Skip to main content

Ophthalmologic activity

  • Reference work entry
Drug Discovery and Evaluation

1 O.1 Introduction

Ocular pharmacology shares many methods with other indications and treatment of other organs. Therefore, in many instances, the reader has to be referred to other sections, such as:

Nevertheless, ocular pharmacology is a special issue, which justifies a special chapter in this book.

2 O.2 Intraocular pressure

2.1 O.2.1 Acute measurement of intraocular pressure

2.1.1 PURPOSE AND RATIONALE

For evaluation of drugs, intraocular...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References

  • Bhattacherjee P, Peterson CA, Spellman JM, Graff G, Yanni JM (1999) Pharmacological validation of a feline model of steroid-induced ocular hypertension. Arch Ophthalmol 117:361–361

    PubMed  CAS  Google Scholar 

  • Briganti F, Tilli S, Mincione G, Menabuoni L, Supuran CT (2000) Carbonic anhydrase inhibitors. Metal complexes of 5-(2-chlorophenyl)-1,3,4-thiadiazole-2 sulfonamide with topical intraocular pressure lowering properties: The influence of metal ions upon the pharmacological activity. J Enzyme Inhibit 15:185–200

    CAS  Google Scholar 

  • Burke JA, Potter DE (1986) Ocular effects of a relatively selective α2 agonist (UK-14, 304-18) in cats, rabbits and monkeys. Curr Eye Res 5:665–676

    PubMed  CAS  Google Scholar 

  • Cabrera CL, Wagner LA, Schork MA, Bohr DF, Cohan BE (1999) Intraocular pressure measurement in the conscious rat. Acta Ophthalmol Scand 77:33–36

    PubMed  CAS  Google Scholar 

  • Chidlow G, Nash MS, De Santi LM, Osborne NN (1999) The 5-HT1A receptor agonist 8-OH-DPAT lowers intraocular pressure in normotensive NZW rabbits. Exp Eye Res 69:587–593

    PubMed  CAS  Google Scholar 

  • Drago F, Emmi I, Marino V (1997) Effects of beta-blockers association with pilocarpine on rabbit intraocular pressure and heart rate. Pharmacol Res 35:299–302

    PubMed  CAS  Google Scholar 

  • Gelatt KN, Mackay EO, Gelatt JK, Stengard-Ollies K, Aza J (1997) Effects on intraocular pressure and pupil size in glaucomatous beagles after topical pilocarpine instilled with standard (pH 5) and buffer-tip (pH 7) droptainers. J Ocul Pharmacol Ther 13:95–104

    PubMed  CAS  Google Scholar 

  • Goldblum D, Garweg JG, Bohnke M (2000) Topical rivastigmine, a selective acetylcholinesterase inhibitor, lowers intraocular pressure in rabbits. J Ocul Pharmacol Ther 16:29–35

    PubMed  CAS  Google Scholar 

  • Jia L, Cepurna WO, Johnson EC, Morrison JC (2000) Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Invest Ophthalmol Vis Sci 41:1380–1385

    PubMed  CAS  Google Scholar 

  • John SW, Hagaman JR, MacTaggart TE, Peng L, Smithes O (1997) Intraocular pressure in inbred mouse strains. Invest Ophthalmol Vis Sci 38:249–253

    PubMed  CAS  Google Scholar 

  • Krishna R, Mermoud A, Baerveldt G, Minckler DS (1995) Circadian rhythm of intraocular pressure: a rat model. Ophthalmic Res 27:163–167

    PubMed  CAS  Google Scholar 

  • Miller PE, Rhaesa SL (1996) Effects of topical administration of 0.5% apraclonidine on intraocular pressure, pupil size, and heart rate in clinically normal cats. Am J Vet Res 57:83–86

    PubMed  CAS  Google Scholar 

  • Mishima S (1981) Clinical pharmacokinetics of the eye. Invest Ophthalmol Vis Sci 21:504–541

    PubMed  CAS  Google Scholar 

  • Moore CG, Epley D, Milne ST, Morrison JC (1995) Long-term non-invasive measurement of intraocular pressure in the rat eye. Curr Eye Res 14:711–717

    PubMed  CAS  Google Scholar 

  • Moore CG, Johnson EC, Morrison JC (1996) Circadian rhythm of intraocular pressure in the rat. Curr Eye Res 15:185–191

    PubMed  CAS  Google Scholar 

  • Okada K, Sugiyama K, Haque MS, Taniguchi T, Kitazawa Y (1995) The effects of endothelin-1 on intraocular pressure and pupillary diameter in rabbits. Jpn J Ophthalmol 39:233–241

    PubMed  CAS  Google Scholar 

  • Peterson JA, Kiland JA, Croft MA, Kaufman PL (1996) Intraocular pressure measurement in cynomolgus monkeys. Tono-Pen versus manometry. Invest Ophthalmol Vis Sci 37:1197–1199

    PubMed  CAS  Google Scholar 

  • Rowland JM, Potter DE, Reiter RJ (1981) Circadian rhythm in intraocular pressure: a rabbit model. Curr Eye Res 1:169–173

    PubMed  CAS  Google Scholar 

  • Santafé J, Martínez de Ibarreta MJ, Segarra J, Melena J (1997) A long-lasting hypotensive effect of topical diltiazem on the intraocular pressure in conscious rabbits. Naunyn-Schmiedeberg's Arch Pharmacol 355:645–650

    Google Scholar 

  • Supuran CT, Scozzafava A, Menabuoni L, Mincione F, Briganti F, Mincione G (1999) Carbonic anhydrase inhibitors. Part 71. Synthesis and ocular pharmacology of a new class of watersoluble, topically effective intraocular pressure lowering sulfonamides incorporating picolinoyl moieties. Eur J Pharm Sci 8:317–328

    PubMed  CAS  Google Scholar 

  • Vareilles P, Conquet P, Le Douarec JC (1977) A method for the routine intraocular pressure (IOP) measurement in the rabbit: Range of IOP variations in this species. Exp Eye Res 24:369–375

    PubMed  CAS  Google Scholar 

References

  • Dinslage S, McLaren J, Brubaker R (1998) Intraocular pressure in rabbits by telemetry. II: effect of animal handling end drugs. Invest Ophthalmol Vis Sci 39:2485–2489

    PubMed  CAS  Google Scholar 

  • McLaren JW, Brobaker RF, Fitz-Simon JS (1996) Continuous measurement of intraocular pressure by telemetry. Invest Ophthalmol Vis Sci 37:966–975

    PubMed  CAS  Google Scholar 

  • McLaren JW, Bachman LA, Brubaker RF (1999) Comparison of effects of topical ibopramine and epinephrine on the circadian rhythm of intraocular pressure of the rabbit eye as measured by telemetry. J Ocul Pharmacol Ther 15:107–116

    PubMed  CAS  Google Scholar 

  • Pericot CL, Schnell CR, Debon C, Hariton C (1996) Continuous intraocular pressure measurement by telemetry in alpha-chymotrypsin-induced glaucoma model in the rabbit: Effects of timolol, dorzolamide, and epinephrine. J Pharmacol Toxicol Meth 36:223–238

    Google Scholar 

  • Schnell CR, Debon C, Pericot CL (1996) Measurement of intraocular pressure by telemetry in conscious, unrestrained rabbits. Invest Ophthalmol Vis Sci 37:958–965

    PubMed  CAS  Google Scholar 

References

  • Beilin M, Neumann R, Belkin M, Green K, Bar-Ilan A (2000) Pharmacology of the intraocular pressure (IOP) lowering effect of systemic dexanabinol (HU-211), a non-psychotropic cannabinoid. J Ocul Pharmacol Ther 16:217–230

    PubMed  CAS  Google Scholar 

  • Brubaker RF (1989) Measurement of aqueous flow by fluorophotometry. In: Ritch R, Shields MB, Krupin R (eds) The glaucomas. CV Mosby Co., St. Louis, pp 337–344

    Google Scholar 

  • Burke J, Schwartz M (1996) Preclinical evaluation of brimonidine. Surv Ophthalm 41, Suppl 1:S9–S18

    Google Scholar 

  • Mermoud A, Baerfelder G, Minckler DS, Prata JA, Rao NA (1996) Aqueous humor dynamics in rats. Graefe's Arch Clin Exp Ophthalmol 234, Suppl 1:S198–203

    Google Scholar 

  • Ogidigben M, Chu TC, Potter DE (1993) Ocular hypotensive action of a dopaminergic (DA2) agonist, 2,10,11-trihydroxy-N-n-propylnoraporphine. J Pharmacol Exp Ther 267:822–827

    PubMed  CAS  Google Scholar 

  • Ogidigben M, Chu TC, Potter DE (1994) Ocular actions of moxonidine: a possible role for imidazoline receptors. J Pharmacol Exp Ther 269:897–904

    PubMed  CAS  Google Scholar 

  • Taarnhoj J, Schlecht L, McLaren JW, Brubaker RF (1990) Calibration of measurements in vivo of fluorescein in the cornea. Exp Eye Res 51:113–118

    PubMed  CAS  Google Scholar 

  • Tian B, Gabelt BT, Crosson CE, Kaufman PL (1997) Effects of adenosine agonists on intraocular pressure and aqueous humor dynamics in cynomolgus monkeys. Exp Eye Res 64:979–989

    PubMed  CAS  Google Scholar 

  • Vareilles P, Lotti VJ (1981) Effects of timolol on aqueous humor dynamics in the rabbit. Ophthalm Res 13:72–79

    CAS  Google Scholar 

  • Yablonski ME, Zimmerman TJ, Waltman SR, Becker B (1978) A fluorophotometric study of the effect of timolol on aqueous humor dynamics. Exp Eye Res 27:135–142

    PubMed  CAS  Google Scholar 

References

  • Balaban CD, Palm DE, Shikher V, Searles RV, Keil LC, Severs WB (1997) Mechanisms for vasopressin effects on intraocular pressure in anesthetized rats. Exp Eye Res 65:517–531

    PubMed  CAS  Google Scholar 

  • Caprioli J (1985) The pathogenesis and medical management of glaucoma. Drug Dev Res 6:193–215

    CAS  Google Scholar 

  • Drago F, Emmi I, Marino V (1997) Effects of beta-blockers association with pilocarpine on rabbit intraocular pressure and heart rate. Pharmacol Res 35:299–302

    PubMed  CAS  Google Scholar 

  • Gelatt KN (1977) Animal models for glaucoma. Invest Ophthalmol 16:592–596

    CAS  Google Scholar 

  • Gu Z, Yamamoto T, Kawase C, Matsubara M, Kawase K, Sawada A, Kitazawa Y (2000) Nippon Ganka Gakkai Zasshi 104:11–16

    PubMed  CAS  Google Scholar 

  • Friedland BR, Maren TH (1984) Carbonic anhydrase: Pharmacology of inhibitors and treatment of glaucoma. In: Pharmacology of the Eye. Handbook Exp Pharmacol 69:279–309

    CAS  Google Scholar 

  • Melena J, Santafe J, Segarra J (1997) Betamethasone-induced ocular hypertension in rabbits. Methods Find Exp Clin Pharmacol 19:553–558

    PubMed  CAS  Google Scholar 

  • Melena J, Santafe J, Segarra J (1998a) The effect of topical dihydroergocristine on the intraocular pressure in alpha-chymotrypsin-induced ocular hypertensive rabbits. Methods Find Exp Clin Pharmacol 20:861–867

    PubMed  CAS  Google Scholar 

  • Melena J, Santafe J, Segarra J (1998b) The effect of topical diltiazem on the intraocular pressure in betamethasone-induced ocular hypertensive rabbits. J Pharmacol Exp Ther 284:278–282

    PubMed  CAS  Google Scholar 

  • Mermoud A, Baerveldt G, Mickler DS, Wu GS Rao NA (1994) Animal model of uveitic glaucoma. Graefe's Arch Clin Exp Ophthalmol 232:553–560

    CAS  Google Scholar 

  • Morrison JC, Nylander KB, Lauer AK, Cepurna WO, Johnson E (1998) Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma. Invest Ophthalmol Vis Sci 39:526–531

    PubMed  CAS  Google Scholar 

  • Santafe J, Martinez de Ibarreta MJ, Segarra J, Melena J (1999) The effect of topical diltiazem on ocular hypertension induced by water loading in rabbits. Gen Pharmacol 32:201–205

    PubMed  CAS  Google Scholar 

  • Schmidt KG, von Ruckmann A, Eisenmann D, Stegmann DY, Mittag TW (1998) Peak pulse blood volume and topical antiglaucoma drugs in rhesus monkeys with experimental open angle glaucoma. (Pulsgipfelblutvolumen und topische Antiglaukomatosa bei Rhesusaffen mit experimentellem Offen winkelglaukom.) Klin Monatsbl Augenheilkd 213:341–346

    PubMed  CAS  Google Scholar 

  • Serle JB, Podos SM, Kitazawa Y, Wang RF (1998) A comparative study of latanoprost (Xalatan) and isopropyl unoprostone (Rescula) in normal and glaucomatous monkey eyes. Jpn J Ophthalmol 42:95–100

    PubMed  CAS  Google Scholar 

  • Sears D, Sears M (1974) Blood-aqueous barrier and alpha-chymotrypsin glaucoma in rabbits. Am J Ophthalm 77:378–383

    CAS  Google Scholar 

  • Ueda J, Sawaguchi S, Hanyu T, Yaoeda K, Fukuchi T, Abe H, Ozawa H (1998) Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol 42:337–344

    PubMed  CAS  Google Scholar 

  • Wang RF, Lee PY, Mittag TW, Podos SM, Serle JB (1997) Effect of 5-methylurapidil, an α1a-adrenergic antagonist and 5-hydroxytryptamine1a agonist, on aqueous humor dynamics in monkeys and rabbits. Curr Eye Res 16:769–775

    PubMed  CAS  Google Scholar 

References

  • Muschaweck R; Habicht R, Rippel R (1986) Lokalanaesthetica. In: Ehrhart G, Ruschig H (eds) Arzneimittel. Entwicklung-Wirkung-Darstellung. Verlag Chemie GmbH, Weinheim. pp 1–44

    Google Scholar 

  • Quevauviller A (1971) Experimental methods for comparing local anesthetic activity. In: Radouco-Thomas (ed) International Encyclopedia of Pharmacology and Therapeutics. Section 8: Local Anesthetics (Lechat P, Section editor) Vol I, Pergamon Press, Oxford New York, pp 291–318

    Google Scholar 

  • Régnier MJ (1923) Essai de mesure de l'anesthésie produite sur les terminaisons nerveuses de la cornée par les anesthésiques locaux. Comparaison des pouvoirs anesthésiques de la cocaïne, de la novocaïne et de la stovaïne. C R hebd Scéances Acad Sci 177:558–560

    Google Scholar 

  • Sollmann T (1918) Comparison of activity of local anesthetics. IV. Anesthesia of rabbit's cornea. J Pharmacol Exp Ther 11:17–25

    CAS  Google Scholar 

References

  • Anderson RS, Trune DR, Shearer TR (1988) Histologic changes in selenite cortical cataract. Invest Ophthalm Vis Sci 29:1418–1427

    CAS  Google Scholar 

  • Cammarata PR, Zhou C, Chen G, Singh I; Reeves RE, Kuszak JR, Robinson ML (1999) A transgenic animal model of osmotic cataract. Part 1: over-expression of bovine Na+/myoinositol cotransporter in lens fibers. Invest Ophthalmol Vis Sci 40:1727–1737

    PubMed  CAS  Google Scholar 

  • Hatano T, Kojima M (1996) UV-b-induced cataract model in brown-Norway rat eyes combined with preadministration of buthionine sulfoximine. Ophthalmic Res 28, Suppl 2:54–63

    PubMed  CAS  Google Scholar 

  • Holmen JB, Ekesten B, Lundgren B (1999) Naphthalene-induced cataract model in rats: A comparative study between slit and retroillumination images, biochemical changes and naphthalene dose and duration. Curr Eye Res 19:418–425

    PubMed  CAS  Google Scholar 

  • Huang LL, Hess JL, Bunce GE (1991) DNA damage, repair, and replication in selenite-induced cataract in rat lens. Curr Eye Res 9:1041–1050

    Google Scholar 

  • Huang LL, Zhang CY, Hess JL, Bunce GE (1992) Biochemical changes and cataract formation in lenses from rat receiving multiple, low doses of sodium selenite. Exp Eye Res 55:671–678

    PubMed  CAS  Google Scholar 

  • Ishida H, Mitamura T, Takahashi Y, Hisatomi A, Fukuhara Y, Murato K, Ohara K (1997) Cataract development induced by repeated oral dosing with FK506 (tacrolimus) in adult rats. Toxicology 123:167–175

    PubMed  CAS  Google Scholar 

  • Kelley MJ, David LL, Iwasaki N, Wright J, Shearer TR (1993) alpha-Crystallin chaperone activity is reduced by calpain II in vitro and in selenite cataract. J Biol Chem 268:18844–18849

    PubMed  CAS  Google Scholar 

  • Kojima M, Shui YB, Murano H, Sasaki K (1996) Inhibition of ster-oid-induced cataract in rat eyes by administration of vitamin-E ophthalmic solution. Ophthalmic Res 28, Suppl 2:64–71

    PubMed  CAS  Google Scholar 

  • Mitton KP, Kamiya T, Tumminia SL, Russell P (1996) Cysteine protease activated by expression of HIV-1 protease in transgenic mice. MIP26 (aquaporin-0) cleavage and cataract formation in vivo and ex vivo. J Biol Chem 271:31803–31806

    PubMed  CAS  Google Scholar 

  • Oštádalová I, Babický A, Obenberger J (1978) Cataract induced by administration of a single dose of sodium selenite to suckling rats. Experientia 34:222–223

    PubMed  Google Scholar 

  • Shearer TR, Ma H, Fukiage C, Azuma M (1997) Selenite nuclear cataract: Review of the model. Mol Vis 3:8–20

    CAS  Google Scholar 

  • Shui YB, Vrensen GF, Kojima M (1997) Experimentally induced steroid cataract in the rat: a scanning electron microscopic study. Surv Ophthalmol 42, Suppl 1:S127–S132

    PubMed  Google Scholar 

  • Watanabe H, Shearer TR (1989) Lens crystallins in aqueous an vitreous humor in selenite overdose cataract. Curr Eye Res 8:479–486

    PubMed  CAS  Google Scholar 

  • Zhao C, Shichi H (1998) Prevention of acetaminophen-induced cataract by a combination of diallyl disulfide and N-acetylcysteine. J Ocul Pharmacol Ther 14:345–355

    PubMed  CAS  Google Scholar 

References

  • Allansmith MR, Barid RS, Ross RN, Barney NP, Bloch KJ (1989) Ocular anaphylaxis induced in the rat by topical application of compound 48/80. Dose response and time cours study. Acta Ophthalmol (Copenh.) 67:145–153

    Google Scholar 

  • Doherty MJ, Easty DL (1989) Inflammatory and immunological cell profiles in a rat model of conjunctival immediate hypersensitivity. Clin Exp Allergy 19:449–455

    PubMed  CAS  Google Scholar 

  • Fujino Y, Mochizuki M, Chan CC, Raber J, Kotake S, Gery I (1991) FK506 treatment of S-antigen induced uveitis in primates. Curr Eye Res 10:679–690

    PubMed  CAS  Google Scholar 

  • Fukushima A, Yoshida H, Iwamoto H, Yoshida O, Ueno H (1997) The role of cellular immunity both in the induction and effector phases of allergic blepharoconjunctivitis (EAC) in rats. Exp Eye Res 65:631–637

    PubMed  CAS  Google Scholar 

  • Hu S, Merayo-Lloves J, Zhao T, Foster CS (1998) Comparative effectiveness and molecular pharmacological mechanisms of antiallergic agents on experimental conjunctivitis in mice. J Ocular Pharmacol Ther 14:67–74

    CAS  Google Scholar 

  • Iwamoto H, Yoshida H, Fukushima A, Ueno H (1999) Inhibitory effects of FK506 on the development of allergic/immunemediated blepharoconjuntivitis in Lewis rats by systemic but not topical administration. Graefe's Arch Clin Exp Ophthalmol 237:407–414

    CAS  Google Scholar 

  • Keane-Myers AM, Miyazaki D, Liu G, Dekaris I, Ono S, Dana MR (1999) Prevention of allergic eye disease by treatment with IL-1 receptor antagonist. Invest Ophthalmol Vis Sci 40:3041–3046

    PubMed  CAS  Google Scholar 

  • Li Q, Luyo D, Hikita N, Whitcup SM, Chan CC (1996) Compound 48/80-induced conjunctivitis in the mouse: Kinetics, susceptibility, and mechanism. Int Arch Allergy Immunol 109:277–285

    PubMed  CAS  Google Scholar 

  • Magone MT, Chan C-C, Rizzo LV, Kozhich AT, Whitcup SM (1998) A novel murine model of allergic conjunctivitis. Clin Immunol Immunopathol 87:75–84

    PubMed  CAS  Google Scholar 

  • Magone MT, Whitcup SM, Fukushima A, Chan CC, Silver PB, Rizzo LV (2000) The role of IL-12 in the induction of latephase cellular infiltration in a murine model of allergic conjunctivitis. J Allergy Clin Immunol 105:299–308

    PubMed  CAS  Google Scholar 

  • Merayo-Lloves J, Calonge M, Foster CS (1995) Experimental model of allergic conjunctivitis to ragweed in the guinea pig. Curr Eye Res 14:487–494

    PubMed  CAS  Google Scholar 

  • Merayo-Lloves J, Zhao TZ, Dutt JE, Foster CS (1996) A new murine model of allergic conjunctivitis and effectiveness of nedocromil sodium. J Allergy Clin Immunol 97:1129–1140

    PubMed  CAS  Google Scholar 

  • Reichel MB, Cordeiro MF, Alexander RA, Cree IA, Bhattacharya SS, Khaw PT (1998) New model of conjunctival scarring in the mouse eye. Br J Ophthalmol 82:1072–1077

    PubMed  CAS  Google Scholar 

  • Trocme SD, Trocme MC, Bloch KJ, Allansmith MR (1986) Topically induced ocular anaphylaxis in rats immunized with egg albumin. Ophthalmic Res 18:68–74

    PubMed  CAS  Google Scholar 

  • Woodward DF, Spada CS, Nieves AL (1989) Eye models of inflammation. Pharmacological Models in the Control of Inflammation. Alan R. Liss, Inc. pp 233–253

    Google Scholar 

  • Woodward DF, Nieves AL, Hawley SB, Joseph R, Merlino GF, Spada CS (1995) The pruritogenic and inflammatory effects of prostanoids in the conjunctiva. J Ocular Pharmacol 11:339–347

    CAS  Google Scholar 

References

  • Alio JL, Ayala MJ, Mulet ME, Artola A, Ruiz JM (1994a) Topical treatment of experimental acute corneal inflammation by dexamethasone and nonsteroidal drugs. Ophthalmic Res 26:87–94

    PubMed  CAS  Google Scholar 

  • Alio JL, Ayala MJ, Mulet ME, Artola A, Ruiz JM, Belot J (1994b) Antioxidant therapy in the treatment of experimental acute corneal inflammation. Ophthalmic Res 27:136–143

    Google Scholar 

  • Laria C, Alio JL, Ruiz-Moreno JM (1997) Combined non-steroidal therapy in experimental corneal injury. Ophthalmic Res 29:145–153

    PubMed  CAS  Google Scholar 

  • Leibowitz HM, Kupferman A (1974) Anti-inflammatory effectiveness in the cornea of topically administered prednisolone. Invest Ophthalmol 13:757–763

    PubMed  CAS  Google Scholar 

  • Ozturk F, Kurt E, Cerci M, Emiroglu L, Inan U, Turker M, Ilker S (2000) The effect of propolis extract in experimental chemical corneal injury. Ophthalmic Res 32:13–18

    PubMed  CAS  Google Scholar 

  • Sonoda K, Sakamoto T, Yoshikawa H, Ashizuka S, Ohshima Y, Kishihara K, Nomoto K, Ishibashi T, Inomata H (1998) Inhibition of corneal inflammation by the topical use of Ras farnesyltransferase inhibitors: selective inhibition of macrophage localization. Invest Ophthalmol Vis Sci 39:2245–2251

    PubMed  CAS  Google Scholar 

References

  • Bora NS, Kim MC, Kabeer NH, Simpson SC, Tandhasetti MT, Cirrito TP, Kaplan AD, Kaplan HJ (1995) Experimental autoimmune anterior uveitis: Induction with melanin-associated antigen from the iris and ciliar body. Invest Ophthalmol Vis Sci 36:1056–1066

    PubMed  CAS  Google Scholar 

  • Brockhuyse RM, Kuhlmann EC, van Vugt AHM, Winkens HJ (1987) Immunological and immunopathological aspects of opsin-induced uveoretinitis. Graefe's Arch Clin Exp Ophthalmol 225:45–49

    Google Scholar 

  • Caspi RR, McAllister CG, Gery I, Nussenblatt RB (1988) Differential effects of cyclosporins A and G on functional activation of a T-helper-lymphocyte line mediating experimental autoimmune uveoretinitis. Cell Immunol 113:350–360

    PubMed  CAS  Google Scholar 

  • Chan CC, Palestine AG, Nussenblatt RB (1984) Cyclosporine-induced alterations of humoral response in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 25:867–870

    PubMed  CAS  Google Scholar 

  • Chan CC, Caspi R, Mochizuki M, Diamantstein T, Gery I, Nussenblatt RB (1987) Cyclosporine and dexamethasone inhibit T-lymphocyte MHC class II antigens and IL-2 receptor expression in experimental autoimmune uveitis. Immunol Invest 16:319–331

    PubMed  CAS  Google Scholar 

  • de Kozak Y, Sakai J, Thillaye B, Faure JP (1982) S antigen-induced experimental autoimmune uveo-retinitis in rats. Curr Eye Res 1:327–337

    Google Scholar 

  • Egwuaga CE, Mahdi RM, Chan CC, Sztein J, Li W, Smith JA, Chepelinski AB (1999) Expression of interferon-gamma in the lens exacerbates anterior uveitis and induced retinal degenerative changes in transgenic Lewis rats. Clin Immunol 91:196–205

    Google Scholar 

  • Fujino Y, Okumura A, Nussenblatt RB, Gery I, Mochizuki M (1988) Cyclosporine induced specific unresponsiveness to retinal soluble antigen in experimental autoimmune uveoretinitis. Clin Immunol Immunopathol 46:234–248

    PubMed  CAS  Google Scholar 

  • Geiger K, Howes E, Gallina M, Huang XJ, Travis GH, Sarvetnik N (1994) Transgenic mice expressing IFN-gamma in the retina develop inflammation in the eye and photoreceptor loss. Invest Ophthalmol Vis Sci 35:2667–2681

    PubMed  CAS  Google Scholar 

  • Hanashiro RK, Fujino Y, Gugunfu, Samura M, Takahashi T, Masuda K (1997) Synthetic lipid A-induced uveitis and endotoxin-induced uveitis: a comparative study. Jpn J Ophthalmol 41:355–361

    PubMed  CAS  Google Scholar 

  • Hikita N, Chan CC, Whitcup SM, Nussenblatt RB, Mochizuki M (1995) Effects of topical FK506 on endotoxin-induced uveitis (EIU) in the Lewis rat. Curr Eye Res 14:209–214

    PubMed  CAS  Google Scholar 

  • Jamieson L, Meckoll-Brinck D, Keller N (1989) Characterized and predictable rabbit uveitis model for antiinflammatory drug screening. J Pharmacol Meth 21:329–338

    CAS  Google Scholar 

  • Kaswan RL, Kaplan HJ (1988) Comparison of the efficacy of unilateral, bilateral, and oral cyclosporine in experimental immunogenic uveitis in rabbits. Transplant Proc 20, Suppl 4:149–157

    PubMed  CAS  Google Scholar 

  • Liversidge J, Thompson AW, Sewell HF, Forrester JV (1987) EAU in the guinea pig: inhibition of cell-mediated immunity and Ia antigen expression by cyclosporine A. Clin exp Immunol 69:591–600

    PubMed  CAS  Google Scholar 

  • Liversidge J, Thomson AW, Sewell HF, Forrester JV (1988) Cyclosporine A, experimental autoimmune uveitis, and major histocompatibility class II antigen expression of cultured retinal pigment epithelial cells. Transplant Proc 20, Suppl 4:163–169

    PubMed  CAS  Google Scholar 

  • McMenamin PG, Crewe J (1995) Endotoxin-induced uveitis. Kinetics and phenotype of the inflammatory cell infiltrate and the response of the resident tissue macrophages and dendritic cells in the iris and ciliary body. Invest Ophthalmol Vis Sci 36:1949–1959

    PubMed  CAS  Google Scholar 

  • Mahlberg K, Uusitalo H, Uusitalo R, Palkama A, Tallberg T (1987) Suppression of experimental autoimmune uveitis in guinea pigs by ethylenediamine tetra-acetic acid, cortico-steroids and cyclosporin. J Ocul Pharmacol 3:199–210

    PubMed  CAS  Google Scholar 

  • Merino G, Fujino Y, Hanshiro RK (1998) Lipoteichoic acid as an inducer of acute uveitis in the rat. Invest Ophthalmol Vis Sci 39:1251–1256

    PubMed  CAS  Google Scholar 

  • Mochizuki M, Nussenblatt RB, Kuwabara T, Gery I (1985) Effects of cyclosporine and other immunosuppressive drugs on experimental autoimmune uveoretinitis in rats. Invest Ophthalmol Vis Sci 26:226–232

    PubMed  CAS  Google Scholar 

  • Nordmann JP, de Kozak Y, Le Hoang P, Faure JP (1986) Cyclosporine therapy of guinea-pig autoimmune uveitis induced with autologous retina. J Ocul Pharmacol 2:325–333

    PubMed  CAS  Google Scholar 

  • Nussenblatt RB, Rodrigues MM, Wacker WB, Cevario SJ, Salinas-Carmona MC (1981) Inhibition of experimental autoimmune uveitis in Lewis rats. J Clin Invest 67:1228–1231

    PubMed  CAS  Google Scholar 

  • Ramanathan S, de Kozak Y, Saoudi A, Goureau O, Van der Meide PH, Druet P, Bellon B (1996) Recombinant IL-4 aggravates experimental autoimmune uveoretinitis in rats. J Immunol 157:2209–2215

    PubMed  CAS  Google Scholar 

  • Smith-Lang L, Glaser RL, Miller ST, Weimer LK, Robertson SM, Aoki KR, Yanni JM (1992) Efficacy of novel immunomodulators leflunomide and rapamycin in autoimmune uveitis. FASEB J 6:A1048, Part 1

    Google Scholar 

  • Tsuji F, Sawa K, Kato M, Mibu H, Shirasawa E (1997) The effects of betamethasone derivatives on endotoxin-induced uveitis in rats. Exp Eye Res 64:31–36

    PubMed  CAS  Google Scholar 

  • Uchio E, Kijima M, Ishioka M, Tanaka SI, Ohno S (1997) Suppression of actively induced experimental autoimmune uveoretinitis by CD4+ T cells. Graefe's Arch Clin Exp Ophthalmol 235:97–102

    CAS  Google Scholar 

  • Wacker WB, Lipton MM (1965) Experimental allergic uveitis: homologous retina as uveitigenic antigen. Nature 206:253–254

    PubMed  CAS  Google Scholar 

  • Wacker WB, Lipton MM, Ongchua FE (1964) Antibody production in the guinea pig to homologous uvea. Proc Soc Exp Biol Med 117:150–154

    PubMed  CAS  Google Scholar 

  • Whitcup SM, Rizzo LV, Lai JC, Hayashi S, Gazzinelli R, Chan C-C (1996) IL-12 inhibits endotoxin-induced inflammation in the eye. Eur J Immunol 26:995–999

    PubMed  CAS  Google Scholar 

References

  • Kulkarni PS, Srinivansan BD (1985) Comparative in vivo inhibitory effects of nonsteroidal antiinflammatory agents on prostaglandin synthesis in rabbit ocular tissue. Arch Oph-thalmol 103:103–106

    CAS  Google Scholar 

  • Miller JD, Eakins KE, Atwal M (1973) The release of PGE2-like activity in aqueous humor after paracentesis and its prevention by aspirin. Invest Ophthalmol 12:939–942

    PubMed  CAS  Google Scholar 

  • Struck HG, Giessler S, Giessler C (1995) Effect of non-steroidal anti-inflammatory drugs on inflammatory reaction. An animal experiment study. (Zum Einfluß nichtsteroidaler Antiphlogistika auf die Entzündungsreaktion. Eine tierexperimentelle Studie.) Ophthalmologe 92:849–853

    PubMed  CAS  Google Scholar 

  • Unger WG, Cole DF, Hammond B (1975) Disruption of the blood-aqueous barrier following paracentesis in the rabbit. Exp Eye Res 20:255–270

    PubMed  CAS  Google Scholar 

References

  • Augustin AJ, Spitznas M, Sekundo W, Koch F, Lutz J, Meller D, Grus FH, Wegener A, Blumenroder SH (1996) Effects of allopurinol and steroids on inflammation and oxidative tissue damage in experimental lens induced uveitis: a biochemical and morphological study. Br J Ophthalmol 80:451–457

    PubMed  CAS  Google Scholar 

  • Chang MS, Chiou GCY (1989) Prevention of lens protein-induced ocular inflammation with cyclooxygenase and lipoxygenase inhibitors. J Ocul Pharmacol 5:353–360

    PubMed  CAS  Google Scholar 

  • Chiou L, Chiou G (1984) Ocular anti-inflammatory action of a lipoxygenase inhibitor in the rabbit. J Ocul Pharmacol 1:383–389

    Google Scholar 

  • Miyano K, Chiou G (1984) Pharmacological prevention of ocular inflammation induced by lens proteins. Ophthalmic Res 16:256–263

    PubMed  CAS  Google Scholar 

References

  • Algvere P, Kock E (1976) Experimental fibroplasia in the rabbit vitreous. Retinal detachment induced by autologous fibroblasts. Albrecht von Graefe's Arch Klin Exp Ophthalmol 199:215–222

    CAS  Google Scholar 

  • Hikichi T, Ueno N, Chakrabarti B, Trempe CL (1996) Vitreous changes during ocular inflammation induced by interleukin 1 beta. Jpn J Ophthalmol 40:297–302

    PubMed  CAS  Google Scholar 

  • Ophir A, Blumenkranz MS, Claflin A (1982) Experimental intraocular proliferation and neovascularization. Am J Ophthalmol 94:450–457

    PubMed  CAS  Google Scholar 

  • Ricci B, Minicucci G, Manfredi A, Santo A (1995) Oxygen-induced retinopathy in the newborn rat: effects of hyperbarism and topical administration of timolol maleate. Graefe's Arch Clin Exp Ophthalmol 233:226–230

    CAS  Google Scholar 

  • Ricci B, Ricci F, Maggiano N (2000) Oxygen-induced retinopathy in the newborn rat: morphological and immunohistological findings in animals treated with topical timolol maleate. Ophthalmologica 214:136–139

    PubMed  CAS  Google Scholar 

  • Sugita G, Tano Y, Machemer L, Abrams G, Claflin A, Florentino G (1980) Intravitreal autotransplantation of fibroblasts. Am J Ophthalmol 89:121–130

    PubMed  CAS  Google Scholar 

  • Wiedemann P, Sorgente N, Ryan SJ (1984) Proliferative vitreoretinopathy: The rabbit cell injection model for screening of antiproliferative drugs. J Pharm Meth 12:69–78

    CAS  Google Scholar 

  • Woodword DF, Spada CS, Nieves AL (1989) Eye models of inflammation. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 233–253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this entry

Cite this entry

Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (2002). Ophthalmologic activity. In: Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29837-1_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-29837-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42396-6

  • Online ISBN: 978-3-540-29837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics