Skip to main content
Erschienen in: Critical Care 2/2012

Open Access 01.04.2012 | Research

Hyperferritinemia in the critically ill child with secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction syndrome/macrophage activation syndrome: what is the treatment?

verfasst von: Demet Demirkol, Dincer Yildizdas, Benan Bayrakci, Bulent Karapinar, Tanil Kendirli, Tolga F Koroglu, Oguz Dursun, Nilgün Erkek, Hakan Gedik, Agop Citak, Selman Kesici, Metin Karabocuoglu, Joseph A Carcillo, Turkish Secondary HLH/MAS Critical Care Study Group

Erschienen in: Critical Care | Ausgabe 2/2012

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Introduction

Hyperferritinemia is associated with increased mortality in pediatric sepsis, multiple organ dysfunction syndrome (MODS), and critical illness. The International Histiocyte Society has recommended that children with hyperferritinemia and secondary hemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) should be treated with the same immunosuppressant/cytotoxic therapies used to treat primary HLH. We hypothesized that patients with hyperferritinemia associated secondary HLH/sepsis/MODS/MAS can be successfully treated with a less immunosuppressant approach than is recommended for primary HLH.

Methods

We conducted a multi-center cohort study of children in Turkish Pediatric Intensive Care units with hyperferritinemia associated secondary HLH/sepsis/MODS/MAS treated with less immunosuppression (plasma exchange and intravenous immunoglobulin or methyl prednisolone) or with the primary HLH protocol (plasma exchange and dexamethasone or cyclosporine A and/or etoposide). The primary outcome assessed was hospital survival.

Results

Twenty-three children with hyperferritinemia and secondary HLH/sepsis/MODS/MAS were enrolled (median ferritin = 6341 μg/dL, median number of organ failures = 5). Univariate and multivariate analyses demonstrated that use of plasma exchange and methyl prednisolone or intravenous immunoglobulin (n = 17, survival 100%) was associated with improved survival compared to plasma exchange and dexamethasone and/or cyclosporine and/or etoposide (n = 6, survival 50%) (P = 0.002).

Conclusions

Children with hyperferritinemia and secondary HLH/sepsis/MODS/MAS can be successfully treated with plasma exchange, intravenous immunoglobulin, and methylprednisone. Randomized trials are required to evaluate if the HLH-94 protocol is helpful or harmful compared to this less immune suppressive and cytotoxic approach in this specific population.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​cc11256) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

DD is the guarantor of integrity of the entire study and participated in study concepts and design, definition of intellectual content, data collection, literature research, data analysis, and manuscript preparation, editing, and review. DY, BB, BK, TK, TFK, OD, NE, HG, AC, SK, and MK participated in study design, definition of intellectual content, data collection, and manuscript preparation, editing, and review. JAC participated in study concepts and design, definition of intellectual content, data collection, literature research, data analysis, and manuscript preparation, editing, and review. The authors read and approved the final manuscript.
Abkürzungen
ALL
acute lymphoblastic leukemia
ALT
alanine aminotransferase
aPTT
activated partial thromboplastin time
CI
confidence interval
HLH
hemophagocytic lymphohistiocytosis
IL-2Rα
interleukin-2 receptor alpha
IVIG
intravenous immunoglobulin
MAS
macrophage activation syndrome
MODS
multiple organ dysfunction syndrome
MOF
multiple organ failure
NK
natural killer
PE
plasma exchange
PELOD
Pediatric Logistic Organ Dysfunction
PRISM
Pediatric Risk of Mortality
PT
prothrombin time
SIRS
systemic inflammatory response syndrome
TPV
total plasma volume.

Introduction

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder that can rapidly deteriorate and lead to multiple organ failure (MOF) and death [1, 2]. It is classified as primary (familial) or secondary (acquired) [3, 4]. Primary HLH is an autosomal recessive disorder caused by a number of different perforin signaling mutations [5]. Secondary HLH is associated with viral, bacterial, fungal, and parasitic infections and malignant disorders [4] in patients without this autosomal recessive disorder. Autoimmune disease-associated HLH is classified as macrophage activation syndrome (MAS) [6].
Hemophagocytic disorders result when critical regulatory pathways responsible for the natural termination of immune/inflammatory responses are disrupted or overwhelmed. Hemophagocytic lymphohistiocytosis is characterized by multisystem inflammation, a reactive process resulting from prolonged and intense activation of antigen-processing cells (macrophages and histiocytes) and CD8+ T cells, and excessive proliferation and ectopic migration of T cells. Studies of cytokine levels in blood and tissue have indicated persistently elevated circulating levels of multiple pro-inflammatory cytokines during symptomatic disease [79]. It is currently believed that 'hypercytokinemia' and possibly 'hyperchemokinemia' generated by uncontrolled activation of histiocytes cause MOF.
According to guidelines of the International Histiocyte Society, a diagnosis of HLH requires at least five of the following eight criteria are met: fever, splenomegaly, cytopenias, hypertriglyceridemia or hypofibrinogenemia (or both), hyperferritinemia, elevated soluble interleukin-2 receptor alpha (IL-2Rα), decreased natural killer (NK) cell activity, and hemophagocytosis in bone marrow [4]. Unfortunately, the diagnosis of HLH is complicated by its relatively non-specific clinical presentation. Although hypercytokinemia is a hallmark of HLH, it has also been associated with sepsis, systemic inflammatory response syndrome (SIRS), and multiple organ dysfunction syndrome (MODS) [10, 11]. Soluble IL-2Rα is sensitive and specific for HLH [12] but is also elevated in sepsis/MODS/MAS. Of the various laboratory variables available for HLH diagnosis, the most widely used is ferritin. Ferritin is a ubiquitous iron-binding protein that regulates iron storage and homeostasis. The ferritin heavy-chain gene also positively regulates pro-inflammatory cytokine signaling through the nuclear factor-kappa-B pathway [13]. Hyperferritinemia is frequently seen in the intensive care unit, is a marker of a final common pathway of systemic inflammatory response, and is associated with the severity of the underlying disease [14, 15]. Bennett and colleagues [15] showed that the hazard ratio of death with peak ferritin of greater than 3,000 ng/mL was 4.32. Hyperferritinemia has also been associated with HLH and many other inflammatory conditions such as sepsis, SIRS, MODS, and MAS [16, 17].
According to the International Histiocyte Society guidelines, the treatment for HLH involves an initial 8 weeks of chemoimmune therapy [4]. The immediate aim of chemotherapy in HLH is suppression of the increased inflammatory response and control of cell proliferation. Clinical case series and case reports and animal models suggest that implementation of the HLH protocol has resulted in improved survival in primary HLH; however, the beneficial effect of the protocol for patients with secondary HLH or MAS is questioned. In an effort not to delay treatment in patients with primary HLH, the International Histiocyte Society recommends treating hyperferritinemia-associated secondary HLH/sepsis/MODS/MAS with the same protocol used for primary HLH. In contrast, our hypothesis is that hyperferritinemia-associated secondary HLH/sepsis/MODS/MAS can be successfully treated with a less immunosuppressive and cytotoxic approach than is recommended for primary HLH.
We performed an observational cohort study to evaluate outcome in children with hyperferritinemia and secondary HLH/sepsis/MODS/MAS and compared those who received plasma exchange (PE) with intravenous immunoglobulin (IVIG) or methylprednisone or both with those who received PE with the HLH-94 protocol. We hypothesized that hospital survival would be better with the less immunosuppressive/cytoxic approach.

Materials and methods

We performed the observational cohort study between December 2005 and April 2011. The study was approved by the ethics committee of the Istanbul Faculty of Medicine (reference number 2011/205-469). Informed consent to participation in the study and to publication of this article was obtained from the guardians of the patients.
Eight centers participated in the Turkish Secondary HLH/MAS Critical Care Study Group. Patients who had secondary HLH and MAS were entered in the study. The patients with primary HLH were excluded from the study. The sample size was estimated a priori to be 20 patients with hyperferritinemia and secondary HLH/MAS. A standardized study form, developed by all participating pediatric intensive care centers, was filled in for each patient by the responsible pediatric intensivists from each center. The form consisted of patient age, gender, primary disease, underlying disease, consanguinity, family history of HLH, Pediatric Risk of Mortality III (PRISM III) score, Pediatric Logistic Organ Dysfunction (PELOD) score, numbers of organs involved and the type of organ involvement, microbiological and laboratory data, respiratory support, treatment protocols used, and hospital mortality. The severity of illness was classified by using the PRISM III score and calculated from the most abnormal values in the first 24 hours after admission [18]. Organ dysfunctions were scored according to the PELOD scoring system [19].
The HLH/MAS was diagnosed if five of the following eight criteria were met: (a) fever, (b) splenomegaly, (c) cytopenias (at least two of the following: hemoglobin of less than 9 g/L, platelet count of fewer than 100 × 109/L, and neutrophil count of fewer than 1.0 × 109/L), (d) hypertryglyceridemia (at least 265 mg/dL) or hypofibrinogenemia (not more than 150 mg/L) or both, (e) bone marrow hemophagocytosis, (f) hyperferritinemia (greater than 500 μg/L), (g) increased soluble CD25, and (h) absent NK activity. Patients were not routinely tested for sCD25 levels or NK cell activity; however, all were tested for ferritin levels and bone marrow hemophagocytosis. The patient was classified as having primary HLH if there was a severe clinical presentation without a proven or suspected infection history or metabolic disease and at least one of the following criteria: family history or parental consanguinity, presentation before the age of 2 years, severe clinical presentation with central nervous system involvement, or persistence or recurrence of HLH [4]. Therefore, the children in our study were classified with secondary HLH/MAS because they had suspected or proven infection, no family history or parental consanguinity, were 2 years old or older, had no central nervous system involvement, and had no prior history of HLH. MAS was defined in our cohort in patients who met HLH criteria with an underlying autoimmune disease [5]. SIRS, infection, sepsis, severe sepsis, and septic shock were defined according to the guidelines of the International Pediatric Sepsis Consensus Conference [20]. Treatment failure was defined as progressive disease despite therapy.
The PE treatments were performed by a continuous filtration technique (Prisma; Gambro, Lund, Sweden) in five centers with a polypropylene hollow-fiber plasma filter (TPE 2000; Gambro) and by centrifugation technique (Spectra Optica; CardianBCT, Lakewood, CO, USA, and Com.Tec; Fresenius HemoCare GmbH, Bad Homburg, Germany) in three centers; a Spectra Optia tubing set and a PL-1 kit in a dual-needle set, respectively, were used. Vascular access was obtained with a double-lumen catheter placed percutaneously in a central vein. Total plasma volume (TPV) was calculated manually according to this formula: TPV = total blood volume × (1 - hematocrit). Anticoagulation was achieved with heparin. An infusion of heparin was titrated to achieve an activated partial thromboplastin time (aPTT) of between 50 and 70 seconds. No life-threatening complication related to line placement and PE procedure during the study period was seen. Serum ferritin and lactate dehydrogenase levels and platelet counts were recorded at admission and before and after each PE session.

Statistical analysis

All statistical analysis were performed by using the Statistical Package for Social Sciences (SPSS 10; SPSS Inc., Chicago, IL, USA). Categorical end points were compared by using the chi-squared test. If continuous variables were normal, they were described as the mean ± standard deviation (P > 0.05 in Shapiro-Wilk test), and if the continuous variables were not normal, they were described as the median. The continuous variables were compared by using Mann-Whitney U analysis. Factors associated with a P value of less than 0.1 in univariate analysis were further evaluated in a multiple regression analysis. A P value of less than 0.05 was considered significant in the multiple regression analysis.

Results

The eight centers identified 34 patients with hyperferritinemia and MODS. Primary HLH was diagnosed in five patients and was treated with the HLH-94 protocol, and the patients had 50% survivals and were excluded from the study. Six patients did not meet five of the eight criteria required for a diagnosis HLH/MAS and were excluded from further analysis. Secondary HLH/MAS was diagnosed in 23 patients, who met criteria for analysis and whose data are presented herein. According to the International Pediatric Sepsis Consensus definitions, 56% (n = 13) of these patients also met the diagnostic criteria for septic shock and 9% (n = 2) for severe sepsis. The characteristics and clinical presentations of these 23 patients with secondary HLH/sepsis/MODS/MAS are presented in Tables 1 and 2.
Table 1
Baseline characteristics of patients with hyperferritinemia and secondary HLH/sepsis/MODS/MAS
Variable
Patients with secondary HLH/MAS (n= 23)
 
Mean ± SD
Median
Range
Age, years
7.2 ± 3.6
6.7
2-15
PRISM III-24 score
23.9 ± 12.5
19.5
7-48
PELOD score
26 ± 13.8
24
4-53
Number of dysfunctional organs
4.6 ± 1
5
3-6
 
Percentage
Number
 
Males/Females
74/26
17/6
 
Artificial ventilation
87
20
 
Underlying disease
78
18
 
HLH, hemophagocytic lymphohistiocytosis; MAS, macrophage activation syndrome; MODS, multiple organ dysfunction syndrome; PELOD, Pediatric Logistic Organ Dysfunction; PRISM, Pediatric Risk of Mortality; SD, standard deviation.
Table 2
Diagnostic findings of patients with hyperferritinemia and secondary HLH/sepsis/MODS/MAS
Variable
Secondary HLH/MAS (n= 23), percentage (number)
Fever
100 (23)
Splenomegaly
65 (15)
Cytopenia
96 (22)
Anemia
96 (22)
Thrombocytopenia
91 (21)
Neutropenia
44 (10)
Hypertriglyceridemia
87 (20)
Hypofibrinogenemia
39 (9)
Hyperferritinemia
100 (23)
Hemophagocytosis in bone marrow
100 (23)
Survival
87 (20)
All of the patients met five or more of the criteria required for a diagnosis of hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS). HLH, hemophagocytic lymphohistiocytosis; MAS, macrophage activation syndrome; MODS, multiple organ dysfunction syndrome.
Sixty-five percent of the 23 patients (n = 15) were classified as having secondary HLH. Thirty-five percent of the patients (n = 8) were classified as having MAS: juvenile rheumatoid arthritis (n = 6), systemic lupus erytheromatosis (n = 1), and polyarteritis nodosa (n = 1). All of the patients had hyperferrtinemia as well as hemophagocytosis in their bone marrow aspirate (Figure 1). The diagnostic laboratory variables of the patients with secondary HLH/MAS are presented in Table 3. An underlying disease was present in 78% (n = 18) of the patients (Table 1). The precipitating factors in patients with secondary HLH/MAS were viral and non-viral infections in 93% (n = 14) of the patients. The microbiological agents were Varicella zoster virus (n = 3), Acinetobacter baumannii, Salmonella enteritidis, Eschericia coli (n = 2), Staphylococcus aureus, Stenotrophomonas maltophilia, Candida albicans, Epstein-Barr virus, and H1N1 virus infection. In one patient with secondary HLH, no precipitating factors were found. The precipitating factors in patients with MAS were drugs in three patients, namely naproxen sodium, cefepime, and ampicillin-sulbactam. The precipitating factor was infection in one patient with MAS (Burcholderia cepacia). In four patients with MAS, no precipitating factors other than autoimmune disease were found.
Table 3
Laboratory variables of patients with secondary HLH/sepsis/MODS/MAS
Variable
Mean ± SD
Median
Range
Hemoglobin, g/dL
7.8 ± 2.1
8.1
4.8-15.0
Leukocytes,/mm3
10,260 ± 11,402
6,240
400-46,000
Absolute neutrophil count,/mm3
7,796 ± 9,148
5,025
0-35.000
Platelet count,/mm3
59,221 ± 54,733
51,000
10,000-235,000
PT, seconds
24.8 ± 14.3
21.7
10.3-69.0
aPTT, seconds
42.3 ± 14.5
39
24.7-74.2
Fibrinogen, mg/dL
206 ± 161
171
0-607
Triglycerides, mg/dL
555 ± 348
528
108-1,511
Albumin, g/L
2.6 ± 0.6
2.6
1.4-4.1
Sodium, mEq/L
132.2 ± 7.1
132
120-147
Alanine aminotransferase, U/L
962 ± 2,713
135
21-11,276
Lactate dehydrogenase, U/L
3,721 ± 3,071
2,300
765-100,000
Ferritin, μg/dL
25,313 ± 31,246
6,341
765-100,000
aPTT, activated partial thromboplastin time; HLH, hemophagocytic lymphohistiocytosis; MAS, macrophage activation syndrome; MODS, multiple organ dysfunction syndrome; PT, Prothrombin time; SD, standard deviation.
During the study period, patients with hyperferritinemia and secondary HLH/sepsis/MODS/MAS were assigned to one of four different treatment protocols according to center preference. In protocol 1, the patients (n = 8) received PE or intravenous methylprednisolone or both. PE was performed by using a rapid exchange of 1.5 estimated TPVs in the first PE session and then a lower exchange rate with one estimated TPV every 24 hours. Intravenous methylprednisolone was given at 30 mg/kg for 3 days, 20 mg/kg for 2 days, 10 mg/kg for 2 days, 5 mg/kg for 2 days, and then 2 mg/kg. Intravenous methylprednisolone was not used in two patients in protocol 1, because of severe Varicella infection. In protocol 2, the patients (n = 9) received PE and IVIG. PE was performed by using 1.5 estimated TPVs every 24 hours, and IVIG was given at a dose of 1 g/kg.
In protocol 3, the patients (n = 4) received the HLH-94 protocol (intravenous dexamethasone 10 mg/m2, intravenous cyclosporine A 6 mg/kg, or intravenous etoposide 150 mg/m2) and IVIG 2 g/kg. If treatment failure was determined, then PE was performed with 1.5 estimated TPVs every 24 hours. In protocol 4, the patients (n = 2) received dexamethasone 10 mg/m2 and IVIG 1 g/kg. If treatment failure was determined, then PE was performed with one estimated TPV.
In all eight centers, PE was performed in patients with hyperferritinemia and more than two organ dysfunctions. PE was continued until organ dysfunctions resolved, ferritin levels decreased, and platelet count increased greater than 100,000/mm3. PE was performed median 5 (1 to 18) times, and PE median doses were 1.5 estimated TPVs and 78 mL/kg (60 to 80). The serum ferritin and lactate dehydrogenase levels decreased and platelet counts increased gradually after each PE sessions (Figure 2).
The overall mortality was 13% (n = 3). Mortality rates were 50% (2/4) and 50% (1/2) in the patients with secondary HLH/sepsis/MODS/MAS treated with chemotherapy and dexamethasone-based treatment protocols (protocols 3 and 4, respectively). Despite therapy, two patients died because of progressive MOF and one patient died because of pulmonary bleeding. Two of the non-survivors had a culture-positive infection. There were no deaths in children who were not treated protocols based on dexamethasone, cyclosporin A, or etoposide.
We compared demographic variables, laboratory parameters, and use of treatment protocols as they related to outcome in the survivors and non-survivors (Table 4). There were differences between survivors and non-survivors in regard to gender, serum ferritin levels, and treatment protocols (all P < 0.1). In the multiple regression analysis, gender, serum ferritin level, and treatment protocols were independent variables. Survival was best explained by the treatment protocol used (R = 0.55, β = 0.6, P = 0.001, 95% confidence interval (CI) 0.1 to 0.33) even after ferritin levels and gender were controlled for. Ferritin levels also predicted survival (R = 0.74, β = 0.4, P = 0.004, 95% CI 0.0001 to 0.0008) but gender did not.
Table 4
Demographic characteristics and laboratory variables of survivors and non-survivors
 
Survivors (n= 20)
Non-survivors (n= 3)
 
 
Frequency, percentage
Number
Frequency, percentage
Number
P
Females/Males
20/80
4/16
67/33
2/1
0.08
Underlying disease
80
16
67
2
0.6
Mechanical ventilation
85
17
100
3
0.5
 
Mean ± SD
Median
Range
Mean ± SD
Median
Range
P
Age, years
6.9 ± 3.3
6.7
2-14
8 ± 6.3
6.2
2.8-15.1
0.7
PRISM III-24 score
25.3 ± 13
21
7-48
14 ± 5.1
14
11-21
0.2
PELOD score
27.2 ± 14.5
25
4-53
22.3 ± 9.1
21
14-32
0.7
Number of organs involved
4.5 ± 1
5
3-6
5 ± 1
5
4-6
0.5
Hemoglobin, g/dL
7.5 ± 1.4
8
4.8-8.9
9.6 ± 4.9
8.8
5.2-15
0.4
Leukocytes,/mm3
8,814 ± 8,836
6,220
400-26,400
19,900 ± 22,981
11,000
2,700-46,000
0.3
Absolute neutrophil count,/mm3
66,688 ± 7,279
4,370
0-23,000
14,816 ± 17,783
8,030
1,450-35,000
0.3
Platelets,/mm3
59,255 ± 57,758
48,000
10,000-235,000
59,000 ± 35,510
79,000
18,000-80,000
0.6
PT, seconds
26.4 ± 14.9
24.9
10.3-69
15.3 ± 1.3
15.3
13.9-16.5
0.2
aPTT, seconds
41.9 ± 14.1
39
24.7-74
41.2 ± 17.2
39.4
25-59
0.5
Fibrinogen, mg/dL
201 ± 162
180
0-607
236 ± 180
156
110-443
0.2
Triglycerides, mg/dL
554 ± 349
436
122-1551
559.5 ± 417
638
108-931
0.7
Albumin, g/dL
2.6 ± 0.6
2.7
1.4-4.1
2.8 ± 0.5
2.6
2.4-3.3
0.8
Sodium, mEq/L
131 ± 6
132
120-141
141 ± 8.5
141
135-147
0.3
ALT, U/L
324 ± 585
128
21-2,362
5,751 ± 7,812
1250
227-11,276
0.14
LDH, U/L
3,884 ± 3146
2300
410-11,270
2,327 ± 2,665
2,327
443-4,212
0.6
Ferritin, μg/dL
20,124 ± 27163
5054
765-100,000
40,802 ± 34,583
40,802
16,348-65,256
0.06
Treatment protocols
Frequency
Number
Frequency
Number
0.002
PE and chemotherapy or dexamethasone (protocols 3 and 4)
50%
3/6
50%
3/6
 
PE and methylprednisolone or IVIG (protocols 1 and 2)
100%
17/17
None
   
ALT, alanine aminotransferase; aPTT, activated partial thromboplastin time; IVIG, intravenous immunoglobulin; LDH, lactate dehydrogenase; PE, plasma exchange; PELOD, Pediatric Logistic Organ Dysfunction; PRISM, Pediatric Risk of Mortality; PT, Prothrombin time; SD, standard deviation.
We further compared demographic variables and laboratory parameters between the 'PE and methylprednisolone or IVIG treated group' and the 'PE and chemotherapy or dexamethasone treated group' (Table 5). There were differences between treatment protocol use in regard to gender, prothrombin time (PT), aPTT levels, and alanine aminotransferase (ALT) levels (P < 0.1). In the multiple regression analysis, in which gender, PT, aPTT, ALT levels, and treatment protocol were controlled for, only treatment protocol remained associated with survival (R = 0.84, β = 0.79, P = 0.03, 95% CI 0.8 to 1.5).
Table 5
Demographic characteristics and laboratory variables of patients with secondary HLH/MAS treated with PE and methylprednisolone or IVIG or with PE and chemotherapy or dexamethasone
 
PE and methylprednisolone or IVIG (n= 17)
PE and chemotherapy or dexamethasone (n= 6)
 
 
Frequency, percentage
Number
 
Frequency, percentage
Number
 
P
Males/Females
88/12
15/2
 
33/67
2/4
 
0.003
Underlying disease
77
13
 
83
5
 
0.6
Mechanical ventilation
89
15
 
83
5
 
0.5
 
Mean ± SD
Median
Range
Mean ± SD
Median
Range
 
Age, years
6.8 ± 3.3
6.5
2-14
7.6 ± 4.8
6.8
2.8-15.1
0.8
PRISM III-24 score
25.6 ± 13.4
25.6
7-48
19.5 ± 8.8
17.5
11-53
0.3
PELOD score
26.2 ± 13.8
24
4-52
27.5 ± 15.
26.5
13-53
0.9
Number of organs involved
4.5 ± 1
5
3-6
4.6 ± 1
5
3-6
0.7
Hemoglobin, g/dL
7.3 ± 1.5
8
4.8-8.9
8.8 ± 3.3
8.3
5.2-15
0.4
Leukocytes,/mm3
10,145 ± 9,230
6,270
500-26,400
12,096 ± 17189
6,500
400-46,600
0.9
Absolute neutrophil count,/mm3
7,420 ± 7,598
7,420
100-23,300
8,801 ± 13,291
4,475
0-35,000
0.6
Platelet,/mm3
51,594 ± 42,767
45,000
10,000-187,000
80,833 ± 81,052
70,000
12,000-235,000
0.6
PT, seconds
29.2 ± 14.68
25
13-69
14 ± 2.1
14.1
10.3-16.5
0.004
aPTT, seconds
45.2 ± 13.1
45.8
30-74
33.2 ± 14
25.7
24.7-59.3
0.05
Fibrinogen, mg/dL
188.3 ± 169
148.5
0-607
206 ± 139
206
110-443
0.2
Triglycerides, mg/dL
515 ± 275
450
122-1,094
654 ± 507
547
108-1,511
0.9
Albumin, mg/dL
2.6 ± 0.7
2.7
1.4-4.1
2.7 ± 0.3
2.6
2.4-3.3
0.9
Sodium, mEq/L
131 ± 6.9
131
120-141
136 ± 6.7
135
130-147
0.1
LDH, U/L
42,10 ± 3306
2,300
750-11,270
2,349 ± 1,934
2,310
410-4,374
0.4
ALT, U/L
310 ± 627
100
21-2,362
3,080 ± 5,466
409
227-11,276
0.03
Ferritin, μg/dL
20,538 ± 28,199
5,109
765-100,000
38,844 ± 38,130
31,718
2,998-97,767
0.2
MV duration, days
18.7 ± 17.4
12
2-65
20 ± 25
5
1-60
0.6
PICU LOS, days
23 ± 18.8
16
4-69
21.6 ± 23
12.9
1-60
0.5
Hospital LOS, days
43.9 ± 33.7
30
11-110
39.2 ± 26.3
41.5
5-70
0.8
 
Frequency
Number
 
Frequency
Number
  
Survival
100%
17
 
50%
3
 
0.002
ALT, alanine aminotransferase; aPTT, activated partial thromboplastin time; HLH, hemophagocytic lymphohistiocytosis; IVIG, intravenous immunoglobulin; LDH, lactate dehydrogenase; LOS, length of stay; MAS, macrophage activation syndrome; MV, mechanical ventilation; PE, plasma exchange; PELOD, Pediatric Logistic Organ Dysfunction; PICU, pediatric intensive care unit; PRISM, Pediatric Risk of Mortality; PT, Prothrombin time; SD, standard deviation.

Discussion

The severity of the condition of the patients in our cohort study is illustrated by the median ferritin level of 6,341 μg/dL and the presence of severe MODS/MOF. According to Bennett and colleagues [15], higher levels of ferritin (> 3,000 ng/mL) are associated with increased mortality in a dose response fashion, and Garcia and colleagues [17] reported 100% mortality in children with high ferritin levels and severe sepsis. Additionally, the children in our study had a median of five dysfunctioning organs, for which prognosis is considered very poor [21]. According to Leclerc and colleagues [22], there is a cumulative influence of organ dysfunction and the septic state on mortality of critically ill children. Furthermore, given that over half of our patients had septic shock/severe sepsis, the expected mortality of patients with sepsis in our cohort was 92% [22]. The survival observed in our study was significantly better than expected.
It is of major importance for critical care physicians to be aware that the clinical picture of hemophagocytosis encountered during HLH, sepsis, MODS, and MAS can overlap and share common features. These syndromes cannot be reliably discriminated by using diagnostic criteria devised for HLH [1, 16, 23, 24]. Many patients with HLH will progress to develop MODS, which is also seen in patients with severe sepsis [1, 2]. Of the 122 children reported to have HLH in 1996, only 25 met the more strict genetic criteria of familial HLH; the rest of the children were deemed to have secondary HLH. A variety of primary infections were present in 41% of these secondary HLH cases [25]. Hemophagocytosis has been described in 64.5% of 107 autopsies in critically ill medical patients with thrombocytopenia-associated MOF, and all patients with hemophagocytosis had infection [26]. Castillo and Carcillo [16] reviewed the shared clinical similarities between secondary HLH, severe sepsis, SIRS, MODS, and MAS and concluded that these entities could be considered intermediate phenotypes of the same inflammatory process.
According to the International Histiocyte Society guidelines, the treatment of HLH involves chemoimmune therapy. However, some investigators question whether these patients, especially those with sepsis-associated hemophagocytsosis, should receive immunosuppression treatment even when HLH criteria are met. Patients with secondary HLH treated with chemotherapy-based protocols have had only a 55% survival at 3 years, and early mortality was related to hemorrhages and infections [27]. An HLH series of 20 patients showed a mortality rate of 60%, and deaths were attributed to invasive infections in eight cases [28]. In a previous Turkish pediatric cohort, Karapınar and colleagues [2] reported that survival was 43% in critically ill pediatric patients whose HLH and MODS were treated with the HLH-94 2004 protocol. Recently published adult data showed an 89% mortality in patients with virus-associated hemophagocytic syndrome treated with chemoimmune therapy [29]. By contrast, in the present study, 65% of the patients with hyperferritinemia and MODS had active infections and the survival was 100% in the group were not treated with chemotherapeutics or dexamethasone.
All patients in our cohort study received PE therapy. PE is an extracorporeal blood purification technique designed to remove various toxic and inflammatory mediators and to replenish essential compounds via the replacement plasma. PE therapy reverses HLH, possibly by decreasing circulating inflammatory cytokines, including macrophage colony-stimulating factor (M-CSF) [30, 31]. There have also been anecdotal reports of patients with secondary HLH/MAS successfully treated with PE [3032]. In the present study, PE was used as standard care for patients with secondary HLH/MAS to control hypercytokinemia. Several studies favor the use of PE in severely ill septic patients with MODS and thrombocytopenia-associated MOF [3335]. Stegmayr and colleagues [36] reported a beneficial effect of PE as supportive therapy in patients with progressive disseminated intravascular coagulation and MODS, especially if septic shock was present. In the present study, mortality was detected only in patients who received treatment with cyclosporine, dexamethasone, and/or etoposide. Thus, any beneficial effects of PE might not override the impact of chemotherapeutics in children with secondary HLH/sepsis/MODS/MAS.
The addition of intravenous methylprednisolone and immunoglobulins as anti-inflammatory agents may be less toxic than the addition of dexamethasone, cyclosporine A, and/or etoposide. Intravenous dexamethasone is cytotoxic for lymphocytes and inhibits expression of cytokines and differentiation of dendritic cells. Since dexamethasone crosses the blood-brain barrier better than methylprednisolone, it offers the advantage of suppressing central nervous system inflammation for patients with primary HLH; however, the immunosuppressive potency of dexamethasone may be deleterious in patients with sepsis. Hurwitz and colleagues [37] reported the occurrence of fatal or near-fatal sepsis in 16 of 38 children with newly diagnosed acute lymphoblastic leukemia (ALL) treated with a new induction regimen that differed from its predecessor in that it administered long-term high-dose dexamethasone. The investigators concluded that the substitution of dexamethasone for prednisone or methylprednisolone in an otherwise intensive conventional induction regimen for previously untreated children with ALL resulted in an alarmingly high incidence of septic episodes and deaths [36]. In contrast, high-dose intravenous methylprednisolone treatment did not increase mortality. Etoposide and cyclosporin A also have potent immunosuppressive and cytotoxic effects compared with IVIG. Immunoglobulins probably act, in part, by providing cytokine- and pathogen-specific antibodies. Hence, in children with active infection, it may be better not to use agents that impair the host's ability to fight off infection.
There are several limitations to consider when evaluating our study. By nature of the cohort design, this is not a randomized controlled study. A randomized trial comparing the two treatment strategies are needed. Second, since all patients received PE therapy, the observations in this study may or may not apply to children who do not receive PE therapy as part of the approach to secondary HLH/sepsis/MODS/MAS. Third, we did not routinely measure NK cell activity or sCD25, nor did we address perforin signaling genetics. Therefore, our findings should not be applied to children with primary HLH and homozygous perforin signaling mutational defects. Our findings should be considered only in children who either are heterozygous or lack these mutations. As Behrens and colleagues [38] recently reported, an experimental model of repeated Toll-like receptor-9 (TLR-9) stimulation with interferon-gamma led to HLH/MAS after endotoxin exposure in mice without any perforin signaling mutations. Our children may be better represented by this experimental model of acquired HLH/MAS disease than by the well-established congenital perforin signaling mutation knockout mouse models of primary HLH [39]. One should strictly use our definitions of secondary HLH/MAS (having suspected or proven infection and no family history or parental consanguinity, being 2 years old or older, having no central nervous system involvement, and having no prior history of HLH) when considering the applicability of our findings to one's practice. Finally, there are no data between outcome and gender association in patients with secondary HLH/MAS. The female preponderance seen in mortality in the present study needs further investigation.

Conclusions

This cohort study supports the beneficial effect of PE and less immunosuppressive and cytotoxic methylprednisone and IVIG therapies in patients with hyperferritinemia and secondary HLH/sepsis/MODS/MAS. No significant difference was seen in outcome between the more and less immunosuppressive groups, however the less immunosuppressive therapy may have less toxic effects than observed with the HLH-94 protocol and should be considered. Until a randomized trial is performed, one could consider this approach for the treatment of secondary HLH/MAS with MODS, especially in patients with sepsis-associated HLH/MAS.

Key messages

  • Hyperferritinemia-associated secondary hemophagocytic lymphohistiocytosis (HLH)/sepsis/multiple organ dysfunction syndrome (MODS)/macrophage activation syndrome (MAS) can be successfully treated with a less immunosuppressive approach than is recommended for primary HLH.
  • Plasma exchange may be an important therapeutic tool in the pediatric field for treatment of secondary HLH/MAS with MODS.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

DD is the guarantor of integrity of the entire study and participated in study concepts and design, definition of intellectual content, data collection, literature research, data analysis, and manuscript preparation, editing, and review. DY, BB, BK, TK, TFK, OD, NE, HG, AC, SK, and MK participated in study design, definition of intellectual content, data collection, and manuscript preparation, editing, and review. JAC participated in study concepts and design, definition of intellectual content, data collection, literature research, data analysis, and manuscript preparation, editing, and review. The authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Gauvin F, Toledano B, Champagne J, Lacroix J: Reactive hemophagocytic syndrome presenting as a component of multiple organ dysfunction syndrome. Crit Care Med 2000, 28: 3341-3345. 10.1097/00003246-200009000-00038CrossRefPubMed Gauvin F, Toledano B, Champagne J, Lacroix J: Reactive hemophagocytic syndrome presenting as a component of multiple organ dysfunction syndrome. Crit Care Med 2000, 28: 3341-3345. 10.1097/00003246-200009000-00038CrossRefPubMed
2.
Zurück zum Zitat Karapsınar B, Yilmaz D, Balkan C, Akin M, Ay Y, Kavakli K: An unusual cause of multiple organ dysfunction syndrome in the pediatric intensive care unit: hemophagocytic lymphohistiocytosis. Pediatr Crit Care 2009, 10: 285-290. 10.1097/PCC.0b013e318198868bCrossRef Karapsınar B, Yilmaz D, Balkan C, Akin M, Ay Y, Kavakli K: An unusual cause of multiple organ dysfunction syndrome in the pediatric intensive care unit: hemophagocytic lymphohistiocytosis. Pediatr Crit Care 2009, 10: 285-290. 10.1097/PCC.0b013e318198868bCrossRef
3.
Zurück zum Zitat Henter JI, Elinder G, Ost A: Diagnostic guidelines for hemaphagocytic lymphohistiocytosis. The FHL Study Group of the Histiocyte Society. Semin Oncol 1991, 18: 29-33.PubMed Henter JI, Elinder G, Ost A: Diagnostic guidelines for hemaphagocytic lymphohistiocytosis. The FHL Study Group of the Histiocyte Society. Semin Oncol 1991, 18: 29-33.PubMed
4.
Zurück zum Zitat Henter JI, Horne AC, Aricó M, Egeler RM, Filipovich AH, Imashuku S, Ladisch S, McClain K, Webb D, Winiarski J, Janka G: HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 2007, 48: 124-131. 10.1002/pbc.21039CrossRefPubMed Henter JI, Horne AC, Aricó M, Egeler RM, Filipovich AH, Imashuku S, Ladisch S, McClain K, Webb D, Winiarski J, Janka G: HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 2007, 48: 124-131. 10.1002/pbc.21039CrossRefPubMed
5.
Zurück zum Zitat Henter JI: Biology and treatment of familial hemophagocytic lymphohistiocytosis: importance of perforin in lymphocyte-mediated cytotoxicity and trigerring of apopitosis. Med Pediatr Oncol 2002, 38: 305-309. 10.1002/mpo.1340CrossRefPubMed Henter JI: Biology and treatment of familial hemophagocytic lymphohistiocytosis: importance of perforin in lymphocyte-mediated cytotoxicity and trigerring of apopitosis. Med Pediatr Oncol 2002, 38: 305-309. 10.1002/mpo.1340CrossRefPubMed
6.
7.
Zurück zum Zitat Imashuku S, Hibi S: Cytokines in hemaphagocytic syndrome. Br J Haematol 1991, 77: 438-440. 10.1111/j.1365-2141.1991.tb08600.xCrossRefPubMed Imashuku S, Hibi S: Cytokines in hemaphagocytic syndrome. Br J Haematol 1991, 77: 438-440. 10.1111/j.1365-2141.1991.tb08600.xCrossRefPubMed
8.
Zurück zum Zitat Fujiwara F, Hibi S, Imashhuku S: Hypercytokinemia in hemophagocytic syndrome. Am J Pediatr Hematol Oncol 1993, 15: 92-98. 10.1097/00043426-199302000-00012CrossRefPubMed Fujiwara F, Hibi S, Imashhuku S: Hypercytokinemia in hemophagocytic syndrome. Am J Pediatr Hematol Oncol 1993, 15: 92-98. 10.1097/00043426-199302000-00012CrossRefPubMed
9.
Zurück zum Zitat Ohga S, Matsuzaki A, Nishizaki M, Nagashima T, Kai T, Suda M, Ueda K: Inflammatory cytokines in virus-associated hemophagocytic syndrome Interferon gamma as a sensitive indicator of disease activity. Am J Pediatr Hematol Oncol 1993, 15: 291-298.PubMed Ohga S, Matsuzaki A, Nishizaki M, Nagashima T, Kai T, Suda M, Ueda K: Inflammatory cytokines in virus-associated hemophagocytic syndrome Interferon gamma as a sensitive indicator of disease activity. Am J Pediatr Hematol Oncol 1993, 15: 291-298.PubMed
10.
Zurück zum Zitat Patrick DA, Moore FA, Moore EE, Biff WL, Sauaia A, Barnett CC Jr: The inflammatory profile of interleukin-6, interleukin-8, and soluble intercellular adhesion molecule-1 in postinjury multiple organ failure. Am J Surg 1996, 172: 425-429. 10.1016/S0002-9610(96)00252-8CrossRef Patrick DA, Moore FA, Moore EE, Biff WL, Sauaia A, Barnett CC Jr: The inflammatory profile of interleukin-6, interleukin-8, and soluble intercellular adhesion molecule-1 in postinjury multiple organ failure. Am J Surg 1996, 172: 425-429. 10.1016/S0002-9610(96)00252-8CrossRef
11.
Zurück zum Zitat Rosenbloom AJ, Pinsky MR, Bryant JL, Shin A, Tran T, Whiteside T: Leukocyte activation in the peripheral blood of the patients with cirrhosis of the liver and SIRS. Correlation with serum interleukin-6 levels and organ dysfunction. JAMA 1995, 274: 58-65. 10.1001/jama.1995.03530010072037CrossRefPubMed Rosenbloom AJ, Pinsky MR, Bryant JL, Shin A, Tran T, Whiteside T: Leukocyte activation in the peripheral blood of the patients with cirrhosis of the liver and SIRS. Correlation with serum interleukin-6 levels and organ dysfunction. JAMA 1995, 274: 58-65. 10.1001/jama.1995.03530010072037CrossRefPubMed
12.
Zurück zum Zitat Janka GE, Schneider EM: Modern management of children with haemophagocytic lymphohistiocytosis. Br J Haemotol 2004, 124: 4-14. 10.1046/j.1365-2141.2003.04726.xCrossRef Janka GE, Schneider EM: Modern management of children with haemophagocytic lymphohistiocytosis. Br J Haemotol 2004, 124: 4-14. 10.1046/j.1365-2141.2003.04726.xCrossRef
13.
Zurück zum Zitat Kwak EL, Larochelle DA, Beaumont C, Torti SV, Torti FM: Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. J Biol Chem 1995, 270: 15285-15293. 10.1074/jbc.270.25.15285CrossRefPubMed Kwak EL, Larochelle DA, Beaumont C, Torti SV, Torti FM: Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. J Biol Chem 1995, 270: 15285-15293. 10.1074/jbc.270.25.15285CrossRefPubMed
14.
Zurück zum Zitat Allen CE, Yu X, Kozinetz CA, McClain KL: Highly elevated ferritin levels and the diagnosis of hemaphagocytic lymphohistiocytosis. Pediatr Blood Cancer 2008, 50: 1227-1235. 10.1002/pbc.21423CrossRefPubMed Allen CE, Yu X, Kozinetz CA, McClain KL: Highly elevated ferritin levels and the diagnosis of hemaphagocytic lymphohistiocytosis. Pediatr Blood Cancer 2008, 50: 1227-1235. 10.1002/pbc.21423CrossRefPubMed
15.
Zurück zum Zitat Bennett TD, Hayward KN, Farris RW, Ringold S, Wallace CA, Brogan TV: Very high serum ferritin levels are associated with increased mortality and critical care in pediatric patients. Pediatr Crit Care 2011, 12: e233-236. 10.1097/PCC.0b013e31820abca8CrossRef Bennett TD, Hayward KN, Farris RW, Ringold S, Wallace CA, Brogan TV: Very high serum ferritin levels are associated with increased mortality and critical care in pediatric patients. Pediatr Crit Care 2011, 12: e233-236. 10.1097/PCC.0b013e31820abca8CrossRef
16.
Zurück zum Zitat Castillo L, Carcillo J: Secondary hemophagocytic lymphohistiocytosis and severe sepsis/systemic inflammatory response syndrome/multiorgan dysfunction syndrome/macrophage activation syndrome share common intermediate phenotypes on a spectrum of inflammation. Pediatr Crit Care Med 2009, 10: 387-392. 10.1097/PCC.0b013e3181a1ae08CrossRefPubMed Castillo L, Carcillo J: Secondary hemophagocytic lymphohistiocytosis and severe sepsis/systemic inflammatory response syndrome/multiorgan dysfunction syndrome/macrophage activation syndrome share common intermediate phenotypes on a spectrum of inflammation. Pediatr Crit Care Med 2009, 10: 387-392. 10.1097/PCC.0b013e3181a1ae08CrossRefPubMed
17.
Zurück zum Zitat Garcia PC, Longhi F, Branco RG, Piva JP, Lacks D, Tasker RC: Ferritin levels in children with severe sepsis and septic shock. Acta Paediatr 2007, 6: 1829-1831.CrossRef Garcia PC, Longhi F, Branco RG, Piva JP, Lacks D, Tasker RC: Ferritin levels in children with severe sepsis and septic shock. Acta Paediatr 2007, 6: 1829-1831.CrossRef
18.
Zurück zum Zitat Pollack MM: PRISM III: an updated pediatric risk of mortality score. Crit Care Med 1996, 24: 743-752. 10.1097/00003246-199605000-00004CrossRefPubMed Pollack MM: PRISM III: an updated pediatric risk of mortality score. Crit Care Med 1996, 24: 743-752. 10.1097/00003246-199605000-00004CrossRefPubMed
19.
Zurück zum Zitat Leteurtre S, Duhamel A, Grandbastien B, Lacroix J, Leclerc F: Paediatric logistic organ dysfunction (PELOD) score. Lancet 2003, 362: 192-197. 10.1016/S0140-6736(03)13908-6CrossRefPubMed Leteurtre S, Duhamel A, Grandbastien B, Lacroix J, Leclerc F: Paediatric logistic organ dysfunction (PELOD) score. Lancet 2003, 362: 192-197. 10.1016/S0140-6736(03)13908-6CrossRefPubMed
20.
Zurück zum Zitat Goldstein B, Giroir B, Randolph A, The Members of the International Consensus Conference on Pediatric Sepsis: International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005, 6: 2-8. 10.1097/01.PCC.0000149131.72248.E6CrossRefPubMed Goldstein B, Giroir B, Randolph A, The Members of the International Consensus Conference on Pediatric Sepsis: International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005, 6: 2-8. 10.1097/01.PCC.0000149131.72248.E6CrossRefPubMed
21.
Zurück zum Zitat Cengiz P, Zimmerman J: Pediatric multiple organ dysfunction. In Pediatric Critical Care. 3rd edition. Edited by: Fuhrman BP, Zimmerman J. Philadelphia: Mosby; 2006:494-1507. Cengiz P, Zimmerman J: Pediatric multiple organ dysfunction. In Pediatric Critical Care. 3rd edition. Edited by: Fuhrman BP, Zimmerman J. Philadelphia: Mosby; 2006:494-1507.
22.
Zurück zum Zitat Leclerc F, Leteurtre S, Duhamel A, Grandbastien B, Proulx F, Martinot A, Gauvin F, Hubert P, Lacroix J: Cumulative influence of organ dysfunctions and septic state on mortality of critically ill children. Am J Respir Crit Care Med 2005, 171: 348-353. 10.1164/rccm.200405-630OCCrossRefPubMed Leclerc F, Leteurtre S, Duhamel A, Grandbastien B, Proulx F, Martinot A, Gauvin F, Hubert P, Lacroix J: Cumulative influence of organ dysfunctions and septic state on mortality of critically ill children. Am J Respir Crit Care Med 2005, 171: 348-353. 10.1164/rccm.200405-630OCCrossRefPubMed
23.
Zurück zum Zitat Buyse S, Teixeria L, Galicier L, Mariotte E, Lemiale V, Seguin A, Bertheau P, Canet E, de Labarthe A, Darmon M, Rybojad M, Schlemmer B, Azoulay E: Critical care management of patients with hemaphagocytic lymphohistiocytosis. Intensive Care Med 2010, 36: 1695-1702. 10.1007/s00134-010-1936-zCrossRefPubMed Buyse S, Teixeria L, Galicier L, Mariotte E, Lemiale V, Seguin A, Bertheau P, Canet E, de Labarthe A, Darmon M, Rybojad M, Schlemmer B, Azoulay E: Critical care management of patients with hemaphagocytic lymphohistiocytosis. Intensive Care Med 2010, 36: 1695-1702. 10.1007/s00134-010-1936-zCrossRefPubMed
24.
Zurück zum Zitat Kuwata K, Yamada S, Kinuwaki E, Naito M, Mitsuya H: Peripheral hemophagocytosis: an early indication of advanced systemic inflammatory response syndrome/hemophagocytic syndrome. Shock 2006, 25: 344-350. 10.1097/01.shk.0000209520.82377.41CrossRefPubMed Kuwata K, Yamada S, Kinuwaki E, Naito M, Mitsuya H: Peripheral hemophagocytosis: an early indication of advanced systemic inflammatory response syndrome/hemophagocytic syndrome. Shock 2006, 25: 344-350. 10.1097/01.shk.0000209520.82377.41CrossRefPubMed
25.
Zurück zum Zitat Aricò M, Janka G, Fischer A, Henter JI, Blanche S, Elinder G, Martinetti M, Rusca MP: Hemaphagocytic lymphohistiocytosis. Report of 122 children from the International Registry FHL Study Group of the Histiocyte Society. Leukemia 1996, 10: 197-203.PubMed Aricò M, Janka G, Fischer A, Henter JI, Blanche S, Elinder G, Martinetti M, Rusca MP: Hemaphagocytic lymphohistiocytosis. Report of 122 children from the International Registry FHL Study Group of the Histiocyte Society. Leukemia 1996, 10: 197-203.PubMed
26.
Zurück zum Zitat Strauss R, Neureiter D, Westenburger B, Wehler M, Kirchner T, Hann EG: Multifactorial risk analysis of bone marrow histiocytic hyperplasia with hemophagocytosis in critically ill medical patients-a postmortem clinicopathologic analysis. Crit Care Med 2004, 32: 1316-1321. 10.1097/01.CCM.0000127779.24232.15CrossRefPubMed Strauss R, Neureiter D, Westenburger B, Wehler M, Kirchner T, Hann EG: Multifactorial risk analysis of bone marrow histiocytic hyperplasia with hemophagocytosis in critically ill medical patients-a postmortem clinicopathologic analysis. Crit Care Med 2004, 32: 1316-1321. 10.1097/01.CCM.0000127779.24232.15CrossRefPubMed
27.
Zurück zum Zitat Henter JI, Samuelsson-Horne A, Aricò M, Egeler RM, Elinder G, Filipovich AH, Gadner H, Imashuku S, Komp D, Ladisch S, Webb D, Janka G, Histocyte Society: Treatment of hemaphogocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood 2002, 100: 2367-2373. 10.1182/blood-2002-01-0172CrossRefPubMed Henter JI, Samuelsson-Horne A, Aricò M, Egeler RM, Elinder G, Filipovich AH, Gadner H, Imashuku S, Komp D, Ladisch S, Webb D, Janka G, Histocyte Society: Treatment of hemaphogocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood 2002, 100: 2367-2373. 10.1182/blood-2002-01-0172CrossRefPubMed
28.
Zurück zum Zitat Sung L, King SM, Carcao M, Trebo M, Weitzman SS: Adverse outcomes in primary hemophagocytic lymphhistiocytosis. J Pediatr Hematol Oncol 2002, 24: 550-554. 10.1097/00043426-200210000-00011CrossRefPubMed Sung L, King SM, Carcao M, Trebo M, Weitzman SS: Adverse outcomes in primary hemophagocytic lymphhistiocytosis. J Pediatr Hematol Oncol 2002, 24: 550-554. 10.1097/00043426-200210000-00011CrossRefPubMed
29.
Zurück zum Zitat Beutel G, Wiesner O, Eder M, Hafer C, Schneider AS, Kielstein JT, Kühn C, Heim A, Ganzenmüller T, Kreipe HH, Haverich A, Tecklenburg A, Ganser A, Welte T, Hoeper MM: Virus-associated hemophagocytic syndrome as a major contributor to death in patients with 2009 influenza A (H1N1) infection. Crit Care 2011, 15: R80. 10.1186/cc10073PubMedCentralCrossRefPubMed Beutel G, Wiesner O, Eder M, Hafer C, Schneider AS, Kielstein JT, Kühn C, Heim A, Ganzenmüller T, Kreipe HH, Haverich A, Tecklenburg A, Ganser A, Welte T, Hoeper MM: Virus-associated hemophagocytic syndrome as a major contributor to death in patients with 2009 influenza A (H1N1) infection. Crit Care 2011, 15: R80. 10.1186/cc10073PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Nakakura H, Ashida A, Matsumura H, Murata T, Nagatoya K, Shibahara N, Inoue T, Tamai H: A case report of successful treatment with plasma exchange for hemophagocytic syndrome associated with severe systemic juvenile idiopathic arthritis in an infant girl. Ther Apher Dial 2009, 13: 71-76. 10.1111/j.1744-9987.2009.00607.xCrossRefPubMed Nakakura H, Ashida A, Matsumura H, Murata T, Nagatoya K, Shibahara N, Inoue T, Tamai H: A case report of successful treatment with plasma exchange for hemophagocytic syndrome associated with severe systemic juvenile idiopathic arthritis in an infant girl. Ther Apher Dial 2009, 13: 71-76. 10.1111/j.1744-9987.2009.00607.xCrossRefPubMed
31.
Zurück zum Zitat Song KS, Sung HJ: Effect of plasma exchange on circulating IL-6 levels in a patient with fatal hemophagocytic syndrome associated with bile ductopenia. Ther Apher Dial 2006, 10: 87-89. 10.1111/j.1744-9987.2006.00347.xCrossRefPubMed Song KS, Sung HJ: Effect of plasma exchange on circulating IL-6 levels in a patient with fatal hemophagocytic syndrome associated with bile ductopenia. Ther Apher Dial 2006, 10: 87-89. 10.1111/j.1744-9987.2006.00347.xCrossRefPubMed
32.
Zurück zum Zitat Matsumoto Y, Naniwa D, Banno S, Suguira Y: The efficacy of therapeutic plasmapheresis for the treatment of fatal hemophagocytic syndrome: two case reports. Ther Apher Dial 1998, 2: 300-304. 10.1111/j.1744-9987.1998.tb00127.xCrossRef Matsumoto Y, Naniwa D, Banno S, Suguira Y: The efficacy of therapeutic plasmapheresis for the treatment of fatal hemophagocytic syndrome: two case reports. Ther Apher Dial 1998, 2: 300-304. 10.1111/j.1744-9987.1998.tb00127.xCrossRef
33.
Zurück zum Zitat Satomi A, Nagai S, Nagai T, Niikura K, Ideura T, Ogata H, Akizawa T: Effect of plasma exchange on refractory hemopahocytic syndrome complicated with myelodisplastic syndrome. Ther Apher 1999, 3: 317-319. 10.1046/j.1526-0968.1999.00209.xCrossRefPubMed Satomi A, Nagai S, Nagai T, Niikura K, Ideura T, Ogata H, Akizawa T: Effect of plasma exchange on refractory hemopahocytic syndrome complicated with myelodisplastic syndrome. Ther Apher 1999, 3: 317-319. 10.1046/j.1526-0968.1999.00209.xCrossRefPubMed
34.
Zurück zum Zitat Stegmayr BG: Apheresis as therapy for patients with severe sepsis and multiorgan dysfunction syndrome. Ther Apher 2001, 5: 123-127. 10.1046/j.1526-0968.2001.005002123.xCrossRefPubMed Stegmayr BG: Apheresis as therapy for patients with severe sepsis and multiorgan dysfunction syndrome. Ther Apher 2001, 5: 123-127. 10.1046/j.1526-0968.2001.005002123.xCrossRefPubMed
35.
Zurück zum Zitat Busund R, Koukline V, Utrobin U, Nedashkovsky E: Plasmapheresis in severe sepsis and septic shock: a prospective, randomized, controlled trial. Intensive Care Med 2002, 28: 1434-1439. 10.1007/s00134-002-1410-7CrossRefPubMed Busund R, Koukline V, Utrobin U, Nedashkovsky E: Plasmapheresis in severe sepsis and septic shock: a prospective, randomized, controlled trial. Intensive Care Med 2002, 28: 1434-1439. 10.1007/s00134-002-1410-7CrossRefPubMed
36.
Zurück zum Zitat Stegmayr BG, Banga R, Berggren L, Norda R, Rydvall A, Vikerfors T: Plasma exchange as rescue therapy in multiple organ failure including acute renal failure. Crit Care Med 2003, 31: 1730-1736. 10.1097/01.CCM.0000064742.00981.14CrossRefPubMed Stegmayr BG, Banga R, Berggren L, Norda R, Rydvall A, Vikerfors T: Plasma exchange as rescue therapy in multiple organ failure including acute renal failure. Crit Care Med 2003, 31: 1730-1736. 10.1097/01.CCM.0000064742.00981.14CrossRefPubMed
37.
Zurück zum Zitat Hurwitz CA, Silverman LB, Schorin MA, Clavell LA, Dalton VK, Glick KM, Gelber RD, Sallan SE: Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer 2000, 88: 1964-1969. 10.1002/(SICI)1097-0142(20000415)88:8<1964::AID-CNCR27>3.0.CO;2-1CrossRefPubMed Hurwitz CA, Silverman LB, Schorin MA, Clavell LA, Dalton VK, Glick KM, Gelber RD, Sallan SE: Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer 2000, 88: 1964-1969. 10.1002/(SICI)1097-0142(20000415)88:8<1964::AID-CNCR27>3.0.CO;2-1CrossRefPubMed
38.
Zurück zum Zitat Behrens EM, Canna SW, Slade K, Rao S, Kreiger PA, Paessler M, Kambayashi T, Koretzky GA: Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J Clin Invest 2011, 121: 2264-2277. 10.1172/JCI43157PubMedCentralCrossRefPubMed Behrens EM, Canna SW, Slade K, Rao S, Kreiger PA, Paessler M, Kambayashi T, Koretzky GA: Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J Clin Invest 2011, 121: 2264-2277. 10.1172/JCI43157PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Pachlopnik Schmid J, Côte M, Ménager MM, Burgess A, Nehme N, Ménasché G, Fischer A, de Saint Basile G: Inherited defects in lymphocyte cytotoxic activity. Immunol Rev 2010, 235: 10-23.CrossRefPubMed Pachlopnik Schmid J, Côte M, Ménager MM, Burgess A, Nehme N, Ménasché G, Fischer A, de Saint Basile G: Inherited defects in lymphocyte cytotoxic activity. Immunol Rev 2010, 235: 10-23.CrossRefPubMed
Metadaten
Titel
Hyperferritinemia in the critically ill child with secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction syndrome/macrophage activation syndrome: what is the treatment?
verfasst von
Demet Demirkol
Dincer Yildizdas
Benan Bayrakci
Bulent Karapinar
Tanil Kendirli
Tolga F Koroglu
Oguz Dursun
Nilgün Erkek
Hakan Gedik
Agop Citak
Selman Kesici
Metin Karabocuoglu
Joseph A Carcillo
Turkish Secondary HLH/MAS Critical Care Study Group
Publikationsdatum
01.04.2012
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 2/2012
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc11256

Weitere Artikel der Ausgabe 2/2012

Critical Care 2/2012 Zur Ausgabe

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Traumatologische Notfälle Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.