Skip to main content
Erschienen in: NeuroMolecular Medicine 3/2008

01.09.2008 | Review Paper

Neurotrophic Factors in Autonomic Nervous System Plasticity and Dysfunction

verfasst von: Mark P. Mattson, Ruiqian Wan

Erschienen in: NeuroMolecular Medicine | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

During development, neurotrophic factors are known to play important roles in regulating the survival of neurons in the autonomic nervous system (ANS) and the formation of their synaptic connectivity with their peripheral targets in the cardiovascular, digestive, and other organ systems. Emerging findings suggest that neurotrophic factors may also affect the functionality of the ANS during adult life and may, in part, mediate the effects of environmental factors such as exercise and dietary energy intake on ANS neurons and target cells. In this article, we describe the evidence that ANS neurons express receptors for multiple neurotrophic factors, and data suggesting that activation of those receptors can modify plasticity in the ANS. Neurotrophic factors that may regulate ANS function include brain-derived neurotrophic factor, nerve growth factor, insulin-like growth factors, and ciliary neurotrophic factor. The possibility that perturbed neurotrophic factor signaling is involved in the pathogenesis of ANS dysfunction in some neurological disorders is considered, together with implications for neurotrophic factor-based therapeutic interventions.
Literatur
Zurück zum Zitat Aharon-Peretz, J., Harel, T., Revach, M., & Ben-Haim, S. A. (1992). Increased sympathetic and decreased parasympathetic cardiac innervation in patients with Alzheimer’s disease. Archives of Neurology, 49, 919–922PubMed Aharon-Peretz, J., Harel, T., Revach, M., & Ben-Haim, S. A. (1992). Increased sympathetic and decreased parasympathetic cardiac innervation in patients with Alzheimer’s disease. Archives of Neurology, 49, 919–922PubMed
Zurück zum Zitat Ahmet, I., Wan, R., Mattson, M. P., Lakatta, E. G., & Talan, M. (2005). Cardioprotection by intermittent fasting in rats. Circulation, 112, 3115–3121.PubMed Ahmet, I., Wan, R., Mattson, M. P., Lakatta, E. G., & Talan, M. (2005). Cardioprotection by intermittent fasting in rats. Circulation, 112, 3115–3121.PubMed
Zurück zum Zitat Airaksinen, M. S., Holm, L., & Hatinen, T. (2006). Evolution of the GDNF family ligands and receptors. Brain Behavior and Evolution, 68, 181–190. Airaksinen, M. S., Holm, L., & Hatinen, T. (2006). Evolution of the GDNF family ligands and receptors. Brain Behavior and Evolution, 68, 181–190.
Zurück zum Zitat Algotsson, A., Viitanen, M., Winblad, B., & Solders, G. (1995). Autonomic dysfunction in Alzheimer’s disease. Acta Neurologica Scandinavica, 91, 14–18.PubMed Algotsson, A., Viitanen, M., Winblad, B., & Solders, G. (1995). Autonomic dysfunction in Alzheimer’s disease. Acta Neurologica Scandinavica, 91, 14–18.PubMed
Zurück zum Zitat Allan, L. M., Ballard, C. G., Allen, J., Murray, A., Davidson, A. W., McKeith, I. G., & Kenny, R. A. (2007). Autonomic dysfunction in dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 671–677.PubMed Allan, L. M., Ballard, C. G., Allen, J., Murray, A., Davidson, A. W., McKeith, I. G., & Kenny, R. A. (2007). Autonomic dysfunction in dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 671–677.PubMed
Zurück zum Zitat Andrich, J., Schmitz, T., Saft, C., Postert, T., Kraus, P., Epplen, J. T., Przuntek, H., & Agelink, M. W. (2002). Autonomic nervous system function in Huntington’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 726–731.PubMed Andrich, J., Schmitz, T., Saft, C., Postert, T., Kraus, P., Epplen, J. T., Przuntek, H., & Agelink, M. W. (2002). Autonomic nervous system function in Huntington’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 726–731.PubMed
Zurück zum Zitat Anitha, M., Gondha, C., Sutliff, R., Parsadanian, A., Mwangi, S., Sitaraman, S. V., & Srinivasan, S. (2006). GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. Journal of Clinical Investigation, 116, 344–356.PubMed Anitha, M., Gondha, C., Sutliff, R., Parsadanian, A., Mwangi, S., Sitaraman, S. V., & Srinivasan, S. (2006). GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. Journal of Clinical Investigation, 116, 344–356.PubMed
Zurück zum Zitat Arsenijevic, Y., & Weiss, S. (1998). Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: Distinct actions from those of brain-derived neurotrophic factor. Journal of Neuroscience, 18, 2118–2128.PubMed Arsenijevic, Y., & Weiss, S. (1998). Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: Distinct actions from those of brain-derived neurotrophic factor. Journal of Neuroscience, 18, 2118–2128.PubMed
Zurück zum Zitat Asai, N., Fukuda, T., Wu, Z., Enomoto, A., Pachnis, V., Takahashi, M., & Costantini, F. (2006). Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development, 133, 4507–4516.PubMed Asai, N., Fukuda, T., Wu, Z., Enomoto, A., Pachnis, V., Takahashi, M., & Costantini, F. (2006). Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development, 133, 4507–4516.PubMed
Zurück zum Zitat Awerbuch, G. I., & Sandyk, R. (1994). Autonomic functions in the early stages of Parkinson’s disease. The International Journal of Neuroscience, 74, 9–16.PubMed Awerbuch, G. I., & Sandyk, R. (1994). Autonomic functions in the early stages of Parkinson’s disease. The International Journal of Neuroscience, 74, 9–16.PubMed
Zurück zum Zitat Baloh, R. H., Enomoto, H., Johnson, E. M., Jr., & Milbrandt, J. (2000). The GDNF family ligands and receptors—implications for neural development. Current Opinions in Neurobiology, 10, 103–110. Baloh, R. H., Enomoto, H., Johnson, E. M., Jr., & Milbrandt, J. (2000). The GDNF family ligands and receptors—implications for neural development. Current Opinions in Neurobiology, 10, 103–110.
Zurück zum Zitat Barbacid, M. (1995). Structural and functional properties of the TRK family of neurotrophin receptors. Annals of the New York Academy of Sciences, 766, 442–458.PubMed Barbacid, M. (1995). Structural and functional properties of the TRK family of neurotrophin receptors. Annals of the New York Academy of Sciences, 766, 442–458.PubMed
Zurück zum Zitat Bariohay, B., Lebrun, B., Moyse, E., & Jean, A. (2005). Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology, 146, 5612–5620.PubMed Bariohay, B., Lebrun, B., Moyse, E., & Jean, A. (2005). Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology, 146, 5612–5620.PubMed
Zurück zum Zitat Berretta, S. (2005). Cortico-amygdala circuits: Role in the conditioned stress response. Stress, 8, 221–232.PubMedCrossRef Berretta, S. (2005). Cortico-amygdala circuits: Role in the conditioned stress response. Stress, 8, 221–232.PubMedCrossRef
Zurück zum Zitat Bharmal, S., Slonimsky, J. D., Mead, J. N., Sampson, C. P., Tolkovsky, A. M., Yang, B., Bargman, R., & Birren, S. J. (2001). Target cells promote the development and functional maturation of neurons derived from a sympathetic precursor cell line. Developmental Neuroscience, 23, 153–164.PubMed Bharmal, S., Slonimsky, J. D., Mead, J. N., Sampson, C. P., Tolkovsky, A. M., Yang, B., Bargman, R., & Birren, S. J. (2001). Target cells promote the development and functional maturation of neurons derived from a sympathetic precursor cell line. Developmental Neuroscience, 23, 153–164.PubMed
Zurück zum Zitat Birkhofer, A., Schmidt, G., & Forstl, H. (2005). Heart and brain—the influence of psychiatric disorders and their therapy on the heart rate variability. Fortschritte der Neurologie-Psychiatrie, 73, 192–205.PubMed Birkhofer, A., Schmidt, G., & Forstl, H. (2005). Heart and brain—the influence of psychiatric disorders and their therapy on the heart rate variability. Fortschritte der Neurologie-Psychiatrie, 73, 192–205.PubMed
Zurück zum Zitat Boesmans, W., Gomes, P., Janssens, J., Tack, J., & Vanden Berghe, P. (2007). Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut (Epub ahead of print). Boesmans, W., Gomes, P., Janssens, J., Tack, J., & Vanden Berghe, P. (2007). Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut (Epub ahead of print).
Zurück zum Zitat Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211.PubMed Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211.PubMed
Zurück zum Zitat Braak, H., Sastre, M., Bohl, J. R., de Vos, R. A., & Del Tredici, K. (2007). Parkinson’s disease: Lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathologica (Berl), 113, 421–429. Braak, H., Sastre, M., Bohl, J. R., de Vos, R. A., & Del Tredici, K. (2007). Parkinson’s disease: Lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathologica (Berl), 113, 421–429.
Zurück zum Zitat Buj-Bello, A., Buchman, V. L., Horton, A., Rosenthal, A., & Davies, A. M. (1995). GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron, 15, 821–828.PubMed Buj-Bello, A., Buchman, V. L., Horton, A., Rosenthal, A., & Davies, A. M. (1995). GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron, 15, 821–828.PubMed
Zurück zum Zitat Causing, C. G., Gloster, A., Aloyz, R., Bamji, S. X., Chang, E., Fawcett, J., Kuchel, G., & Miller, F. D. (1997). Synaptic innervation density is regulated by neuron-derived BDNF. Neuron, 18, 257–267.PubMed Causing, C. G., Gloster, A., Aloyz, R., Bamji, S. X., Chang, E., Fawcett, J., Kuchel, G., & Miller, F. D. (1997). Synaptic innervation density is regulated by neuron-derived BDNF. Neuron, 18, 257–267.PubMed
Zurück zum Zitat Casscells, W., Speir, E., Sasse, J., Klagsbrun, M., Allen, P., Lee, M., Calvo, B., Chiba, M., Haggroth, L., & Folkman, J. (1990). Isolation, characterization, and localization of heparin-binding growth factors in the heart. Journal of Clinical Investigation, 85, 433–441.PubMed Casscells, W., Speir, E., Sasse, J., Klagsbrun, M., Allen, P., Lee, M., Calvo, B., Chiba, M., Haggroth, L., & Folkman, J. (1990). Isolation, characterization, and localization of heparin-binding growth factors in the heart. Journal of Clinical Investigation, 85, 433–441.PubMed
Zurück zum Zitat Chalazonitis, A. (2004). Neurotrophin-3 in the development of the enteric nervous system. Progress in Brain Research, 146, 243–263.PubMed Chalazonitis, A. (2004). Neurotrophin-3 in the development of the enteric nervous system. Progress in Brain Research, 146, 243–263.PubMed
Zurück zum Zitat Cheng, B., & Mattson, M. P. (1991). NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron, 7, 1031–1041.PubMed Cheng, B., & Mattson, M. P. (1991). NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron, 7, 1031–1041.PubMed
Zurück zum Zitat Cheng, B., McMahon, D. G., & Mattson, M. P. (1993). Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Research, 607, 275–285.PubMed Cheng, B., McMahon, D. G., & Mattson, M. P. (1993). Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Research, 607, 275–285.PubMed
Zurück zum Zitat Chun, L. L., & Patterson, P. H. (1977). Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. The Journal of Cell Biology, 75, 694–704.PubMed Chun, L. L., & Patterson, P. H. (1977). Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. The Journal of Cell Biology, 75, 694–704.PubMed
Zurück zum Zitat Claes, S. J. (2004). Corticotropin-releasing hormone (CRH) in psychiatry: From stress to psychopathology. Annals of Medicine, 36, 50–61.PubMed Claes, S. J. (2004). Corticotropin-releasing hormone (CRH) in psychiatry: From stress to psychopathology. Annals of Medicine, 36, 50–61.PubMed
Zurück zum Zitat Collins, F., & Dawson, A. (1983). An effect of nerve growth factor on parasympathetic neurite outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 80, 2091–2094.PubMed Collins, F., & Dawson, A. (1983). An effect of nerve growth factor on parasympathetic neurite outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 80, 2091–2094.PubMed
Zurück zum Zitat Connor, B., Young, D., Yan, Q., Faull, R. L., Synek, B., & Dragunow, M. (1997). Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Molecular Brain Research, 49, 71–81.PubMed Connor, B., Young, D., Yan, Q., Faull, R. L., Synek, B., & Dragunow, M. (1997). Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Molecular Brain Research, 49, 71–81.PubMed
Zurück zum Zitat Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neuroscience, 30, 464–472. Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neuroscience, 30, 464–472.
Zurück zum Zitat Craddock, N., & Forty, L. (2006). Genetics of affective (mood) disorders. European Journal of Human Genetics, 14, 660–668.PubMed Craddock, N., & Forty, L. (2006). Genetics of affective (mood) disorders. European Journal of Human Genetics, 14, 660–668.PubMed
Zurück zum Zitat Crouch, M. F., & Hendry, I. A. (1991). Co-activation of insulin-like growth factor-I receptors and protein kinase C results in parasympathetic neuronal survival. Journal of Neuroscience Research, 28, 115–120.PubMed Crouch, M. F., & Hendry, I. A. (1991). Co-activation of insulin-like growth factor-I receptors and protein kinase C results in parasympathetic neuronal survival. Journal of Neuroscience Research, 28, 115–120.PubMed
Zurück zum Zitat Crowell, M. D., & Wessinger, S. B. (2007). 5-HT and the brain-gut axis: Opportunities for pharmacologic intervention. Expert Opinion on Investigational Drugs, 16, 761–765.PubMed Crowell, M. D., & Wessinger, S. B. (2007). 5-HT and the brain-gut axis: Opportunities for pharmacologic intervention. Expert Opinion on Investigational Drugs, 16, 761–765.PubMed
Zurück zum Zitat DeRijk, R., & de Kloet, E. R. (2005). Corticosteroid receptor genetic polymorphisms and stress responsivity. Endocrine, 28, 263–270.PubMed DeRijk, R., & de Kloet, E. R. (2005). Corticosteroid receptor genetic polymorphisms and stress responsivity. Endocrine, 28, 263–270.PubMed
Zurück zum Zitat De Rosa, R., Garcia, A. A., Braschi, C., Capsoni, S., Maffei, L., Berardi, N., & Cattaneo, A. (2005). Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 3811–3816.PubMed De Rosa, R., Garcia, A. A., Braschi, C., Capsoni, S., Maffei, L., Berardi, N., & Cattaneo, A. (2005). Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 3811–3816.PubMed
Zurück zum Zitat Devos, D., Kroumova, M., Bordet, R., Vodougnon, H., Guieu, J. D., Libersa, C., & Destee, A. (2003). Heart rate variability and Parkinson’s disease severity. Journal of Neural Transmission, 110, 997–1011.PubMed Devos, D., Kroumova, M., Bordet, R., Vodougnon, H., Guieu, J. D., Libersa, C., & Destee, A. (2003). Heart rate variability and Parkinson’s disease severity. Journal of Neural Transmission, 110, 997–1011.PubMed
Zurück zum Zitat Dewey, R. B., Jr. (2004). Autonomic dysfunction in Parkinson’s disease. Neurologic Clinics, 22, S127–139.PubMed Dewey, R. B., Jr. (2004). Autonomic dysfunction in Parkinson’s disease. Neurologic Clinics, 22, S127–139.PubMed
Zurück zum Zitat DiCicco-Bloom, E., & Black, I. B. (1988). Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts. Proceedings of the National Academy of Sciences of the United States of America, 85, 4066–4070.PubMed DiCicco-Bloom, E., & Black, I. B. (1988). Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts. Proceedings of the National Academy of Sciences of the United States of America, 85, 4066–4070.PubMed
Zurück zum Zitat Distasi, C., Torre, M., Antoniotti, S., Munaron, L., & Lovisolo, D. (1998). Neuronal survival and calcium influx induced by basic fibroblast growth factor in chick ciliary ganglion neurons. European Journal of Neuroscience, 10, 2276–2286.PubMed Distasi, C., Torre, M., Antoniotti, S., Munaron, L., & Lovisolo, D. (1998). Neuronal survival and calcium influx induced by basic fibroblast growth factor in chick ciliary ganglion neurons. European Journal of Neuroscience, 10, 2276–2286.PubMed
Zurück zum Zitat Doering, L. C., Roder, J. C., & Henderson, J. T. (1995). Ciliary neurotrophic factor promotes the terminal differentiation of v-myc immortalized sympathoadrenal progenitor cells in vivo. Developmental Brain Research, 89, 56–66.PubMed Doering, L. C., Roder, J. C., & Henderson, J. T. (1995). Ciliary neurotrophic factor promotes the terminal differentiation of v-myc immortalized sympathoadrenal progenitor cells in vivo. Developmental Brain Research, 89, 56–66.PubMed
Zurück zum Zitat Dono, R., Texido, G., Dussel, R., Ehmke, H., & Zeller, R. (1998). Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO Journal, 17, 4213–4225.PubMed Dono, R., Texido, G., Dussel, R., Ehmke, H., & Zeller, R. (1998). Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO Journal, 17, 4213–4225.PubMed
Zurück zum Zitat Duan, W., Guo, Z., Jiang, H., Ware, M., & Mattson, M. P. (2003a). Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology, 144, 2446–2453.PubMed Duan, W., Guo, Z., Jiang, H., Ware, M., & Mattson, M. P. (2003a). Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology, 144, 2446–2453.PubMed
Zurück zum Zitat Duan, W., Guo, Z., Jiang, H., Ware, M., Li, X. J., & Mattson, M. P. (2003b). Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 2911–2916.PubMed Duan, W., Guo, Z., Jiang, H., Ware, M., Li, X. J., & Mattson, M. P. (2003b). Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 2911–2916.PubMed
Zurück zum Zitat Ebendal, T., Tomac, A., Hoffer, B. J., & Olson, L. (1995). Glial cell line-derived neurotrophic factor stimulates fiber formation and survival in cultured neurons from peripheral autonomic ganglia. Journal of Neuroscience Research, 40, 276–284.PubMed Ebendal, T., Tomac, A., Hoffer, B. J., & Olson, L. (1995). Glial cell line-derived neurotrophic factor stimulates fiber formation and survival in cultured neurons from peripheral autonomic ganglia. Journal of Neuroscience Research, 40, 276–284.PubMed
Zurück zum Zitat Edgar, D., Barde, Y. A., & Thoenen, H. (1981). Subpopulations of cultured chick sympathetic neurones differ in their requirements for survival factors. Nature 289, 294–295.PubMed Edgar, D., Barde, Y. A., & Thoenen, H. (1981). Subpopulations of cultured chick sympathetic neurones differ in their requirements for survival factors. Nature 289, 294–295.PubMed
Zurück zum Zitat Ekblad, E., & Bauer, A. J. (2004). Role of vasoactive intestinal peptide and inflammatory mediators in enteric neuronal plasticity. Neurogastroenterology and Motility, 16, S123–128. Ekblad, E., & Bauer, A. J. (2004). Role of vasoactive intestinal peptide and inflammatory mediators in enteric neuronal plasticity. Neurogastroenterology and Motility, 16, S123–128.
Zurück zum Zitat Enomoto, H., Araki, T., Jackman, A., Heuckeroth, R. O., Snider, W. D., Johnson, E. M., Jr., & Milbrandt, J. (1998). GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron, 21, 317–324.PubMed Enomoto, H., Araki, T., Jackman, A., Heuckeroth, R. O., Snider, W. D., Johnson, E. M., Jr., & Milbrandt, J. (1998). GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron, 21, 317–324.PubMed
Zurück zum Zitat Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Reviews, 16, 139–149.PubMed Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Reviews, 16, 139–149.PubMed
Zurück zum Zitat Ferrer, I., Goutan, E., Marin, C., Rey, M. J., & Ribalta, T. (2000). Brain-derived neurotrophic factor in Huntington disease. Brain Research, 866, 257–261.PubMed Ferrer, I., Goutan, E., Marin, C., Rey, M. J., & Ribalta, T. (2000). Brain-derived neurotrophic factor in Huntington disease. Brain Research, 866, 257–261.PubMed
Zurück zum Zitat Ferrer, I., Marin, C., Rey, M. J., Ribalta, T., Goutan, E., Blanco, R., Tolosa, E., & Marti, E. (1999). BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. Journal of Neuropathology and Experimental Neurology, 58, 729–739.PubMed Ferrer, I., Marin, C., Rey, M. J., Ribalta, T., Goutan, E., Blanco, R., Tolosa, E., & Marti, E. (1999). BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. Journal of Neuropathology and Experimental Neurology, 58, 729–739.PubMed
Zurück zum Zitat Francke, U. (2006). Mechanisms of disease: Neurogenetics of MeCP2 deficiency. Nature Clinical Practice Neurology, 2, 212–221.PubMed Francke, U. (2006). Mechanisms of disease: Neurogenetics of MeCP2 deficiency. Nature Clinical Practice Neurology, 2, 212–221.PubMed
Zurück zum Zitat Ginsberg, S. D., Che, S., Wuu, J., Counts, S. E., & Mufson, E. J. (2006). Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. Journal of Neurochemistry, 97, 475–487.PubMed Ginsberg, S. D., Che, S., Wuu, J., Counts, S. E., & Mufson, E. J. (2006). Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. Journal of Neurochemistry, 97, 475–487.PubMed
Zurück zum Zitat Giubilei, F., Strano, S., Imbimbo, B. P., Tisei, P., Calcagnini, G., Lino, S., Frontoni, M., Santini, M., & Fieschi, C. (1998). Cardiac autonomic dysfunction in patients with Alzheimer disease: Possible pathogenetic mechanisms. Alzheimer Disease and Associated Disorders, 12, 356–361.PubMedCrossRef Giubilei, F., Strano, S., Imbimbo, B. P., Tisei, P., Calcagnini, G., Lino, S., Frontoni, M., Santini, M., & Fieschi, C. (1998). Cardiac autonomic dysfunction in patients with Alzheimer disease: Possible pathogenetic mechanisms. Alzheimer Disease and Associated Disorders, 12, 356–361.PubMedCrossRef
Zurück zum Zitat Gorman, J. M., & Sloan, R. P. (2000). Heart rate variability in depressive and anxiety disorders. American Heart Journal, 40, 77–83. Gorman, J. M., & Sloan, R. P. (2000). Heart rate variability in depressive and anxiety disorders. American Heart Journal, 40, 77–83.
Zurück zum Zitat Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M., & Mattson, M. P. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 26, 212–220.PubMed Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M., & Mattson, M. P. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 26, 212–220.PubMed
Zurück zum Zitat Hasan, W., & Smith, P. G. (2000). Nerve growth factor expression in parasympathetic neurons: Regulation by sympathetic innervation. European Journal of Neuroscience, 12, 4391–4397.PubMed Hasan, W., & Smith, P. G. (2000). Nerve growth factor expression in parasympathetic neurons: Regulation by sympathetic innervation. European Journal of Neuroscience, 12, 4391–4397.PubMed
Zurück zum Zitat Hazari, M. S., Pan, J. H., & Myers, A. C. (2007). Nerve growth factor acutely potentiates synaptic transmission in vitro and induces dendritic growth in vivo on adult neurons in airway parasympathetic ganglia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L992–1001.PubMed Hazari, M. S., Pan, J. H., & Myers, A. C. (2007). Nerve growth factor acutely potentiates synaptic transmission in vitro and induces dendritic growth in vivo on adult neurons in airway parasympathetic ganglia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L992–1001.PubMed
Zurück zum Zitat Helke, C. J., Adryan, K. M., Fedorowicz, J., Zhuo, H., Park, J. S., Curtis, R., Radley, H. E., & Distefano, P. S. (1998). Axonal transport of neurotrophins by visceral afferent and efferent neurons of the vagus nerve of the rat. The Journal of Comparitive Neurology, 393, 102–117. Helke, C. J., Adryan, K. M., Fedorowicz, J., Zhuo, H., Park, J. S., Curtis, R., Radley, H. E., & Distefano, P. S. (1998). Axonal transport of neurotrophins by visceral afferent and efferent neurons of the vagus nerve of the rat. The Journal of Comparitive Neurology, 393, 102–117.
Zurück zum Zitat Hock, C., Heese, K., Muller-Spahn, F., Hulette, C., Rosenberg, C., & Otten, U. (1998). Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzheimer’s disease. Neuroscience Letters, 241, 151–154.PubMed Hock, C., Heese, K., Muller-Spahn, F., Hulette, C., Rosenberg, C., & Otten, U. (1998). Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzheimer’s disease. Neuroscience Letters, 241, 151–154.PubMed
Zurück zum Zitat Hottenrott, K., Hoos, O., & Esperer, H. D. (2006). Heart rate variability and physical exercise. Current status. Herz, 31, 544–552.PubMed Hottenrott, K., Hoos, O., & Esperer, H. D. (2006). Heart rate variability and physical exercise. Current status. Herz, 31, 544–552.PubMed
Zurück zum Zitat Hou, R. H., Samuels, E. R., Raisi, M., Langley, R. W., Szabadi, E., & Bradshaw, C. M. (2006). Why patients with Alzheimer’s disease may show increased sensitivity to tropicamide eye drops: Role of locus coeruleus. Psychopharmacology (Berl), 184, 95–106. Hou, R. H., Samuels, E. R., Raisi, M., Langley, R. W., Szabadi, E., & Bradshaw, C. M. (2006). Why patients with Alzheimer’s disease may show increased sensitivity to tropicamide eye drops: Role of locus coeruleus. Psychopharmacology (Berl), 184, 95–106.
Zurück zum Zitat Hurelbrink, C. B., & Barker, R. A. (2001). Prospects for the treatment of Parkinson’s disease using neurotrophic factors. Expert Opinion on Pharmacotherapy, 2, 1531–1543.PubMed Hurelbrink, C. B., & Barker, R. A. (2001). Prospects for the treatment of Parkinson’s disease using neurotrophic factors. Expert Opinion on Pharmacotherapy, 2, 1531–1543.PubMed
Zurück zum Zitat Ip, N. Y., Boulton, T. G., Li, Y., Verdi, J. M., Birren, S. J., Anderson, D. J., & Yancopoulos, G. D. (1994). NTF, FGF, and NGF collaborate to drive the terminal differentiation of MAH cells into postmitotic neurons. Neuron, 13, 443–455.PubMed Ip, N. Y., Boulton, T. G., Li, Y., Verdi, J. M., Birren, S. J., Anderson, D. J., & Yancopoulos, G. D. (1994). NTF, FGF, and NGF collaborate to drive the terminal differentiation of MAH cells into postmitotic neurons. Neuron, 13, 443–455.PubMed
Zurück zum Zitat Johnson, J. B., Summer, W., Cutler, R. G., Martin, B., Hyun, D. H., Dixit, V. D., Pearson, M., Nassar, M., Tellejohan, R., Maudsley, S., Carlson, O., John, S., Laub, D. R., & Mattson, M. P. (2007). Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radical Biology & Medicine, 42, 665–674. Johnson, J. B., Summer, W., Cutler, R. G., Martin, B., Hyun, D. H., Dixit, V. D., Pearson, M., Nassar, M., Tellejohan, R., Maudsley, S., Carlson, O., John, S., Laub, D. R., & Mattson, M. P. (2007). Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radical Biology & Medicine, 42, 665–674.
Zurück zum Zitat Jordan, D. (2005). Vagal control of the heart: Central serotonergic (5-HT). mechanisms. Experimental Physiology, 90, 175–181.PubMed Jordan, D. (2005). Vagal control of the heart: Central serotonergic (5-HT). mechanisms. Experimental Physiology, 90, 175–181.PubMed
Zurück zum Zitat Kallio, M., Haapaniemi, T., Turkka, J., Suominen, K., Tolonen, U., Sotaniemi, K., Heikkila, V. P., & Myllyla, V. (2000). Heart rate variability in patients with untreated Parkinson’s disease. European Journal of Neurology, 7, 667–672.PubMed Kallio, M., Haapaniemi, T., Turkka, J., Suominen, K., Tolonen, U., Sotaniemi, K., Heikkila, V. P., & Myllyla, V. (2000). Heart rate variability in patients with untreated Parkinson’s disease. European Journal of Neurology, 7, 667–672.PubMed
Zurück zum Zitat Karagiannis, S. N., King, R. H., & Thomas, P. K. (1997). Colocalisation of insulin and IGF-1 receptors in cultured rat sensory and sympathetic ganglion cells. Journal of Anatomy, 191, 431–440.PubMed Karagiannis, S. N., King, R. H., & Thomas, P. K. (1997). Colocalisation of insulin and IGF-1 receptors in cultured rat sensory and sympathetic ganglion cells. Journal of Anatomy, 191, 431–440.PubMed
Zurück zum Zitat Kasselman, L. J., Sideris, A., Bruno, C., Perez, W. R., Cai, N., Nicoletti, J. N., Wiegand, S. J., & Croll, S. D. (2006). BDNF: A missing link between sympathetic dysfunction and inflammatory disease? Journal of Neuroimmunology, 175, 118–127.PubMed Kasselman, L. J., Sideris, A., Bruno, C., Perez, W. R., Cai, N., Nicoletti, J. N., Wiegand, S. J., & Croll, S. D. (2006). BDNF: A missing link between sympathetic dysfunction and inflammatory disease? Journal of Neuroimmunology, 175, 118–127.PubMed
Zurück zum Zitat Kelly-Spratt, K. S., Klesse, L. J., & Parada, L. F. (2002). BDNF activated TrkB/IRR receptor chimera promotes survival of sympathetic neurons through Ras and PI-3 kinase signaling. Journal of Neuroscience Research, 69, 151–159.PubMed Kelly-Spratt, K. S., Klesse, L. J., & Parada, L. F. (2002). BDNF activated TrkB/IRR receptor chimera promotes survival of sympathetic neurons through Ras and PI-3 kinase signaling. Journal of Neuroscience Research, 69, 151–159.PubMed
Zurück zum Zitat Kessler, J. A., & Black, I. B. (1980). The effects of nerve growth factor (NGF). and antiserum to NGF on the development of embryonic sympathetic neurons in vivo. Brain Research, 189, 157–168.PubMed Kessler, J. A., & Black, I. B. (1980). The effects of nerve growth factor (NGF). and antiserum to NGF on the development of embryonic sympathetic neurons in vivo. Brain Research, 189, 157–168.PubMed
Zurück zum Zitat Klimaschewski, L., Meisinger, C., & Grothe, C. (1999). Localization and regulation of basic fibroblast growth factor (FGF-2) and FGF receptor-1 in rat superior cervical ganglion after axotomy. Journal of Neurobiology, 38, 499–506.PubMed Klimaschewski, L., Meisinger, C., & Grothe, C. (1999). Localization and regulation of basic fibroblast growth factor (FGF-2) and FGF receptor-1 in rat superior cervical ganglion after axotomy. Journal of Neurobiology, 38, 499–506.PubMed
Zurück zum Zitat Kobal, J., Meglic, B., Mesec, A., & Peterlin, B. (2004). Early sympathetic hyperactivity in Huntington’s disease. European Journal of Neurology, 11, 842–848.PubMed Kobal, J., Meglic, B., Mesec, A., & Peterlin, B. (2004). Early sympathetic hyperactivity in Huntington’s disease. European Journal of Neurology, 11, 842–848.PubMed
Zurück zum Zitat Kwon, B. K., Liu, J., Lam, C., Plunet, W., Oschipok, L. W., Hauswirth, W., Di Polo, A., Blesch, A., & Tetzlaff, W. (2007). Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine, 32, 1164–1173.PubMed Kwon, B. K., Liu, J., Lam, C., Plunet, W., Oschipok, L. W., Hauswirth, W., Di Polo, A., Blesch, A., & Tetzlaff, W. (2007). Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine, 32, 1164–1173.PubMed
Zurück zum Zitat Kyrou, I., & Tsigos, C. (2007). Stress mechanisms and metabolic complications. Hormone and Metabolic Research, 39, 430–438.PubMed Kyrou, I., & Tsigos, C. (2007). Stress mechanisms and metabolic complications. Hormone and Metabolic Research, 39, 430–438.PubMed
Zurück zum Zitat Laustsen, P. G., Russell, S. J., Cui, L., Entingh-Pearsall, A., Holzenberger, M., Liao, R., & Kahn, C. R. (2007). Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Molecular Cell Biology, 27, 1649–1664. Laustsen, P. G., Russell, S. J., Cui, L., Entingh-Pearsall, A., Holzenberger, M., Liao, R., & Kahn, C. R. (2007). Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Molecular Cell Biology, 27, 1649–1664.
Zurück zum Zitat Lechin, F., van der Dijs, B., Orozco, B., Lechin, A. E., Baez, S., Lechin, M. E., Rada, I., Acosta, E., Arocha, L., Jimenez, V., et al. (1995). Plasma neurotransmitters, blood pressure, and heart rate during supine resting, orthostasis, and moderate exercise in dysthymic depressed patients. Biological Psychiatry, 37, 884–891.PubMed Lechin, F., van der Dijs, B., Orozco, B., Lechin, A. E., Baez, S., Lechin, M. E., Rada, I., Acosta, E., Arocha, L., Jimenez, V., et al. (1995). Plasma neurotransmitters, blood pressure, and heart rate during supine resting, orthostasis, and moderate exercise in dysthymic depressed patients. Biological Psychiatry, 37, 884–891.PubMed
Zurück zum Zitat Lee, J., Duan, W., & Mattson, M. P. (2002b). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 82, 1367–1375.PubMed Lee, J., Duan, W., & Mattson, M. P. (2002b). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 82, 1367–1375.PubMed
Zurück zum Zitat Lee, P. G., Hohman, T. C., Cai, F., Regalia, J., & Helke, C. J. (2001). Streptozotocin-induced diabetes causes metabolic changes and alterations in neurotrophin content and retrograde transport in the cervical vagus nerve. Experimental Neurology, 170, 149–161.PubMed Lee, P. G., Hohman, T. C., Cai, F., Regalia, J., & Helke, C. J. (2001). Streptozotocin-induced diabetes causes metabolic changes and alterations in neurotrophin content and retrograde transport in the cervical vagus nerve. Experimental Neurology, 170, 149–161.PubMed
Zurück zum Zitat Lee, J., Seroogy, K. B., & Mattson, M. P. (2002a). Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. Journal of Neurochemistry, 80, 539–547.PubMed Lee, J., Seroogy, K. B., & Mattson, M. P. (2002a). Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. Journal of Neurochemistry, 80, 539–547.PubMed
Zurück zum Zitat LeVatte, M. A., Dekaban, G. A., & Weaver, L. C. (1997). Gene transfer into sympathetic preganglionic neurons in vivo using a non-replicating thymidine kinase-deficient herpes simplex virus type 1. Neuroscience, 80, 893–906.PubMed LeVatte, M. A., Dekaban, G. A., & Weaver, L. C. (1997). Gene transfer into sympathetic preganglionic neurons in vivo using a non-replicating thymidine kinase-deficient herpes simplex virus type 1. Neuroscience, 80, 893–906.PubMed
Zurück zum Zitat Levi-Montalcini, R., & Calissano, P. (1979). The nerve-growth factor. Scientific American, 240, 44–53.CrossRef Levi-Montalcini, R., & Calissano, P. (1979). The nerve-growth factor. Scientific American, 240, 44–53.CrossRef
Zurück zum Zitat Levivier, M., Przedborski, S., Bencsics, C., & Kang, U. J. (1995). Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. Journal of Neuroscience, 15, 7810–7820.PubMed Levivier, M., Przedborski, S., Bencsics, C., & Kang, U. J. (1995). Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. Journal of Neuroscience, 15, 7810–7820.PubMed
Zurück zum Zitat Lockhart, S. T., Mead, J. N., Pisano, J. M., Slonimsky, J. D., & Birren, S. J. (2000). Nerve growth factor collaborates with myocyte-derived factors to promote development of presynaptic sites in cultured sympathetic neurons. Journal of Neurobiology, 42, 460–476.PubMed Lockhart, S. T., Mead, J. N., Pisano, J. M., Slonimsky, J. D., & Birren, S. J. (2000). Nerve growth factor collaborates with myocyte-derived factors to promote development of presynaptic sites in cultured sympathetic neurons. Journal of Neurobiology, 42, 460–476.PubMed
Zurück zum Zitat Lockhart, S. T., Turrigiano, G. G., & Birren, S. J. (1997). Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. Journal of Neuroscience, 17, 9573–9582.PubMed Lockhart, S. T., Turrigiano, G. G., & Birren, S. J. (1997). Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. Journal of Neuroscience, 17, 9573–9582.PubMed
Zurück zum Zitat Loewenthal, N., Levy, J., Schreiber, R., Pinsk, V., Perry, Z., Shorer, Z., & Hershkovitz, E. (2005). Nerve growth factor-tyrosine kinase A pathway is involved in thermoregulation and adaptation to stress: Studies on patients with hereditary sensory and autonomic neuropathy type IV. Pediatric Research, 57, 587–590.PubMed Loewenthal, N., Levy, J., Schreiber, R., Pinsk, V., Perry, Z., Shorer, Z., & Hershkovitz, E. (2005). Nerve growth factor-tyrosine kinase A pathway is involved in thermoregulation and adaptation to stress: Studies on patients with hereditary sensory and autonomic neuropathy type IV. Pediatric Research, 57, 587–590.PubMed
Zurück zum Zitat Lynch, G., Kramar, E. A., Rex, C. S., Jia, Y., Chappas, D., Gall, C. M., & Simmons, D. A. (2007). Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. Journal of Neuroscience, 27, 4424–4434.PubMed Lynch, G., Kramar, E. A., Rex, C. S., Jia, Y., Chappas, D., Gall, C. M., & Simmons, D. A. (2007). Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. Journal of Neuroscience, 27, 4424–4434.PubMed
Zurück zum Zitat Mager, D. E., Wan, R., Brown, M., Cheng, A., Wareski, P., Abernethy, D. R., & Mattson, M. P. (2006). Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB Journal, 20, 631–637.PubMed Mager, D. E., Wan, R., Brown, M., Cheng, A., Wareski, P., Abernethy, D. R., & Mattson, M. P. (2006). Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB Journal, 20, 631–637.PubMed
Zurück zum Zitat Malaspina, D., Dalack, G., Leitman, D., Corcoran, C., Amador, X. F., Yale, S., Glassman, A., & Gorman, J. M. (2002). Low heart rate variability is not caused by typical neuroleptics in schizophrenia patients. CNS Spectrums, 7, 53–57.PubMed Malaspina, D., Dalack, G., Leitman, D., Corcoran, C., Amador, X. F., Yale, S., Glassman, A., & Gorman, J. M. (2002). Low heart rate variability is not caused by typical neuroleptics in schizophrenia patients. CNS Spectrums, 7, 53–57.PubMed
Zurück zum Zitat Martinelli, P. M., Camargos, E. R., Azevedo, A. A., Chiari, E., Morel, G., & Machado, C. R. (2006). Cardiac NGF and GDNF expression during Trypanosoma cruzi infection in rats. Autonomic Neuroscience, 130, 32–40.PubMed Martinelli, P. M., Camargos, E. R., Azevedo, A. A., Chiari, E., Morel, G., & Machado, C. R. (2006). Cardiac NGF and GDNF expression during Trypanosoma cruzi infection in rats. Autonomic Neuroscience, 130, 32–40.PubMed
Zurück zum Zitat Martini, G., Riva, P., Rabbia, F., Molini, V., Ferrero, G. B., Cerutti, F., Carra, R., & Veglio, F. (2001). Heart rate variability in childhood obesity. Clinical Autonomic Research, 11, 87–91.PubMed Martini, G., Riva, P., Rabbia, F., Molini, V., Ferrero, G. B., Cerutti, F., Carra, R., & Veglio, F. (2001). Heart rate variability in childhood obesity. Clinical Autonomic Research, 11, 87–91.PubMed
Zurück zum Zitat Martinowich, K., & Lu, B. (2007). Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology, 33, 73–83. Martinowich, K., & Lu, B. (2007). Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology, 33, 73–83.
Zurück zum Zitat Mastrocola, C., Vanacore, N., Giovani, A., Locuratolo, N., Vella, C., Alessandri, A., Baratta, L., Tubani, L., & Meco, G. (1999). Twenty-four-hour heart rate variability to assess autonomic function in Parkinson’s disease. Acta Neurologica Scandinavica, 99, 245–247.PubMed Mastrocola, C., Vanacore, N., Giovani, A., Locuratolo, N., Vella, C., Alessandri, A., Baratta, L., Tubani, L., & Meco, G. (1999). Twenty-four-hour heart rate variability to assess autonomic function in Parkinson’s disease. Acta Neurologica Scandinavica, 99, 245–247.PubMed
Zurück zum Zitat Maswood, N., Young, J., Tilmont, E., Zhang, Z., Gash, D. M., Gerhardt, G. A., Grondin, R., Roth, G. S., Mattison, J., Lane, M. A., Carson, R. E., Cohen, R. M., Mouton, P. R., Quigley, C., Mattson, M. P., & Ingram, D. K. (2004). Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 18171–18176.PubMed Maswood, N., Young, J., Tilmont, E., Zhang, Z., Gash, D. M., Gerhardt, G. A., Grondin, R., Roth, G. S., Mattison, J., Lane, M. A., Carson, R. E., Cohen, R. M., Mouton, P. R., Quigley, C., Mattson, M. P., & Ingram, D. K. (2004). Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 18171–18176.PubMed
Zurück zum Zitat Matsuoka, Y., Gray, A. J., Hirata-Fukae, C., Minami, S. S., Waterhouse, E. G., Mattson, M. P., LaFerla, F. M., Gozes, I., & Aisen, P. S. (2007). Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. Journal of Molecular Neuroscience, 31, 165–170.PubMed Matsuoka, Y., Gray, A. J., Hirata-Fukae, C., Minami, S. S., Waterhouse, E. G., Mattson, M. P., LaFerla, F. M., Gozes, I., & Aisen, P. S. (2007). Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. Journal of Molecular Neuroscience, 31, 165–170.PubMed
Zurück zum Zitat Mattson, M. P., & Cheng, A. (2006). Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends in Neuroscience, 29, 632–639. Mattson, M. P., & Cheng, A. (2006). Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends in Neuroscience, 29, 632–639.
Zurück zum Zitat Mattson, M. P., Maudsley, S., & Martin, B. (2004). A neural signaling triumvirate that influences ageing and age-related disease: Insulin/IGF-1, BDNF and serotonin. Ageing Research Reviews, 3, 445–464.PubMed Mattson, M. P., Maudsley, S., & Martin, B. (2004). A neural signaling triumvirate that influences ageing and age-related disease: Insulin/IGF-1, BDNF and serotonin. Ageing Research Reviews, 3, 445–464.PubMed
Zurück zum Zitat Mattson, M. P., Murrain, M., Guthrie, P. B., & Kater, S. B. (1989). Fibroblast growth factor and glutamate: Opposing roles in the generation and degeneration of hippocampal neuroarchitecture. Journal of Neuroscience, 9, 3728–3740.PubMed Mattson, M. P., Murrain, M., Guthrie, P. B., & Kater, S. B. (1989). Fibroblast growth factor and glutamate: Opposing roles in the generation and degeneration of hippocampal neuroarchitecture. Journal of Neuroscience, 9, 3728–3740.PubMed
Zurück zum Zitat Mattson, M. P., & Wan, R. (2005). Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. The Journal of Nutritional Biochemistry, 16, 129–137.PubMed Mattson, M. P., & Wan, R. (2005). Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. The Journal of Nutritional Biochemistry, 16, 129–137.PubMed
Zurück zum Zitat Mattson, M. P., Zhang, Y., & Bose, S. (1993). Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Experimental Neurology, 121, 1–13.PubMed Mattson, M. P., Zhang, Y., & Bose, S. (1993). Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Experimental Neurology, 121, 1–13.PubMed
Zurück zum Zitat Mijatovic, J., Airavaara, M., Planken, A., Auvinen, P., Raasmaja, A., Piepponen, T. P., Costantini, F., Ahtee, L., & Saarma, M. (2007). Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. Journal of Neurosciences, 27, 4799–4809. Mijatovic, J., Airavaara, M., Planken, A., Auvinen, P., Raasmaja, A., Piepponen, T. P., Costantini, F., Ahtee, L., & Saarma, M. (2007). Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. Journal of Neurosciences, 27, 4799–4809.
Zurück zum Zitat Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., Ichinose, H., & Nagatsu, T. (1999). Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Letters, 270, 45–48. Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., Ichinose, H., & Nagatsu, T. (1999). Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Letters, 270, 45–48.
Zurück zum Zitat Mohan, R. M., Golding, S., Heaton, D. A., Danson, E. J., & Paterson, D. J. (2004). Targeting neuronal nitric oxide synthase with gene transfer to modulate cardiac autonomic function. Progress in Biophysics and Molecular Biology, 84, 321–344.PubMed Mohan, R. M., Golding, S., Heaton, D. A., Danson, E. J., & Paterson, D. J. (2004). Targeting neuronal nitric oxide synthase with gene transfer to modulate cardiac autonomic function. Progress in Biophysics and Molecular Biology, 84, 321–344.PubMed
Zurück zum Zitat Mufson, E. J., Lavine, N., Jaffar, S., Kordower, J. H., Quirion, R., & Saragovi, H. U. (1997). Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s disease. Experimental Neurology, 146, 91–103.PubMed Mufson, E. J., Lavine, N., Jaffar, S., Kordower, J. H., Quirion, R., & Saragovi, H. U. (1997). Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s disease. Experimental Neurology, 146, 91–103.PubMed
Zurück zum Zitat Nakagawa, T., Ono-Kishino, M., Sugaru, E., Yamanaka, M., Taiji, M., & Noguchi, H. (2002). Brain-derived neurotrophic factor (BDNF) regulates glucose and energy metabolism in diabetic mice. Diabetes Metabolism Research Reviews., 18, 185–191. Nakagawa, T., Ono-Kishino, M., Sugaru, E., Yamanaka, M., Taiji, M., & Noguchi, H. (2002). Brain-derived neurotrophic factor (BDNF) regulates glucose and energy metabolism in diabetic mice. Diabetes Metabolism Research Reviews., 18, 185–191.
Zurück zum Zitat Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726, 49–56.PubMed Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726, 49–56.PubMed
Zurück zum Zitat Nelson, R. L., Guo, Z., Halagappa, V. M., Pearson, M., Gray, A. J., Matsuoka, Y., Brown, M., Martin, B., Iyun, T., Maudsley, S., Clark, R. F., & Mattson, M. P. (2007). Prophylactic treatment with paroxetine ameliorates behavioral deficits and retards the development of amyloid and tau pathologies in 3×TgAD mice. Experimental Neurology, 205, 166–176.PubMed Nelson, R. L., Guo, Z., Halagappa, V. M., Pearson, M., Gray, A. J., Matsuoka, Y., Brown, M., Martin, B., Iyun, T., Maudsley, S., Clark, R. F., & Mattson, M. P. (2007). Prophylactic treatment with paroxetine ameliorates behavioral deficits and retards the development of amyloid and tau pathologies in 3×TgAD mice. Experimental Neurology, 205, 166–176.PubMed
Zurück zum Zitat Nomura, Y., Kimura, K., Arai, H., & Segawa, M. (1997). Involvement of the autonomic nervous system in the pathophysiology of Rett syndrome. European Child Adolescent Psychiatry, 6, S42–46. Nomura, Y., Kimura, K., Arai, H., & Segawa, M. (1997). Involvement of the autonomic nervous system in the pathophysiology of Rett syndrome. European Child Adolescent Psychiatry, 6, S42–46.
Zurück zum Zitat Oka, H., Mochio, S., Onouchi, K., Morita, M., Yoshioka, M., & Inoue, K. (2006). Cardiovascular dysautonomia in de novo Parkinson’s disease. Journal of Neurological Sciences, 241, 59–65. Oka, H., Mochio, S., Onouchi, K., Morita, M., Yoshioka, M., & Inoue, K. (2006). Cardiovascular dysautonomia in de novo Parkinson’s disease. Journal of Neurological Sciences, 241, 59–65.
Zurück zum Zitat Parain, K., Murer, M. G., Yan, Q., Faucheux, B., Agid, Y., Hirsch, E., & Raisman-Vozari, R. (1999). Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport, 10, 557–561.PubMed Parain, K., Murer, M. G., Yan, Q., Faucheux, B., Agid, Y., Hirsch, E., & Raisman-Vozari, R. (1999). Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport, 10, 557–561.PubMed
Zurück zum Zitat Paterson, D. S., Thompson, E. G., Belliveau, R. A., Antalffy, B. A., Trachtenberg, F. L., Armstrong, D. D., & Kinney, H. C. (2005). Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome: potential implications for clinical autonomic dysfunction. Journal of Neuropathology and Experimental Neurology, 64, 1018–1027.PubMed Paterson, D. S., Thompson, E. G., Belliveau, R. A., Antalffy, B. A., Trachtenberg, F. L., Armstrong, D. D., & Kinney, H. C. (2005). Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome: potential implications for clinical autonomic dysfunction. Journal of Neuropathology and Experimental Neurology, 64, 1018–1027.PubMed
Zurück zum Zitat Peiris, T. S., Machaalani, R., & Waters, K. A. (2004). Brain-derived neurotrophic factor mRNA and protein in the piglet brainstem and effects of intermittent hypercapnic hypoxia. Brain Research, 1029, 11–23.PubMed Peiris, T. S., Machaalani, R., & Waters, K. A. (2004). Brain-derived neurotrophic factor mRNA and protein in the piglet brainstem and effects of intermittent hypercapnic hypoxia. Brain Research, 1029, 11–23.PubMed
Zurück zum Zitat Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7, 695–702.PubMed Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7, 695–702.PubMed
Zurück zum Zitat Puri, P., & Shinkai, T. (2004). Pathogenesis of Hirschsprung’s disease and its variants: Recent progress. Seminars in Pediatric Surgery, 13, 18–24.PubMed Puri, P., & Shinkai, T. (2004). Pathogenesis of Hirschsprung’s disease and its variants: Recent progress. Seminars in Pediatric Surgery, 13, 18–24.PubMed
Zurück zum Zitat Pursiainen, V., Korpelainen, J. T., Huikuri, H. V., Sotaniemi, K. A., & Myllyla, V. V. (2002). Circadian heart rate variability in Parkinson’s disease. Journal of Neurology, 249, 1535–1540.PubMed Pursiainen, V., Korpelainen, J. T., Huikuri, H. V., Sotaniemi, K. A., & Myllyla, V. V. (2002). Circadian heart rate variability in Parkinson’s disease. Journal of Neurology, 249, 1535–1540.PubMed
Zurück zum Zitat Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 361, 1545–1564. Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 361, 1545–1564.
Zurück zum Zitat Reimer, M. K., Mokshagundam, S. P., Wyler, K., Sundler, F., Ahren, B., & Stagner, J. I. (2003). Local growth factors are beneficial for the autonomic reinnervation of transplanted islets in rats. Pancreas, 26, 392–397.PubMed Reimer, M. K., Mokshagundam, S. P., Wyler, K., Sundler, F., Ahren, B., & Stagner, J. I. (2003). Local growth factors are beneficial for the autonomic reinnervation of transplanted islets in rats. Pancreas, 26, 392–397.PubMed
Zurück zum Zitat Reiss, K., Kajstura, J., Zhang, X., Li, P., Szoke, E., Olivetti, G., & Anversa, P. (1994). Acute myocardial infarction leads to upregulation of the IGF-1 autocrine system, DNA replication, and nuclear mitotic division in the remaining viable cardiac myocytes. Experimental Cell Research, 213, 463–472.PubMed Reiss, K., Kajstura, J., Zhang, X., Li, P., Szoke, E., Olivetti, G., & Anversa, P. (1994). Acute myocardial infarction leads to upregulation of the IGF-1 autocrine system, DNA replication, and nuclear mitotic division in the remaining viable cardiac myocytes. Experimental Cell Research, 213, 463–472.PubMed
Zurück zum Zitat Roosen, A., Schober, A., Strelau, J., Bottner, M., Faulhaber, J., Bendner, G., McIlwrath, S. L., Seller, H., Ehmke, H., Lewin, G. R., & Unsicker, K. (2001). Lack of neurotrophin-4 causes selective structural and chemical deficits in sympathetic ganglia and their preganglionic innervation. Journal of Neuroscience, 21, 3073–3084.PubMed Roosen, A., Schober, A., Strelau, J., Bottner, M., Faulhaber, J., Bendner, G., McIlwrath, S. L., Seller, H., Ehmke, H., Lewin, G. R., & Unsicker, K. (2001). Lack of neurotrophin-4 causes selective structural and chemical deficits in sympathetic ganglia and their preganglionic innervation. Journal of Neuroscience, 21, 3073–3084.PubMed
Zurück zum Zitat Rosenwinkel, E. T., Bloomfield, D. M., Arwady, M. A., & Goldsmith, R. L. (2001). Exercise and autonomic function in health and cardiovascular disease. Cardiology Clinics, 19, 369–387.PubMed Rosenwinkel, E. T., Bloomfield, D. M., Arwady, M. A., & Goldsmith, R. L. (2001). Exercise and autonomic function in health and cardiovascular disease. Cardiology Clinics, 19, 369–387.PubMed
Zurück zum Zitat Rossi, J., Herzig, K. H., Voikar, V., Hiltunen, P. H., Segerstrale, M., & Airaksinen, M. S. (2003). Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor alpha2. Journal of Clinical Investigation, 112, 707–716.PubMed Rossi, J., Herzig, K. H., Voikar, V., Hiltunen, P. H., Segerstrale, M., & Airaksinen, M. S. (2003). Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor alpha2. Journal of Clinical Investigation, 112, 707–716.PubMed
Zurück zum Zitat Sariola, H., & Saarma, M. (2003). Novel functions and signalling pathways for GDNF. Journal of Cell Science, 116, 3855–3862.PubMed Sariola, H., & Saarma, M. (2003). Novel functions and signalling pathways for GDNF. Journal of Cell Science, 116, 3855–3862.PubMed
Zurück zum Zitat Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Nakanishi, M., Akaike, A., & Shimohama, S. (2000). Neuroprotective mechanism of glial cell line-derived neurotrophic factor in mesencephalic neurons. Journal of Neurochemistry, 74, 1175–1184.PubMed Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Nakanishi, M., Akaike, A., & Shimohama, S. (2000). Neuroprotective mechanism of glial cell line-derived neurotrophic factor in mesencephalic neurons. Journal of Neurochemistry, 74, 1175–1184.PubMed
Zurück zum Zitat Schmidt, R. E., Dorsey, D. A., Beaudet, L. N., Parvin, C. A., & Escandon, E. (2001). Effect of NGF and neurotrophin-3 treatment on experimental diabetic autonomic neuropathy. Journal of Neuropathology and Experimantal Neurology, 60, 263–273. Schmidt, R. E., Dorsey, D. A., Beaudet, L. N., Parvin, C. A., & Escandon, E. (2001). Effect of NGF and neurotrophin-3 treatment on experimental diabetic autonomic neuropathy. Journal of Neuropathology and Experimantal Neurology, 60, 263–273.
Zurück zum Zitat Schmidt, R. E., Dorsey, D. A., Beaudet, L. N., Plurad, S. B., Parvin, C. A., & Miller, M. S. (1999). Insulin-like growth factor I reverses experimental diabetic autonomic neuropathy. American Journal of Pathology, 155, 1651–1660.PubMed Schmidt, R. E., Dorsey, D. A., Beaudet, L. N., Plurad, S. B., Parvin, C. A., & Miller, M. S. (1999). Insulin-like growth factor I reverses experimental diabetic autonomic neuropathy. American Journal of Pathology, 155, 1651–1660.PubMed
Zurück zum Zitat Schober, A., Minichiello, L., Keller, M., Huber, K., Layer, P. G., Roig-Lopez, J. L., Garcia-Arraras, J. E., Klein, R., & Unsicker, K. (1997). Reduced acetylcholinesterase (AChE) activity in adrenal medulla and loss of sympathetic preganglionic neurons in TrkA-deficient, but not TrkB-deficient, mice. Journal of Neuroscience, 17, 891–903.PubMed Schober, A., Minichiello, L., Keller, M., Huber, K., Layer, P. G., Roig-Lopez, J. L., Garcia-Arraras, J. E., Klein, R., & Unsicker, K. (1997). Reduced acetylcholinesterase (AChE) activity in adrenal medulla and loss of sympathetic preganglionic neurons in TrkA-deficient, but not TrkB-deficient, mice. Journal of Neuroscience, 17, 891–903.PubMed
Zurück zum Zitat Schober, A., Wolf, N., Huber, K., Hertel, R., Krieglstein, K., Minichiello, L., Kahane, N., Widenfalk, J., Kalcheim, C., Olson, L., Klein, R., Lewin, G. R., & Unsicker, K. (1998). TrkB and neurotrophin-4 are important for development and maintenance of sympathetic preganglionic neurons innervating the adrenal medulla. Journal of Neuroscience, 18, 7272–7284.PubMed Schober, A., Wolf, N., Huber, K., Hertel, R., Krieglstein, K., Minichiello, L., Kahane, N., Widenfalk, J., Kalcheim, C., Olson, L., Klein, R., Lewin, G. R., & Unsicker, K. (1998). TrkB and neurotrophin-4 are important for development and maintenance of sympathetic preganglionic neurons innervating the adrenal medulla. Journal of Neuroscience, 18, 7272–7284.PubMed
Zurück zum Zitat Silani, V., Borasio, G. D., Zhou, F. C., Bernasconi, S., Pizzuti, A., Sampietro, A., & Scarlato, G. (1994). NGF-response of EGF-dependent progenitor cells obtained from human sympathetic ganglia. Neuroreport, 5, 2085–2089.PubMed Silani, V., Borasio, G. D., Zhou, F. C., Bernasconi, S., Pizzuti, A., Sampietro, A., & Scarlato, G. (1994). NGF-response of EGF-dependent progenitor cells obtained from human sympathetic ganglia. Neuroreport, 5, 2085–2089.PubMed
Zurück zum Zitat Sleeman, M. W., Anderson, K. D., Lambert, P. D., Yancopoulos, G. D., & Wiegand, S. J. (2000). The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharmaceutica Acta Helvetiae, 74, 265–272.PubMed Sleeman, M. W., Anderson, K. D., Lambert, P. D., Yancopoulos, G. D., & Wiegand, S. J. (2000). The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharmaceutica Acta Helvetiae, 74, 265–272.PubMed
Zurück zum Zitat Slevin, J. T., Gash, D. M., Smith, C. D., Gerhardt, G. A., Kryscio, R., Chebrolu, H., Walton, A., Wagner, R., & Young, A. B. (2007). Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. Journal of Neurosurgery, 106, 614–620.PubMed Slevin, J. T., Gash, D. M., Smith, C. D., Gerhardt, G. A., Kryscio, R., Chebrolu, H., Walton, A., Wagner, R., & Young, A. B. (2007). Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. Journal of Neurosurgery, 106, 614–620.PubMed
Zurück zum Zitat Slonimsky, J. D., Yang, B., Hinterneder, J. M., Nokes, E. B., & Birren, S. J. (2003). BDNF and CNTF regulate cholinergic properties of sympathetic neurons through independent mechanisms. Molecular and Cellular Neuroscience, 23, 648–660.PubMed Slonimsky, J. D., Yang, B., Hinterneder, J. M., Nokes, E. B., & Birren, S. J. (2003). BDNF and CNTF regulate cholinergic properties of sympathetic neurons through independent mechanisms. Molecular and Cellular Neuroscience, 23, 648–660.PubMed
Zurück zum Zitat Speir, E., Tanner, V., Gonzalez, A. M., Farris, J., Baird, A., & Casscells, W. (1992). Acidic and basic fibroblast growth factors in adult rat heart myocytes. Localization, regulation in culture, and effects on DNA synthesis. Circulation Research, 71, 251–259.PubMed Speir, E., Tanner, V., Gonzalez, A. M., Farris, J., Baird, A., & Casscells, W. (1992). Acidic and basic fibroblast growth factors in adult rat heart myocytes. Localization, regulation in culture, and effects on DNA synthesis. Circulation Research, 71, 251–259.PubMed
Zurück zum Zitat Spires, T. L., Grote, H. E., Varshney, N. K., Cordery, P. M., van Dellen, A., Blakemore, C., & Hannan, A. J. (2004). Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. Journal of Neuroscience, 24, 2270–2276.PubMed Spires, T. L., Grote, H. E., Varshney, N. K., Cordery, P. M., van Dellen, A., Blakemore, C., & Hannan, A. J. (2004). Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. Journal of Neuroscience, 24, 2270–2276.PubMed
Zurück zum Zitat Taraviras, S., Marcos-Gutierrez, C. V., Durbec, P., Jani, H., Grigoriou, M., Sukumaran, M., Wang, L. C., Hynes, M., Raisman, G., & Pachnis, V. (1999). Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development, 126, 2785–2797.PubMed Taraviras, S., Marcos-Gutierrez, C. V., Durbec, P., Jani, H., Grigoriou, M., Sukumaran, M., Wang, L. C., Hynes, M., Raisman, G., & Pachnis, V. (1999). Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development, 126, 2785–2797.PubMed
Zurück zum Zitat Thrasivoulou, C., Soubeyre, V., Ridha, H., Giuliani, D., Giaroni, C., Michael, G. J., Saffrey, M. J., & Cowen, T. (2006). Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell, 5, 247–257.PubMed Thrasivoulou, C., Soubeyre, V., Ridha, H., Giuliani, D., Giaroni, C., Michael, G. J., Saffrey, M. J., & Cowen, T. (2006). Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell, 5, 247–257.PubMed
Zurück zum Zitat Tucker, P., Beebe, K. L., Burgin, C., Wyatt, D. B., Parker, D. E., Masters, B. K., & Nawar, O. (2004). Paroxetine treatment of depression with posttraumatic stress disorder: Effects on autonomic reactivity and cortisol secretion. Journal of Clinical Psychopharmacology, 24, 131–140.PubMed Tucker, P., Beebe, K. L., Burgin, C., Wyatt, D. B., Parker, D. E., Masters, B. K., & Nawar, O. (2004). Paroxetine treatment of depression with posttraumatic stress disorder: Effects on autonomic reactivity and cortisol secretion. Journal of Clinical Psychopharmacology, 24, 131–140.PubMed
Zurück zum Zitat Tyler, C. M., & Federoff, H. J. (2006). CNS gene therapy and a nexus of complexity: Systems and biology at a crossroads. Cell Transplantation, 15, 267–273.PubMed Tyler, C. M., & Federoff, H. J. (2006). CNS gene therapy and a nexus of complexity: Systems and biology at a crossroads. Cell Transplantation, 15, 267–273.PubMed
Zurück zum Zitat Vinik, A. I., Maser, R. E., Mitchell, B. D., & Freeman, R. (2003). Diabetic autonomic neuropathy. Diabetes Care, 26, 1553–1579.PubMed Vinik, A. I., Maser, R. E., Mitchell, B. D., & Freeman, R. (2003). Diabetic autonomic neuropathy. Diabetes Care, 26, 1553–1579.PubMed
Zurück zum Zitat von Boyen, G. B., Reinshagen, M., Steinkamp, M., Adler, G., & Kirsch, J. (2002). Enteric nervous plasticity and development: Dependence on neurotrophic factors. Journal of Gastroenterology, 37, 583–588. von Boyen, G. B., Reinshagen, M., Steinkamp, M., Adler, G., & Kirsch, J. (2002). Enteric nervous plasticity and development: Dependence on neurotrophic factors. Journal of Gastroenterology, 37, 583–588.
Zurück zum Zitat Wakabayashi, K., & Takahashi, H. (1997). Neuropathology of autonomic nervous system in Parkinson’s disease. European Neurology, 38, S2–7. Wakabayashi, K., & Takahashi, H. (1997). Neuropathology of autonomic nervous system in Parkinson’s disease. European Neurology, 38, S2–7.
Zurück zum Zitat Wan, R., Camandola, S., & Mattson, M. P. (2003a). Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. Journal of Nutrition, 133, 1921–1929.PubMed Wan, R., Camandola, S., & Mattson, M. P. (2003a). Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. Journal of Nutrition, 133, 1921–1929.PubMed
Zurück zum Zitat Wan, R., Camandola, S., & Mattson, M. P. (2003b). Intermittent fasting and dietary supplementation with 2-deoxy-d-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB Journal, 17, 1133–1134.PubMed Wan, R., Camandola, S., & Mattson, M. P. (2003b). Intermittent fasting and dietary supplementation with 2-deoxy-d-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB Journal, 17, 1133–1134.PubMed
Zurück zum Zitat Wang, X., & Halvorsen, S. W. (1998). Reciprocal regulation of ciliary neurotrophic factor receptors and acetylcholine receptors during synaptogenesis in embryonic chick atria. Journal of Neuroscience, 18, 7372–7380.PubMed Wang, X., & Halvorsen, S. W. (1998). Reciprocal regulation of ciliary neurotrophic factor receptors and acetylcholine receptors during synaptogenesis in embryonic chick atria. Journal of Neuroscience, 18, 7372–7380.PubMed
Zurück zum Zitat Wang, H., & Zhou, X. F. (2002). Injection of brain-derived neurotrophic factor in the rostral ventrolateral medulla increases arterial blood pressure in anaesthetized rats. Neuroscience, 112, 967–975.PubMed Wang, H., & Zhou, X. F. (2002). Injection of brain-derived neurotrophic factor in the rostral ventrolateral medulla increases arterial blood pressure in anaesthetized rats. Neuroscience, 112, 967–975.PubMed
Zurück zum Zitat Williams, B. J., Eriksdotter-Jonhagen, M., & Granholm, A. C. (2006). Nerve growth factor in treatment and pathogenesis of Alzheimer’s disease. Progress in Neurobiology, 80, 114–128.PubMed Williams, B. J., Eriksdotter-Jonhagen, M., & Granholm, A. C. (2006). Nerve growth factor in treatment and pathogenesis of Alzheimer’s disease. Progress in Neurobiology, 80, 114–128.PubMed
Zurück zum Zitat Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60, 1314–1323.PubMed Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60, 1314–1323.PubMed
Zurück zum Zitat Wooten, M. W., Vandenplas, M. L., Seibenhener, M. L., Geetha, T., & Diaz-Meco, M. T. (2001). Nerve growth factor stimulates multisite tyrosine phosphorylation and activation of the atypical protein kinase C’s via a src kinase pathway. Molecular Cell Biology, 21, 8414–8427. Wooten, M. W., Vandenplas, M. L., Seibenhener, M. L., Geetha, T., & Diaz-Meco, M. T. (2001). Nerve growth factor stimulates multisite tyrosine phosphorylation and activation of the atypical protein kinase C’s via a src kinase pathway. Molecular Cell Biology, 21, 8414–8427.
Zurück zum Zitat Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., Tecott, L. H., & Reichardt, L. F. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 6, 736–742.PubMed Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., Tecott, L. H., & Reichardt, L. F. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 6, 736–742.PubMed
Zurück zum Zitat Yang, B., Slonimsky, J. D., & Birren, S. J. (2002). A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nature Neuroscience, 5, 539–545.PubMed Yang, B., Slonimsky, J. D., & Birren, S. J. (2002). A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nature Neuroscience, 5, 539–545.PubMed
Zurück zum Zitat York, R. D., Molliver, D. C., Grewal, S. S., Stenberg, P. E., McCleskey, E. W., & Stork, P. J. (2000). Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Molecular Cell Biology, 20, 8069–8083. York, R. D., Molliver, D. C., Grewal, S. S., Stenberg, P. E., McCleskey, E. W., & Stork, P. J. (2000). Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Molecular Cell Biology, 20, 8069–8083.
Zurück zum Zitat Zaidi, S. I., Jafri, A., Doggett, T., & Haxhiu, M. A. (2005). Airway-related vagal preganglionic neurons express brain-derived neurotrophic factor and TrkB receptors: Implications for neuronal plasticity. Brain Research, 1044, 133–143.PubMed Zaidi, S. I., Jafri, A., Doggett, T., & Haxhiu, M. A. (2005). Airway-related vagal preganglionic neurons express brain-derived neurotrophic factor and TrkB receptors: Implications for neuronal plasticity. Brain Research, 1044, 133–143.PubMed
Zurück zum Zitat Zahn, T. P. (1988). Studies of autonomic psychophysiology and attention in schizophrenia. Schizophrenia Bulletin, 14, 205–208.PubMed Zahn, T. P. (1988). Studies of autonomic psychophysiology and attention in schizophrenia. Schizophrenia Bulletin, 14, 205–208.PubMed
Zurück zum Zitat Zhou, X., Nai, Q., Chen, M., Dittus, J. D., Howard, M. J., & Margiotta, J. F. (2004). Brain-derived neurotrophic factor and trkB signaling in parasympathetic neurons: relevance to regulating alpha7-containing nicotinic receptors and synaptic function. Journal of Neuroscience, 24, 4340–4350.PubMed Zhou, X., Nai, Q., Chen, M., Dittus, J. D., Howard, M. J., & Margiotta, J. F. (2004). Brain-derived neurotrophic factor and trkB signaling in parasympathetic neurons: relevance to regulating alpha7-containing nicotinic receptors and synaptic function. Journal of Neuroscience, 24, 4340–4350.PubMed
Zurück zum Zitat Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., Conti, L., MacDonald, M. E., Friedlander, R. M., Silani, V., Hayden, M. R., Timmusk, T., Sipione, S., & Cattaneo, E. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293, 493–498.PubMed Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., Conti, L., MacDonald, M. E., Friedlander, R. M., Silani, V., Hayden, M. R., Timmusk, T., Sipione, S., & Cattaneo, E. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293, 493–498.PubMed
Zurück zum Zitat Zulli, R., Nicosia, F., Borroni, B., Agosti, C., Prometti, P., Donati, P., De Vecchi, M., Romanelli, G., Grassi, V., & Padovani, A. (2005). QT dispersion and heart rate variability abnormalities in Alzheimer’s disease and in mild cognitive impairment. Journal of the American Geriatrics Society, 53, 2135–2139.PubMed Zulli, R., Nicosia, F., Borroni, B., Agosti, C., Prometti, P., Donati, P., De Vecchi, M., Romanelli, G., Grassi, V., & Padovani, A. (2005). QT dispersion and heart rate variability abnormalities in Alzheimer’s disease and in mild cognitive impairment. Journal of the American Geriatrics Society, 53, 2135–2139.PubMed
Metadaten
Titel
Neurotrophic Factors in Autonomic Nervous System Plasticity and Dysfunction
verfasst von
Mark P. Mattson
Ruiqian Wan
Publikationsdatum
01.09.2008
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 3/2008
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-007-8021-y

Weitere Artikel der Ausgabe 3/2008

NeuroMolecular Medicine 3/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.