, 318–320.

    Google Scholar 

  • Yamada T., Kimura J., Wilkinson J. T., and Kayamori R. (1983) Short-and long-latency median somatosensory evoked potentials. Arch. Neurol. 40, 215–220.

    PubMed  CAS  Google Scholar 

  • Yiannikas D. and Walsh J, C. (1983) The variation of the patterm shift visual evoked response with the size of the stimulus field. Electroencephalogr. Cltn. Neurophysiol. 55, 427–435.

    CAS  Google Scholar 

  • Yingling C. D. and Hosobuchi Y. (1984) A subcortical correlate of P300 in man. Electroencephalogr. Clin. Neurophysiol. 59, 72–76.

    PubMed  CAS  Google Scholar 

  • Zappoli R., Papini M., Briani S., Benvenutti P., and Pasquinelli A. (1975) CNV in patients with known frontal lobe lesion. Electroencephalogr. Clin. Neurophysiol. 39, 216.

    Google Scholar 

  • Zappoli R., Papini M., Briani S., Benvenuti P., and Pasquinelli A. (1976) CNV in patients with frontal lobe lesions and mental disturbances, in The Responsive Brain (McCallum W. C. and Knott J. R., eds.), Wright, Bristol, pp. 158–163.

    Google Scholar 

  • Zemon V., Kaplan E., and Ratliff F. (1986) The role of GABA-mediated intracortical inhibition in the generation of visual evoked potentials, in Evoked Potentials (Cracco R. and Bodis-Wollner I., eds.), AR Liss, New York, pp. 287–295.

    Google Scholar 

  • Zimmermann G. N. and Knott J. R. (1974) Slow potentials of the brain related to speech processing in normal speakers and stutterers Electroencephalogr. Clin. Neurophysiol. 37, 599–607.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc

About this protocol

Cite this protocol

Halgren, E. (1990). Human Evoked Potentials. In: Boulton, A.A., Baker, G.B., Vanderwolf, C.H. (eds) Neurophysiological Techniques. Neuromethods, vol 15. Humana Press. https://doi.org/10.1385/0-89603-185-3:147

Download citation

  • DOI: https://doi.org/10.1385/0-89603-185-3:147

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-185-2

  • Online ISBN: 978-1-59259-620-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics