Skip to main content

Synchronization, Transformation, and Cryopreservation of Suspension-Cultured Cells

  • Protocol
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 323))

Abstract

We have recently described the selection of rapidly dividing Arabidopsis cell suspension cultures MM1 and MM2d that provide a powerful platform for plant cell-cycle research. Here we provide detailed protocols and procedures to achieve high levels of synchronization, either by starving the cell cultures of sucrose or by applying the toxin aphidicolin. Cell-cycle activity during cell-cycle reentry (starvation-induced synchrony) or further cell-cycle progression (aphidicolin-induced synchrony) can be conveniently followed by using various validation procedures, such as determination of labeling index and metaphase/anaphase index or flow cytometry. We also describe a procedure that allows clonal transformed cell-suspension lines to be produced using Agrobacterium-mediated transformation, and an optimized and straightforward method for the cryopreservation and recovery of both parental and transformed lines which is applicable both to Arabidopsis and the tobacco BY2 cell lines. Cell-cycle synchronization capacity of the parental lines is maintained after both transformation and recovery from cryopreservation. The techniques described here require no specialized equipment and are suitable for routine laboratory use, greatly facilitating the handling and maintenance of cell cultures. The ability to store easily large numbers of transformed lines opens the possibility of using Arabidopsis cell suspension cultures for future high-throughput cell-cycle analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gould, A. R. (1984) Control of the cell cycle in cultured plant cells. CRC Crit. Rev. Plant Sci. 1, 315–344.

    Article  Google Scholar 

  2. Amino, S., Fujimura, T., and Komamine, A. (1983) Synchrony induced by double phosphate starvation in a suspension-culture of Catharanthus roseus. Physiol. Plant. 59, 393–396.

    Article  CAS  Google Scholar 

  3. King, P. J., Mansfield, K. J., and Street, H. E. (1973) Control of growth and cell division in plant cell suspension cultures. Can. J. Bot. 51, 1807–1823.

    Article  Google Scholar 

  4. Kodama, H., Ito, M., Hattori, T., Nakamura, K., and Komamine, A. (1991) Isolation of genes that are preferentially expressed at the G1/S boundary during the cell cycle in synchronized cultures of Catharanthus roseus cells. Plant Physiol. 95, 406–411.

    Article  CAS  PubMed  Google Scholar 

  5. Nishida, T., Ohnishi, N., Kodama, H., and Komamine, A. (1992) Establishment of synchrony by starvation and readdition of auxin in suspension-cultures of Catharanthus roseus cells. Plant Cell Tissue Organ Cult. 28, 37–43.

    Article  CAS  Google Scholar 

  6. Riou-Khamlichi, C., Huntley, R., Jacquard, A., and Murray, J. A. H. (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283, 1541–1544.

    Article  CAS  PubMed  Google Scholar 

  7. Riou-Khamlichi, C., Menges, M., Healy, J. M., and Murray, J. A. H. (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol. Cell. Biol. 20, 4513–4521.

    Article  CAS  PubMed  Google Scholar 

  8. Menges, M. and Murray, J. A. H. (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J. 30, 203–212.

    Article  CAS  PubMed  Google Scholar 

  9. Fukuda, H., Ito, M., Sugiyama, M., and Komamine, A. (1994) Mechanisms of the proliferation and differentiation of plant cells in cell culture systems. Int. J. Dev Biol. 38, 287–299.

    CAS  PubMed  Google Scholar 

  10. Glab, N., Labidi, B., Qin, L. X., Trehin, C., Bergounioux, C., and Meijer, L. (1994) Olomoucine, an inhibitor of the cdc2/cdk2 kinases activity, blocks plant cells at the G1 to S and G2 to M cell cycle transitions. FEBS Lett. 353, 207–211.

    Article  CAS  PubMed  Google Scholar 

  11. Ito, M., Marie-Claire, C., Sakabe, M., et al. (1997) Cell-cycle-regulated transcription of A-and Btype plant cyclin genes in synchronous cultures. Plant J. 11, 983–992.

    Article  CAS  PubMed  Google Scholar 

  12. Magyar, Z., Bako, L., Bogre, L., Dedeoglu, D., Kapros, T., and Dudits, D. (1993) Active cdc2 genes and cell-cycle phase-specific cdc2-related kinase complexes in hormone-stimulated alfalfa cells. Plant J. 4, 151–161.

    Article  CAS  Google Scholar 

  13. Nagata, T., Nemoto, Y., and Hasezawa, S. (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cytol. 132, 1–30.

    Article  CAS  Google Scholar 

  14. Perennes, C., Qin, L. X., Glab, N., and Bergounioux, C. (1993) Petunia p34 (cdc2) protein kinase activity in G2/M cells obtained with a reversible cell cycle inhibitor, mimosine. FEBS Lett. 333, 141–145.

    Article  CAS  PubMed  Google Scholar 

  15. Planchais, S., Glab, N., Inze, D., and Bergounioux, C. (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett. 476, 78–83.

    Article  CAS  PubMed  Google Scholar 

  16. Roudier, F., Fedorova, E., Gyorgyey, J., Feher, A., Brown, S., Kondorosi, A., and Kondorosi, E. (2000) Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIRE-type cyclin-dependent kinase and a retinoblastoma protein. Plant J. 23, 73–83.

    Article  CAS  PubMed  Google Scholar 

  17. Breyne, P., Dreesen, R., Vandepoele, K., et al. (2002) Transcriptome analysis during cell division in plants. Proc. Natl. Acad. Sci. USA 99, 14,825–14,830.

    Article  CAS  PubMed  Google Scholar 

  18. Axelos, M., Curie, C., Mazzolini, L., Bardet, C., and Lescure, B. (1992) A protocol for transient gene-expression in Arabidopsis thaliana protoplasts isolated from cell-suspension cultures. Plant Physiol. Biochem. 30, 123–128.

    CAS  Google Scholar 

  19. Callard, D. and Mazzolini, L. (1997) Identification of proliferation-induced genes in Arabidopsis thaliana—characterization of a new member of the highly evolutionarily conserved histone H2A.F/Z variant subfamily. Plant Physiol. 115, 1385–1395.

    Article  CAS  PubMed  Google Scholar 

  20. Mathur, J., Szabados, L., Schaefer, S., et al. (1998) Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension. Plant J. 13, 707–716.

    Article  CAS  PubMed  Google Scholar 

  21. Mathur, J. and Koncz, C. (1998) Establishment and maintenance of cell suspension cultures. Methods Mol. Biol. 82, 27–30.

    CAS  PubMed  Google Scholar 

  22. May, M. J. and Leaver, C. J. (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103, 621–627.

    CAS  PubMed  Google Scholar 

  23. Fuerst, R. A. U. A., Soni, R., Murray, J. A. H., and Lindsey, K. (1996) Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana. Plant Physiol. 112, 1023–1033.

    Article  CAS  PubMed  Google Scholar 

  24. Breyne, P. and Zabeau, M. (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr. Opin. Plant Biol. 4, 136–142.

    Article  CAS  PubMed  Google Scholar 

  25. Richmond, T. and Somerville, S. (2000) Chasing the dream: plant EST microarrays. Curr. Opin. Plant Biol. 3, 108–116.

    Article  CAS  PubMed  Google Scholar 

  26. Stals, H., Casteels, P., Van Montagu, M., and Inze, D. (2000) Regulation of cyclin-dependent kinases in Arabidopsis thaliana. Plant Mol. Biol. 43, 583–593.

    Article  CAS  PubMed  Google Scholar 

  27. Menges, M., Hennig, L., Gruissem, W., and Murray, J. A. H. (2002) Cell cycle-regulated gene expression in Arabidopsis. J. Biol. Chem. 277, 41,987–42,002.

    Article  CAS  PubMed  Google Scholar 

  28. Menges, M., Hennig, L., Gruissem, W., and Murray, J. A. H. (2003) Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol. Biol. 53, 423–442.

    Article  CAS  PubMed  Google Scholar 

  29. Menges, M. and Murray, J. A. H. (2004) Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures. Plant J. 37, 635–644.

    Article  CAS  PubMed  Google Scholar 

  30. Klein, T. M., Harper, E. C., Svab, Z., Sanford, J. C., Fromm, M. E., and Maliga, P. (1988) Stable genetic-transformation of intact Nicotiana cells by the particle bombardment process. Proc. Natl. Acad. Sci. USA 85, 8502–8505.

    Article  CAS  PubMed  Google Scholar 

  31. Potrykus, I. (1991) Gene-transfer to plants—assessment of published approaches and results. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 205–225.

    Article  CAS  Google Scholar 

  32. Seki, M., Iida, A., and Morikawa, H. (1998) Transient expression of foreign genes in tissues of Arabidopsis thaliana by bombardment-mediated transformation. Methods Mol. Biol. 82, 219–225.

    CAS  PubMed  Google Scholar 

  33. Forreiter, C., Kirschner, M., and Nover, L. (1997) Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. Plant Cell 9, 2171–2181.

    Article  CAS  PubMed  Google Scholar 

  34. Gallego, M. E., Sirand-Pugnet, P., and White, C. I. (1999) Positive-negative selection and T-DNA stability in Arabidopsis transformation. Plant Mol. Biol. 39, 83–93.

    Article  CAS  PubMed  Google Scholar 

  35. Jain, S., Jain, R. K., and Wu, R. (1996) A simple and efficient procedure for cryopreservation of embryogenic cells of aromatic Indica rice varieties. Plant Cell Rep. 15, 712–717.

    Article  CAS  Google Scholar 

  36. Jekkel, Z., Heszky, L. E., and Ali, A. H. (1989) Effect of different cryoprotectants and transfer temperatures on the survival rate of hemp (Cannabis sativa L.) cell suspension in deep freezing. Acta Biol. Hung. 40, 127–136.

    CAS  PubMed  Google Scholar 

  37. Kim, S. I., Choi, H. K., Son, J. S., et al. (2001) Cryopreservation of Taxus chinensis suspension cell cultures. Cryo-Letters 22, 43–50.

    PubMed  Google Scholar 

  38. Maddox, A. D., Gonsalves, F., and Shields, R. (1983) Successful preservation of suspension-cultures of 3 Nicotiana species at the temperature of liquid-nitrogen. Plant Sci. Lett. 28, 157–162.

    Google Scholar 

  39. Withers, L. A. and Street, H. E. (1977) Freeze preservation of cultured plant cells. III. The pregrowth phase. Physiol. Plant. 39, 171–178.

    Article  Google Scholar 

  40. Chen, T. H. H., Kartha, K. K., Constabel, F., and Gusta, L. V. (1984) Freezing characteristics of cultured Catharanthus roseus (L) Don, G. cells treated with dimethylsulfoxide and sorbitol in relation to cryopreservation. Plant Physiol. 75, 720–725.

    Article  CAS  PubMed  Google Scholar 

  41. Benson, E. E., Lynch, P. T., and Jones, J. (1992) The detection of lipid-peroxidation products in cryoprotected and frozen rice cells—consequences for postthaw survival. Plant Sci. 85, 107–114.

    Article  CAS  Google Scholar 

  42. Chen, T. H. H., Kartha, K. K., Leung, N. L., Kurz, W. G. W., Chatson, K. B., and Constabel, F. (1984) Cryopreservation of alkaloid-producing cell-cultures of periwinkle (Catharanthus roseus). Plant Physiol. 75, 726–731.

    Article  CAS  PubMed  Google Scholar 

  43. Lynch, P. T., Benson, E. E., Jones, J., Cocking, E. C., Power, J. B., and Davey, M. R. (1994) Rice cell cryopreservation—the influence of culture methods and the embryogenic potential of cell-suspensions on postthaw recovery. Plant Sci. 98, 185–192.

    Article  CAS  Google Scholar 

  44. Finkle, B. J. and Ulrich, J. M. (1982) Cryoprotectant removal temperature as a factor in the survival of frozen rice and sugarcane cells. Cryobiology 19, 329–335.

    Article  CAS  PubMed  Google Scholar 

  45. Withers, L. A. and King, P. J. (1979) Proline: a novel cryoprotectant for the freeze preservation of cultured cells of Zea mays L. Plant Physiol. 64, 675–678.

    Article  CAS  PubMed  Google Scholar 

  46. Nag, K. K. and Street, H. E. (1973) Carrot embryogenesis from frozen cultured cells. Nature 245, 270–272.

    Article  Google Scholar 

  47. Nag, K. K. and Street, H. E. (1975) Freeze preservation of cultured plant cells. I. The pretreatment phase. Physiol. Plant. 34, 254–260.

    Article  Google Scholar 

  48. Nag, K. K. and Street, H. E. (1975) Freeze preservation of cultured plant cells. II. The freezing and thawing phase. Physiol. Plant. 34, 261–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Menges, M., Murray, J.A.H. (2006). Synchronization, Transformation, and Cryopreservation of Suspension-Cultured Cells. In: Salinas, J., Sanchez-Serrano, J.J. (eds) Arabidopsis Protocols. Methods in Molecular Biology™, vol 323. Humana Press. https://doi.org/10.1385/1-59745-003-0:45

Download citation

  • DOI: https://doi.org/10.1385/1-59745-003-0:45

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-395-4

  • Online ISBN: 978-1-59745-003-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics