Skip to main content

Techniques to Study Spinal-Cord, Peripheral Nerve, and Muscle Activity in Freely Moving Animals

  • Protocol
Neurophysiological Techniques

Part of the book series: Neuromethods ((NM,volume 15))

Abstract

In the past dozen years, newly developed chronic recording techniques have made possible the direct study of peripheral nerve and spinal cord function in conscious, freely moving animals. Two complementary approaches were introduced in the mid-1970s: floating microelectrodes to record the activity of single neurons, and nerve cuff electrodes to record the activity of neuronal populations. Thus far, these techniques have been largely implemented in two areas of research: the functional roles in the control of posture and movement of several kinds of peripheral neurons have been assessed by recording their activity patterns in alert, unrestrained animals, and contrasting these to the activity present during stereotyped movements in more classical decerebrate, anesthetized, or otherwise reduced preparations; and the development, plasticity, and disorders of the neuromuscular system have begun to be studied in longitudinal experiments carried out in individual animals. Important new insights on the function of the peripheral nervous system have already emerged through the use of these novel experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham L. D., Marks W. B., and Loeb G. E. (1985) The distal hindlimb musculature of the cat. Cutaneous reflexes during locomotion. Exp.Bruin Res. 58, 594–603.

    Article  CAS  Google Scholar 

  • Aguayo A., Nair C. P. V., and Midley R. (1971) Experimental progressiveneuropathy m the rabbit. Arch. Neurol 24, 358–364.

    PubMed  CAS  Google Scholar 

  • Alexander R. McN. and Bennet-Clarke H. C. (1977) Storage of elasticstrain energy in muscle and other tissues. Nature 265, 114–117

    Article  PubMed  CAS  Google Scholar 

  • Altman K. V., and Plonsey R. (1986) A two-part model for determiningthe electromagnetic and physiologic behavior of cuff electrode nervestimulators. IEEE Trans. Biomed. Eng. 33, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Amos A., Armstrong D. M., and Marple-Horvat D. E. (1987) A ladderparadigm for studying skilled and adaptive locomotion in the cat. J.Neurosct. Methods 20, 323–340.

    Article  CAS  Google Scholar 

  • Barnes G. R. G. and Pinder, D. N. (1974) In vivo tendon and bone strainmeasurement and correlation. J. Biomech. 7, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Bloedel J. R. and Courville J. (1981) Cerebellar afferent systems, in Handbook of Physiology, Vol. II: Motor Control (Brooks V. B., ed.), Am.Physiol. Sot., Bethesda, Maryland, pp. 735–830.

    Google Scholar 

  • Bromberg M. B. and Fetz E. E. (1977) Responses of single units in cervicalspinal cord of alert monkeys. Exp. Neurol. 55, 469–482.

    Article  PubMed  CAS  Google Scholar 

  • Buckett J. R., Braswell S. D., Peckham P. H., Thorpe G. B., and Keith M.W. (1985) A portable functional neuromuscular stimulation system.IEEE 7th Annual Conf in Med. Biol. Sot., 314–317.

    Google Scholar 

  • Burke R. E., Levine D. N., Tsairis P., and Zajac F. E. (1973) Physiologicaltypes and histochemical profiles in motor units of the cat gastrocnemius.J, Physiol. 234, 723–748.

    CAS  Google Scholar 

  • Cavagna G. A. (1977) Storage and utilization of elastic energy in skeletalmuscle. Exerc. Sport Sci. Rev. 5, 89–129.

    Article  PubMed  CAS  Google Scholar 

  • Cleland C. L. and Hoffer J. A. (1986a) Activity patterns of spinocerebellarneurons during normal locomotion, in Neurobiology of VertebrateLocomotion (Grillner S., Stein I’. S. G., Stuart D. G., Forssberg H., and Herman R., eds), Macmillan, London, pp. 705–723.

    Google Scholar 

  • Cleland C. L. and Hoffer J. A. (1986b) Chronic recordings from neurons inthe spinal cord of freely moving cats: cutaneous spinocerebellarneurons. Neurosci. Lett. [Suppl.] 26, S364.

    Google Scholar 

  • Cleland C. L. and Hoffer J. A. (1987) Activity of ventral spinocerebellartract neurons chronically recorded in the spinal cord of awake, freelymoving cats, in Motor Control (Gantchev G. N., Dimitrov B., and Gatev P., eds.), Plenum, New York, pp. 155–158.

    Google Scholar 

  • Collins J. G. (1985) A technique for chronic extracellular recording ofneuronal activity in the dorsal horn of the lumbar spinal cord in drugfree, physiologically intact, cats. J. Neurosci. Methods 12, 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Creed R. S., Denny-Brown D., Eccles J. C., Liddell E. G. T., and Sherrington C. S. (1932; reprinted 1972) Reflex Activity of the Spinal Cord(Clarendon Press, Oxford).

    Google Scholar 

  • Crago P. E., Mortimer J. T., and Peckham P. H. (1980) Closed-loop controlof force during electrical stimulation of muscle. IEEE Trans. Biomed.Eng. 27, 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Crago P. E., Chizeck H. J., Neuman M. R., and Hambrecht F. T. (1986)Sensors for use with functional neuromuscular stimulation. IEEETrans. Biomed. Eng. 33, 256–268.

    Article  CAS  Google Scholar 

  • Cybulski G. R., Penn R. D., and Jaeger T. J. (1984) Lower extremityfunctional neuromuscular stimulation in cases of spinal cord injury.Neurosurgery 15, 132–146.

    Article  PubMed  CAS  Google Scholar 

  • Davis L. A., Gordon T., Hoffer J. A., Jhamandas J., and Stein R. B. (1978)Compound action potentials recorded from mammalian peripheralnerves following ligation or resuturing. J, Physiol, 285, 543–559.

    CAS  Google Scholar 

  • Duysens J. and Stein R. B. (1978) Reflexes induced by nerve stimulation inwalking cats with implanted cuff electrodes. Exp. Brain Res. 32, 213–224.

    Article  PubMed  CAS  Google Scholar 

  • Ebly E. M. (1986) “Chronic recordings of pulmonary stretch receptoractivity in neonatal lambs.” M. Sc. thesis, University of Calgary, Calgary, Alberta, Canada.

    Google Scholar 

  • Ebly E. M., Cleland C. L., Hoffer J. A., and Maloney J. E. (1986a) Chronicrecordings of pulmonary stretch receptor activity during developmentin the neonatal lamb. Soc. Neurosci. Abstr. 12, 303.

    Google Scholar 

  • Ebly E. M., Hoffer J. A., and Maloney J. E. (1986b) Chronic recordings ofpulmonary afferent activity from the vagus nerve in naturally breathinglambs. Can. J. Physiol. Pharmacol. 64, Aix.

    Google Scholar 

  • Edell, D. J. (1986) A peripheral nerve information transducer foramputees: long-term multichannel recordings from rabbit peripheralnerves. IEEE Trans. Biomed. Eng. 33, 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Evarts E. V. (1968) A technique for recording activity of subcorucalneurons in moving animals. Electroencephalogr. Clin. Neurophysiol. 24, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Frank K. (1968) Some approaches to the techmcal problem of chronicexcitation of peripheral nerves. Ann. Otol., Rhinol. and Laryngol. 77, 761–772.

    CAS  Google Scholar 

  • Ghez C. and Vicario D. (1978) The control of rapid limb movement in thecat. I. Response latency. Exp. Brum Res. 33, 173–189.

    CAS  Google Scholar 

  • Gillespie M. J., and Stein R. B. (1983) The relationship between axondiameter, myelin thickness and conduction velocity during atrophyof mammalian peripheral nerves. Brain Res. 259, 41–56.

    Article  PubMed  CAS  Google Scholar 

  • Glenn, L. L., and Dement, W. (1981) Membrane potential and inputresistance of cat spinal motoneurons in wakefulness and sleep. Behav.Brain Res. 2, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Glenn L. L., Whitney J. F., Rewitzer J. S., Salamone J. A., and Mariash S. A. (1988) Method for stable intracellular recordings of spinal alphamotoneuronsduring treadmill walking in awake, intact cats. Brain Res. 439, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Glenn W. W. L. and Phelps M. L. (1985) Diaphragm pacing by electricalstimulation of the phrenic nerve. Neurosurgery 17, 974–984.

    Article  PubMed  CAS  Google Scholar 

  • Gordon T., Hoffer J, A., Jhamandas J., and Stein R. B. (1980) Long-termeffects of axotomy on neural activity during cat locomotion. J, Physiol. 303, 243–263.

    CAS  Google Scholar 

  • Goslow G. E., Reinking R. M., and Stuart D. G. (1973) The cat step cycle:hind limb joint angles and muscle lengths during unrestrainedlocomotion. J. Morphol. 141, 1–42.

    Article  PubMed  Google Scholar 

  • Grandjean P. A., and Mortimer J. T. (1986) Recruitment properties ofmonopolar and bipolar epimysial electrodes. Ann. Biomed. Eng. 14, 53–66.

    Article  PubMed  CAS  Google Scholar 

  • Gregor R. J., Hager C. L., and Roy R. R. (1981) In viva muscle forces duringunrestrained locomotion. J. Biomech. 14, 489.

    Article  Google Scholar 

  • Griffiths R. I. (1987) Ultrasound transit time gives direct measurement ofmuscle fiber length in vivo. J. Neurosci. Methods 21, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths R. I, and Hoffer J. A. (1987) Muscle fibers shorten when the wholemuscle is being stretched in the “yield phase” of the freely walkingcat. Soc. Neurosci. Abstr. 13, 1214.

    Google Scholar 

  • Hagbarth K. A., Hongell A., and Wallin G. (1970) The effect of gammafibre block on afferent muscle nerve activity during voluntary contractions.Acta Physiol. Scand. 79, 27–28.

    Google Scholar 

  • Hambrecht F. T., (1985) Control of neural prostheses, in: Electromyographyand Evoked Potentials (Struppler A., and Weindl A., eds.), Springer, Berlin, pp. 6467.

    Google Scholar 

  • Hambrecht F. T. and Reswick J. B. (eds.) (1977) Functional ElectricalStimulation: Applications in Neural Prostheses. Biomed. Engng. and Instrum.Ser. 3, Marcel Dekker, New York.

    Google Scholar 

  • Hatta I., Sugi H., and Tamura Y. (1988) Stiffness changes in frog skeletalmuscle during contraction recorded using ultrasonic waves. J. Physiol. 403, 193–209.

    PubMed  CAS  Google Scholar 

  • Hoffer J. A. (1975) Long-term Peripheral Nerve Activity during Behaviour in theRabbit: The Control of Locomotion, Publ. No. 76-8530, University Micro films, Ann Arbor, Michigan.

    Google Scholar 

  • Hoffer J. A. and Cleland C. L. (1986) Alternative approaches to recordingactivity of spinal cord neurons in behaving animals. J. Neurosci.Methods 17, 198–199.

    Article  Google Scholar 

  • Hoffer J. A. and Li T. (1988) Real-time processing of cutaneous nerveactivity to obtain contact force information. Soc. Neurosci. Abstr. 13, 64.

    Google Scholar 

  • Hoffer J. A. and Loeb G. E. (1980) Implantable electrical and mechanicalinterfaces with nerve and muscle. Ann. Biomed. Eng. 8, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Hoffer J. A. and Loeb G. E. (1983) A technique for reversible fusimotorblockade during chronic recording from spindle afferents in walkingcats. Exp. Bruin. Res. Suppl. 7, 272–279.

    Google Scholar 

  • Hoffer J. A. and Marks W. B. (1976) Long term peripheral nerve activityduring behavior in the rabbit. Adv. Behuv. Biol. 18, 767–768.

    Google Scholar 

  • Hoffer J. A. and Smkjaer, T. (1986) A natural “force sensor” suitable forclosed-loop control of functional neuromuscular stimulation. Proc.2nd. Vienna Int’I Workshop on Functional Electrostimulation, pp. 47–50.

    Google Scholar 

  • Hoffer J. A. and Sinkjaer T. (1987) Decerebration causes increased spindlesensitivity in triceps surae muscles of standing cats. Neuroscience 22, S659.

    Google Scholar 

  • Hoffer J. A., Leonard T. R., and Spence N. S. (1983) A method formeasuring muscle stiffness in unrestrained cats. Soc. Neurosci. Abstr. 9, 470.

    Google Scholar 

  • Hoffer J. A., Loeb G. E., and Pratt C. A. (1981a) Single unit conductionvelocities from averaged nerve cuff electrode records in freely movingcats. J. Neurosci. Methods 4, 211–225.

    Article  PubMed  CAS  Google Scholar 

  • Hoffer J. A., Marks W. B., and Rymer W. Z. (1974) Nerve fiber activityduring normal movements. Abstr. Soc. Neurosci., p. 258.

    Google Scholar 

  • Hoffer J. A., Stein R. B. and Gordon T. (1979) Differential atrophy ofsensory and motor fibers followmg section of cat peripheral nerves.Brain Res 178, 347–361.

    Article  PubMed  CAS  Google Scholar 

  • Hoffer J. A., Caputi A. A., Pose I. E. and Griffiths R. I. Roles of muscleactivity and load on the relationship between muscle spindle lengthand whole muscle length in the freely walking cat. Prog. Brain Res., inpress.

    Google Scholar 

  • Hoffer J. A., Leonard T. R., Cleland C. L., and Sinkjaer T. Segmentalreflex action in normal and decerebrate cats. J. Neurophysiol., in press.

    Google Scholar 

  • Hoffer J. A., Loeb G. E., Marks W. B., O’Donovan M. J., Pratt C. A., and Sugano N. (1987a) Cat hindlimb motoneurons during locomotion. I.Destination, axonal conduction velocity and recruitment threshold.J. Neurophyslol. 57, 510–529.

    CAS  Google Scholar 

  • Hoffer J. A., Sugano N., Loeb G. E., Marks W. B., O’Donovan M. J., and Pratt C. A. (1987b) Cat hindlimb motoneurons during locomotion. II.Normal activity patterns. J. Neurophysiol. 57, 530–553.

    PubMed  CAS  Google Scholar 

  • Hoffer J. A., Loeb G. E., Sugano N., Marks W. B., O’Donovan M. J., and Pratt C. A. (1987c) Cat hindlimb motoneurons during locomotion. III. Functional segregation in sartorius. J. Neurophysiol. 57, 554–562.

    PubMed  CAS  Google Scholar 

  • Hoffer J. A., O’Donovan M. J., Pratt C. A., and Loeb G. E. (1981b)Discharge patterns of hindhmb motoneurons during normal catlocomotion Science 213, 466–468

    Article  PubMed  CAS  Google Scholar 

  • Hubel D. H. (1957) Tungsten microelectrode for recording from singleunits. Science 125, 549–550.

    Article  PubMed  CAS  Google Scholar 

  • Hulliger M. (1984) The mammalian muscle spindle and its central action.Rev. Physiol Biochem Pharmacol. 101, 1–110.

    Article  PubMed  CAS  Google Scholar 

  • Hulliger M., Horber F., Medved A., and Prochazka A. (1987) An experimentalsimulation method for iterative and interactivereconstruction of unknown (fusimotor) inputs contribution toknown (spindle afferent) responses. J. Neurosci. Methods 21, 225–238.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey D. R. (1970) A chronically implantable multiple microelectrodesystem with independent control of electrode positions. Electroencephalogr.Clan. Neurophysiol. 29, 616–620.

    Article  CAS  Google Scholar 

  • Johansson R. and Vallbo A. (1979) Tactile sensibility in the human hand:relative and absolute densities of four types of mechanosensitiveunits in glabrous skin. J. Physiol. 286, 283–300.

    PubMed  CAS  Google Scholar 

  • Johansson R. and Westling G. (1987) Signals in tactile afferents from thefingers eliciting adaptive motor responses during precision grip. Exp.Brain Res. 66, 141–154.

    Article  PubMed  CAS  Google Scholar 

  • Julien C. and Rossignol S. (1982) Electroneurographic recordings withpolymer cuff electrodes m paralyzed cats. J. Neurosci. Methods 5, 267–272.

    Article  PubMed  CAS  Google Scholar 

  • Kear M. and Smyth R N. (1975) A method for recording tendon strain insheep during locomotion. Acta Orthop. Stand 46, 896–905.

    Article  CAS  Google Scholar 

  • Krarup C. and Loeb G. E. (1987) Multielectrode nerve cuffs reveal growthand maturation rates of group-identified regenerating axons. MuscleNerve 10, 189–191.

    Google Scholar 

  • Komi P. V., Jarvinen M., and Salonen M. (1984) In vivo measurements ofachilles tendon force in man. Med. Sci. Sports Exerc. 16, 165.

    Google Scholar 

  • Lemon R., (1984) Methods for Neuronal Recordrng in Conscious Animals.IBRO Handbook Series: Methods in the Neurosciences, Vol. 4. (Wiley, Chichester).

    Google Scholar 

  • Lochner F. K., Milne D. W., Mills E. J. and Groom J. J. (1980) In vivo and invitro measurement of tendon strain in the horse. Am. J. Vet. Res. 41, 1929–1937.

    PubMed  CAS  Google Scholar 

  • Loeb G. E. (1987) Hard lessons in motor control from the mammalianspinal cord. Trends Neurosci. 10, 108–113.

    Article  Google Scholar 

  • Loeb G. E. and Gans C. (1986) Electromyography for Experimentulists, Univ.Chicago Press, Chicago.

    Google Scholar 

  • Loeb, G. E. and Hoffer, J. A. (1985) Activity of spindle afferents from catanterior thigh muscles. II. Effects of fusimotor blockade. J. Neurophysiol. 54, 565–577.

    PubMed  CAS  Google Scholar 

  • Loeb G. E., Bak M.J., Duysens J. (1977a) Long-term unit recording fromsomatosensory neurons in the spinal ganglia of the freely walkingcat. Science 197, 1192–1194.

    Article  PubMed  CAS  Google Scholar 

  • Loeb G. E., Bak M. J., Salcman M., and Schmidt E. M. (1977b) Parylene asa chronically stable, reproducible microelectrode insulator. IEEETrans. Biomed. Eng. 24, 121–128.

    Article  CAS  Google Scholar 

  • Loeb, G. E., Hoffer, J. A. and Pratt, C. A. (1985a) Activity of spindleafferents from cat anterior thigh muscles. I. Identification and patternsduring normal locomotion. J. Neuuophysiol. 54, 549–564.

    CAS  Google Scholar 

  • Loeb, G. E., Hoffer, J. A. and Marks, W. B. (1985b) Activity of spindleaferents from cat anterior thigh muscles. III. Effects of external stimuli.J, Neurophysiol. 54, 578–591.

    CAS  Google Scholar 

  • Loeb G. E., Marks W. B., and Hoffer J. A. (1987) Cat hindlimbmotoneurons during locomotion. IV. Participation in cutaneous reflexes.J. Neurophysiol. 50, 563–573.

    Google Scholar 

  • Loeb G. E., Walmsley B., and Duysens J. (1980) Obtaining proprioceptiveinformation from natural limbs: implantable transducers vs. somatosensoryneuron recordings, in Physical Sensors for Biomedical Applications.Proc. of Workshop on Sohd State Physical Sensors for BiomedicalApplication, (Neuman M. R. ed.) Boca Raton, Florida, CRC, 1980, p, 135–149.

    Google Scholar 

  • McNeal D. R. and Bowman B. R. (1985) Selective activation of musclesusing peripheral nerve electrodes. Med. Biol. Eng. Comput. 23, 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson J. M., Lywood D. W., and van Eyken A. (1987) A system forthe analysis of posture and stance in quadrupeds. J. Neurosci. Methods 20, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Marks W. 8. (1965) Some methods for simultaneous multiunit recording.Proc. Symp. on Informat. Processmg in Sight Sensory Systems, (Nye P. W. ed.), Caltech, Pasadena, California, pp. 200–206.

    Google Scholar 

  • Marks W. B. and Loeb G. E. (1976) Action currents, internodal potentialsand extracellular records of myelinated mammalian nerve fibers derivedfrom node potentials. Biophys. J. 16, 655–668.

    Article  PubMed  CAS  Google Scholar 

  • Marshall K. W., Tatton W. G., and Bruce I. C. (1984) A technique forrecording from single neurons in the spinal cord of the awake rat. J.Neurosci. Methods 10, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Matthews P. B, C. and Rushworth G. (1957) The relative sensitivity ofmuscle nerve fibres to procaine. J. Physiol. 135, 263–269.

    PubMed  CAS  Google Scholar 

  • Milner, T. E. and Hoffer, J. A. (1987) Long-term peripheral nerve andmuscle recordings from normal and dystrophic mice. J. Neurosci.Methods 19, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Morales F. R. and Chase M. H. (1981) Postsynaptic control of lumbarmotoneuron excitability durmg active sleep in the chronic cat. BrainRes. 225, 279–295.

    CAS  Google Scholar 

  • Mortimer J. T. (1981) Motor Prostheses, in Handbook of Physiology, TheNervous System II: Motor Control (Brooks V. B., ed.) Am. Physiol. Soc., Bethesda, Maryland, pp. 155–187.

    Google Scholar 

  • Naples G. G., Mortimer J. T., Schemer A. and Sweeney J. D. (1988) Aspiral nerve cuff electrode for peripheral nerve stimulation. IEEETrans. Biomed. Eng. 35, 905–916.

    Article  CAS  Google Scholar 

  • Newman S., Road J., Bellemare F., Clozel J. P., Lavigne C. M., Grassino A. (1984) Respiratory muscle length measured by sonomicrometry. J,Appl. Physiol. 56, 753–764.

    CAS  Google Scholar 

  • O’Donovan M. J., Hoffer J. A., and Loeb G. E. (1983) Physiologicalcharacterization of motor unit properties in intact cats. J. Neurosci.Methods 7, 137–149.

    Article  PubMed  Google Scholar 

  • Otten E. (1988) Concepts and models of functional architecture in skeletalmuscle. Exerc. Sport Sci. Rev. 16, 89–137.

    Article  PubMed  CAS  Google Scholar 

  • Paintal A. S. (1953) The conduction velocities of respiratory and cardiovascularafferent fibres in the vagus nerve. J. Physiol. 121, 341–359.

    PubMed  CAS  Google Scholar 

  • Paintal A. S. (1966) The influence of diameter of medullated nerve fibresof cats on the rising and falling phases of the spike and its recovery. J.Physiol. 184, 791–811.

    PubMed  CAS  Google Scholar 

  • Philippson M. (1905) L’autonomie et la centralisation dans le systèmenerveux des animaux. Trav. Lab. Physiol. Inst. Solvay, Bruxelles 7, 1–208.

    Google Scholar 

  • Prochazka A. (1981) Muscle spindle function during normal movement.Inf. Rev. Physiol. Neurophysiol. IV, 47–90.

    Google Scholar 

  • Prochazka A. (1984) Chronic techniques for studying neurophysiology ofmovement in cats, in Methods for Neuronal Recording in ConsciousAnimals. IBRO Handbook Series: Methods in the Neurosciences, vol. 4,(Wiley, Chichester) pp. 113–128.

    Google Scholar 

  • Prochazka A., Westerman R., and Ziccone S. (1976) Discharges of singlehindlimb afferents in the freely moving cat. J, Neurophysiol. 39, 1090–1104.

    CAS  Google Scholar 

  • Prochazka A., Hulliger M., Zangger P., and Appenteng K. (1985) “Fusimotor set”:new evidence for alpha-independent control of gammamotoneuronsduring movement in the awake cat. Brain Res. 339, 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Prochazka A., Tate K., Westerman R., and Ziccone S. (1974) Remotemonitoring of muscle length and EMG in unrestrained cats. Electroencephalogr. Clin. Neurophysiol. 37, 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Rack P. M. H. and Westbury D. R. (1984) Elastic properties of the catsoleus tendon and their functional importance. J. Physiol. 347, 479–495.

    PubMed  CAS  Google Scholar 

  • Rushmer R. F., Franklin D., and Ellis R. (1956) Left ventricular dimensionsrecorded by sonocardiometry. Circ. Res. 4, 684–688.

    PubMed  Google Scholar 

  • Salcman M. and Bak M. J, (1973) Design, fabrication and in vivo behaviorof chronic recording intracortical electodes.IEEE Trans. Biomed. Eng. 20, 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E. M. (1983) Parylene as an electrode insulator: a review. J,Electrophysiol. Tech. 10, 19–29.

    Google Scholar 

  • Schmidt E. M., Bak M. J., and McIntosh J S. (1976) Long-term chronicrecording from cortical neurons. Exp. Neurol. 52, 496–506.

    Article  PubMed  CAS  Google Scholar 

  • Sinkjaer T. and Hoffer J. A. (1987a) A computer-controlled system toperturb the ankle joint of freely standing cats trained to maintain agiven force. J. Neurosci. Methods 21, 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Sinklaer T. and Hoffer J. A. (1987b) Blocking antagonist nerve reduces theamplitude of the short-latency stretch reflex response in triceps suraemuscles of cats. Soc. Neurosci. Abstr. 13, 717.

    Google Scholar 

  • Sinkjaer T. and Hoffer J. A. Factors determining segmental reflex action innormal and decerebrate cats. J, Neurophysiol., in press.

    Google Scholar 

  • Stein R. B. and Oğuztöreli M. N. (1978) The radial decline of nerveimpulses in a restricted cylindrical extracellular space. Biol. Cybern. 28, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Stein R. B. and Pearson K. G. (1971) Predicted amplitude and form ofextracellularly recorded action potentials from unmyelinated nervefibers. J. Theor. Biol. 32, 539.

    Article  PubMed  CAS  Google Scholar 

  • Stein R. B., Charles D., Davis L., Jhamandas J., Mannard A., and Nichols T. R. (1975) Principles underlying new methods for chronic neuralrecording. Can. J. Neural. Sci. 2, 235–244.

    CAS  Google Scholar 

  • Stein R. B., Charles D., Gordon T., Hoffer J. A., and Jhamandas J. (1978)Impedance properties of metal electrodes for chronic recording frommammalian nerves. IEEE Trans. 25 532–537.

    CAS  Google Scholar 

  • Stein R. B., Nichols T. R., Jhamandas J., Davis L. A. and Charles D. (1977)Stable long-term recordings from cat peripheral nerves. Brain Res. 128, 21–38.

    Article  PubMed  CAS  Google Scholar 

  • Stein R. B., Charles D., Hoffer J. A., Arsenault J., Davis L. A., Moorman S., and Moss B. (1980a) New approaches to controlling powered armprostheses, particularly by high-level amputees. Bull. Prosth. Res. 17, 51–62.

    Google Scholar 

  • Stein R. B., Gordon T., Hoffer J. A., Davis L. A., and Charles D. (1980b)Long-term recordings from cat peripheral nerves during degenerationand regeneration: Implications for human nerve repair andprosthetics, in Nerve Repair: Its Clinical and Experimental Basis (Jewett D. L. and McCarroll H. R., eds.), C. V. Mosby, St. Louis, pp. 166–176.

    Google Scholar 

  • Strumwasser F. (1958) Longterm recording from single neurons in thebrains of unrestrained animals. Science 127, 468–470.

    Article  Google Scholar 

  • Stuart D. G. and Enoka R. M. (1983) Motoneurons, motor units and thesize principle, in The Clinical Neurosciences (Rosenberg R. N., ed), Churchill Livingstone, New York, pp. 471–517.

    Google Scholar 

  • Sunderland S. (1968) Nerves and Nerve Injuries. Livingstone, London.

    Google Scholar 

  • Sweeney J. D. and Mortimer J. T. (1986) An asymmetric two electrode cufffor generation of unidirectionally propagated action potentials. IEEE Trans. Biomed. Eng. 33, 541–549.

    Article  PubMed  CAS  Google Scholar 

  • Tamura Y., Hatta I., Matsuda T., Sugi H., and Tsuchiya T. (1982) Changesin muscle stiffness during contraction recorded using ultrasonicwaves. Nature 299, 631–633.

    Article  PubMed  CAS  Google Scholar 

  • Tasaki I. (1964) A new measurement of action currents developed bysingle nodes of Ranvier. J. Neurophysiol. 27, 1199–1210.

    PubMed  CAS  Google Scholar 

  • Thoma H., Frey M., Stöhr H., Gruber H., and Holle J. (1984) Epineuralelectrode implantation for electrically induced mobilization of paraplegics.Artif. Organs 8, 384.

    Google Scholar 

  • Troyk P. R., Jaeger R. J., Haklin M., Poyezdala J., and Bajzek T. (1986)Design and implementation of an implantable goniometer. IEEETrans. Biomed. Eng. 33, 215–221.

    Article  CAS  Google Scholar 

  • Wall P. D. and Gutnick M. (1974) Ongoing activity in peripheral nerves:the physiology and pharmacology of impulses originating from aneuroma. Exp. Neurol. 43, 580–593.

    Article  PubMed  CAS  Google Scholar 

  • Walmsley B., Hodgson J. A., and Burke R. E. (1978) Forces produced bysoleus and medial gastrocnemius muscles during locomotion in freelymoving cats. J. Neurophysiol. 41, 1203–1216.

    PubMed  CAS  Google Scholar 

  • Weissman A. and Schwartz E. (1981) A flexible high density multichannelelectrode array for long-term chronic implantation. Bram Res. Bull. 6, 543–546.

    Article  CAS  Google Scholar 

  • Wolpaw J. R. (1987) Operant conditioning of primate spinal reflexes: theH-reflex. J, Neurophysrol. 57, 443–459.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc

About this protocol

Cite this protocol

Hoffer, J.A. (1990). Techniques to Study Spinal-Cord, Peripheral Nerve, and Muscle Activity in Freely Moving Animals. In: Boulton, A.A., Baker, G.B., Vanderwolf, C.H. (eds) Neurophysiological Techniques. Neuromethods, vol 15. Humana Press. https://doi.org/10.1385/0-89603-185-3:65

Download citation

  • DOI: https://doi.org/10.1385/0-89603-185-3:65

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-185-2

  • Online ISBN: 978-1-59259-620-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics