Skip to main content
Erschienen in: Cardiovascular Diabetology 1/2018

Open Access 01.12.2018 | Original investigation

Non-culprit plaque characteristics in acute coronary syndrome patients with raised hemoglobinA1c: an intravascular optical coherence tomography study

verfasst von: Shaotao Zhang, Jiannan Dai, Haibo Jia, Sining Hu, Hongwei Du, Ning Li, Yongpeng Zou, Yanan Zou, Shenhong Jing, Yan Wang, Rong Sun, Bo Yu

Erschienen in: Cardiovascular Diabetology | Ausgabe 1/2018

Abstract

Background

Raised hemoglobinA1c (HbA1c) is an indicator of pre-diabetes, which is associated with increased risk of coronary artery disease. However, the detailed morphological characteristics of non-culprit plaques in acute coronary syndrome (ACS) patients remain largely unknown.

Methods

A total of 305 non-culprit plaques from 216 ACS patients were analyzed by intravascular optical coherence tomography. These patients were divided into three groups according to the serum glycosylated hemoglobin level: normal HbA1c (< 5.7%), pre-diabetes with raised HbA1c (5.7–6.4%) and diabetes mellitus (DM).

Results

Plaques in patients with raised HbA1c had a longer lipid length (17.0 ± 8.3 mm vs. 13.9 ± 7.2 mm, P = 0.004) and greater lipid index (2775.0 ± 1694.0 mm° vs. 1592.1 ± 981.2 mm°, P = 0.001) than those with normal HbA1c but were similar to DM. The prevalence of calcification in patients with raised HbA1c was significantly higher (38.7% vs. 26.3%, P = 0.048) than normal HbA1c but was similar to DM. The percentage of macrophage infiltration in the DM group was higher than that in the normal HbA1c group (20.5% vs. 7.4%, P = 0.005).

Conclusions

Compared to patients with normal HbA1c, the non-culprit plaques in ACS patients with raised HbA1c had more typical vulnerable features but were similar to DM.
Hinweise
Shaotao Zhang and Jiannan Dai contributed equally to this paper.
Abkürzungen
ACS
acute coronary syndrome
ADA
American Diabetes Association
CAD
coronary artery disease
CKD
chronic kidney disease
DM
diabetes mellitus
FCT
fibrous cap thickness
FPG
fasting plasma glucose
HbA1c
hemoglobinA1c
IFG
impaired fasting glucose
IGT
impaired glucose tolerance
LI
lipid index
MACEs
major adverse cardiovascular events
MLA
minimal lumen area
MLD
minimal lumen diameter
NA1c
normal hemoglobinA1c
OCT
optical coherence tomography
OGTT
oral glucose tolerance test
PG
plasma glucose
pre-DM
pre-diabetes mellitus
QCA
quantitative coronary angiography
RA1c
raised hemoglobinA1c
RVD
reference vessel diameter
TCFA
thin-cap fibroatheroma
WHO
World Health Organization

Background

Diabetes mellitus (DM) and pre-diabetes mellitus (pre-DM) are common among patients with coronary artery disease (CAD) [1]. Pre-DM is a risk factor for future diabetes and cardiovascular disease, which is associated with increased risk of major adverse cardiovascular events (MACEs) [2]. According to the diagnostic criteria of American Diabetes Association (ADA), raised hemoglobinA1c (HbA1c) is defined as a glycosylated hemoglobin (Hb) value that varies from 5.7 to 6.4%, which integrates plasma glucose over time and is promoted as an indicator of pre-DM [3].
In the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study, plaque burden > 70%, minimal lumen area (MLA) < 4 mm2, and thin-cap fibroatheroma (TCFA) are the triad of predictors of non-culprit lesion-related future MACEs [4]. A recent intravascular optical coherence tomography (OCT) study reported that the presence of lipid-rich plaques in non-culprit regions increases risk for future MACEs [5]. However, the plaque morphology in acute coronary syndrome (ACS) patients with pre-DM has not been fully illustrated. In this study, we sought to evaluate the coronary plaque morphology in patients with pre-DM by using OCT.

Methods

Patient population

Study patients were retrospectively selected from the 2nd Affiliated Hospital of Harbin Medical University. Patients (aged ≥ 18 years) presenting with ACS and undergoing emergency procedures were screened for OCT examination. The main exclusion criteria were cardiogenic shock, end-stage renal disease, serious liver dysfunction, allergy to contrast media, and contraindication to aspirin or ticagrelor. Patients with left main disease, chronic total occlusion, or extremely tortuous or heavily calcified vessels were not included because of the potential difficulty in performing OCT in such situations. Clinical data including DM history, results of 75 g oral glucose tolerance test (OGTT) and HbA1c were recorded. In this study, 226 patients with ACS who underwent OCT imaging were included. Among these, 159 patients had serum HbA1c records, and 67 patients were diagnosed as DM according to OGTT (n = 10) or DM history (n = 57). Patients with poor image quality (n = 6) and left main disease (n = 4) were excluded. Finally, 216 patients were included in the analysis. The study flow chart is shown in Fig. 1. Non-culprit lesions were defined as plaques with angiographic diameter stenosis between 30 and 70% that had not been treated during the session of percutaneous coronary intervention (PCI) according to the results of stress test or ECG changes during the spontaneous ischemia attacks.
Patients were divided into three groups according to the serum level of HbA1c. Glucose metabolism was assessed according to ADA and World Health Organization (WHO) criteria [3].
Normal HbA1c (NA1c) was defined as plasma HbA1c value < 5.7%. Raised HbA1c (RA1c) was defined as plasma HbA1c value ≥ 5.7 but < 6.5% [3]. DM was defined as a history of DM, HbA1c value ≥ 6.5%, and fasting plasma glucose (FPG) level ≥ 126 mg/dL or 2-h plasma glucose (PG) level ≥ 200 mg/dL during OGTT [3]. All laboratory data were measured at fasting during the hospitalization. This study was approved by the Ethics Committee of the 2nd Affiliated Hospital of Harbin Medical University (Harbin, China), and all patients provided written informed consent.

Angiographic analysis

Coronary angiography was performed after intra-coronary administration of 100–200 µg nitroglycerin. Quantitative coronary angiography (QCA) analysis was performed using Cardiovascular Angiography Analysis System (CAAS, 5.10, Pie Medical Imaging B.V., Maastricht, Netherlands). After selection of end-diastolic frames and calibration using the catheter’s tip, reference vessel diameter (RVD), minimal lumen diameter (MLD), diameter stenosis, and lesion length were measured.

OCT imaging and analysis

A commercially available frequency-domain OCT system (OCT C7-XR Dragonfly, St. Jude Medical, St. Paul, MN) was used in the present study. With the help of a 6 or 7-F guiding catheter, an OCT imaging catheter was advanced distal to the lesion, and automated pullback was initiated in concordance with blood clearance by the injection of contrast media or low molecular dextran from the guiding catheter, and the OCT wire was pulled back at a rate of 20 mm/s. All images were de-identified and digitally stored.
Plaques were classified as fibrous (homogeneous, highly backscattering region) or lipid (low signal region with diffuse border). When lipid was present ≥ 90° in any of the cross-sectional images within the plaque, it was considered a lipid-rich plaque. The lipid arc was measured at every 1-mm interval throughout the length of each lesion, and the values were averaged. Lipid length was also measured on longitudinal view. Lipid index (LI) was defined as the mean lipid arc multiplied by lipid length. The fibrous cap thickness (FCT) of a lipid-rich plaque was measured 3 times at its thinnest part and the average value was calculated. A TCFA was defined as the thinnest fibrous cap with a thickness ≤ 65 μm in a lipid-rich plaque on cross-sectional imaging [6]. Each plaque was separated by at least 5 mm from the edge of another plaque or an implanted stent edge.
Calcification was an area, which consisted of a signal-poor or heterogeneous region with a sharply delineated border [7]. The number and longitudinal length of individual calcium deposits were recorded. Quantitative analysis was performed using cross-sectional OCT images at 1-mm intervals. Calcium deposits were analyzed individually by measuring calcium arc and depth (minimum distance from lumen to superficial calcium edge). Calcium index was calculated for each calcium deposit as the product of calcium length and mean calcium arc. Total calcium index was calculated as the sum of the calcium index of each calcium deposit within the whole lesion segment. The mean calcium index was calculated as the total calcium index divided by the number of calcium deposits. Spotty calcium deposits were defined as those with length < 4 mm and maximal arc < 90°, and deposits not meeting these criteria were classified as large calcium deposits.
Macrophage infiltration was defined as signal-rich, distinct or confluent punctuate regions that exceed the intensity of background spackle noise [7]. Microchannels were defined as signal-poor voids that were sharply delineated in multiple contiguous frames [8]. Plaque disruption was identified by the presence of fibrous cap discontinuity with a clear cavity formation inside the plaque.
The OCT data were analyzed by two experienced investigators who were blinded to the angiographic and clinical findings. When there was a difference between the investigators, a consensus reading was obtained from a third independent reviewer. The inter- and intra-observer kappa coefficients for lipid arc were 0.896 and 0.901, respectively.

Statistical analysis

All statistical analyses were performed using SPSS version. 20.0 (IBM Corp, Armonk, NY, USA). Baseline clinical and imaging data were stratified on the basis of glucometabolic status. Categorical data were presented as counts (proportions) and were compared using the Chi square test or Fisher’s exact test (if the expected cell value was < 5). Continuous variables are shown as the mean ± standard deviation (SD) for normally distributed data or as median (25th–75th percentiles) for non-normally distributed data. The generalized estimating equations (GEE) methodology was used to take into account the presence of multiple plaques per patient. Between-group differences were tested using the analysis of variance (ANOVA) test. The association between HbA1c and lipid arc and lipid length was assessed using a multivariable linear analysis. All the variables with P < 0.1 in univariable analysis were entered en bloc in the multivariable model. A two-tailed P value < 0.05 was considered significant.

Results

Baseline characteristics

Baseline characteristics are presented in Table 1. The prevalence of hypertension was significantly higher in the DM group than in the other two groups (P = 0.046). The frequency of dyslipidemia was significantly higher in the RA1c and DM groups than that in the NA1c group (P = 0.021). The creatinine level and the prevalence of chronic kidney disease (CKD) were comparable among the three groups. There was no difference in statin treatment among the three groups. In the DM group, 7 subjects (8.9%) were treated with insulin therapy, and 11 subjects (13.9%) were treated with oral agents.
Table 1
Baseline patients characteristics
 
NA1c (n = 68)
RA1c (n = 69)
DM (n = 79)
P value
Age, years
58.4 ± 9.9
59.3 ± 9.3
59.2 ± 9.2
0.849
BMI, kg/m2
25.1 ± 4.7
26.3 ± 3.6
26.5 ± 4.5
0.343
Male sex, n (%)
55 (80.9)
53 (76.8)
64 (81.0)
0.780
Smoking, n (%)
48 (70.6)
42 (60.9)
50 (63.3)
0.462
Hypertension, n (%)
24 (35.3)
31 (44.9)
44 (55.7)
0.046*
Dyslipidemia, n (%)
29 (42.6)
45 (65.2)
47 (59.5)
0.021*
Statin, n (%)
12 (17.6)
17 (24.6)
19 (24.1)
0.546
Prior MI, n (%)
12 (17.6)
19 (27.5)
17 (21.5)
0.373
Prior PCI, n (%)
11 (16.2)
15 (21.7)
16 (20.3)
0.695
Chronic kidney disease, n (%)
3 (4.4)
2 (2.9)
3 (3.8)
0.895
STEMI, n (%)
36 (52.9)
40 (58.0)
44 (55.7)
0.839
CK-MB, μg/L
27.7 ± 54.0
42.0 ± 116.4
42.4 ± 130.0
0.652
TnI, μg/L
7.1 ± 21.7
36.9 ± 120.7
22.1 ± 66.9
0.098
Hs-CRP, mg/dL
5.2 ± 4.8
6.4 ± 5.3
5.0 ± 5.1
0.264
Creatinine, μmol/L
76.9 ± 20.9
78.1 ± 19.8
78.4 ± 22.2
0.899
TC, mg/dL
157.3 ± 37.0
172.1 ± 47.5
164.5 ± 45.8
0.195
TG, mg/dL
117.5 ± 47.4
159.1 ± 94.0
146.5 ± 84.9
0.019
LDL-C, mg/dL
100.6 ± 35.4
112.8 ± 42.3
106.6 ± 39.6
0.248
HDL-C, mg/dL
48.2 ± 10.7
46.5 ± 10.4
47.5 ± 10.0
0.653
Insulin, n (%)
0
0
7
 
Oral hypoglycemic agents, n (%)
0
0
11
 
ACS acute coronary syndrome, BMI body mass index, DM diabetes mellitus, MI myocardial infarction, NA1c normal haemoglobinA1c, RA1c raised haemoglobinA1c, PCI percutaneous coronary intervention, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, hs-CRP high-sensitivity C-reactive protein, STEMI ST-segment elevation myocardial infarction, TC total cholesterol, TG triglyceride, UA unstable angina
Values are mean ± SD or n (%). *P < 0.05

Angiographic findings

Angiographic findings are shown in Table 2. A total of 305 non-culprit plaques were detected in 216 subjects (95 plaques in 68 NA1c subjects, 93 plaques in 69 RA1c subjects, and 117 plaques in 79 DM subjects). The plaque distribution was not significantly different among the three groups (P = 0.966). Plaques in patients with RA1c and DM had a longer lesion length (P = 0.008). Patients with RA1c had a larger stenosis diameter percentage than the other two groups (P = 0.020), but the difference was slight.
Table 2
Clinical characteristics of the study population on angiography
 
NA1c (n = 68)
RA1c (n = 69)
DM (n = 79)
P value
PNA1c vs. RA1c
PNA1c vs. DM
PRA1c vs. DM
Plaques, n
95
93
117
    
Plaques/person, n
1.4 ± 0.7
1.4 ± 0.6
1.4 ± 0.7
0.473
N/A
N/A
N/A
MLA, mm
2.04 ± 0.44
1.96 ± 0.33
1.98 ± 0.42
0.370
N/A
N/A
N/A
Reference diameter, mm
3.10 ± 0.64
3.02 ± 0.53
3.00 ± 0.62
0.704
N/A
N/A
N/A
%DS
34.3 ± 2.5
35.0 ± 4.00
34.0 ± 1.3
0.020*
0.070*
0.380
0.006*
Lipid length, mm
13.9 ± 7.2
17.0 ± 8.3
16.3 ± 7.8
0.008*
0.006*
0.023*
0.516
Location
   
0.966
N/A
N/A
N/A
RCA
 Proximal
12 (12.6)
8 (8.6)
11 (9.4)
    
 Mid
9 (9.5)
10 (10.8)
8 (6.8)
    
 Distal
8 (8.4)
8 (10.8)
12 (10.3)
    
LAD
 Proximal
7 (7.4)
14 (15.1)
12 (10.3)
    
 Mid
16 (16.8)
14 (15.1)
22 (18.8)
    
 Distal
11 (11.6)
9 (9.7)
15 (12.8)
    
LCX
 Proximal
23 (24.2)
20 (21.5)
24 (20.5)
    
 Distal
9 (9.5)
10 (10.8)
13 (11.1)
    
DM diabetes mellitus, NA1c normal haemoglobinA1c, RA1c raised haemoglobinA1c, LAD left anterior descending artery, LCX left circumflex artery, RCA right coronary artery, %DS percent diameter stenosis
Values are mean ± SD or n (%). *P < 0.05

OCT findings

Representative OCT images in each group are shown in Fig. 2. A comparison of the quantitative OCT findings of the lipid plaques between the NA1c, RA1c, and DM groups is presented in Fig. 3. The plaques had a significantly longer lipid length and greater LI in the RA1c and DM groups than in the NA1c group (lipid length: 17.0 ± 8.3 mm [RA1c] vs. 13.9 ± 7.2 mm [NA1c], P = 0.004 and 16.3 ± 7.8 mm [DM] vs. 13.9 ± 7.2 mm [NA1c], P = 0.009; LI: 2755.0 ± 1694.0 mm° [RA1c] vs. 1592.1 ± 981.2 mm° [NA1c], P = 0.001 and 2758.0 ± 1821.7 mm° [DM] vs. 1592.1 ± 981.2 mm° [NA1c], P = 0.001). Compared to patients with NA1c, plaques in those with DM had a significantly wider maximum lipid arc and mean lipid arc (maximum lipid arc: 246.8 ± 90.6° [DM] vs. 199.7 ± 79.9° [NA1c], P = 0.012; mean lipid arc: 175.2 ± 63.7° [DM] vs. 142.2 ± 57.1° [NA1c], P = 0.012). Additionally, the maximum and mean lipid arcs were wider in patients with RA1c than in those with NA1c with a borderline significance (maximum lipid arc: 232.4 ± 91.3° [RA1c] vs. 199.7 ± 79.9° [NA1c], P = 0.090; mean lipid arc: 164.7 ± 63.7° [RA1c] vs. 142.2 ± 57.1° [NA1c], P = 0.090). There were no significant differences in these lipid plaque parameters between the RA1c and DM groups.
The FCT of plaques in RA1c subjects and DM subjects tended to be thinner than that in NA1c subjects, although there was no significant difference (107.2 ± 61.9 mm [NA1c] vs. 87.0 ± 44.2 mm [RA1c] vs. 91.1 ± 47.9 mm [DM], P = 0.167).
In univariable linear regression (Table 3), HbA1c was significantly correlated with maximal lipid arc (coefficient β = 15.469, P = 0.002) and lipid length (coefficient β = 1.678, P < 0.001). All the variables with P < 0.1 were entered en bloc in the multivariable model. As result, the model of maximal lipid arc was adjusted by age, smoking, HbA1c, triglyceride (TG) and creatinine, and the model of lipid length was adjusted by HbA1c, TG and high-density lipoprotein cholesterol (HDL-C). In the multivariable linear regression analysis (Table 4), a higher HbA1c was independently associated with a larger maximal lipid arc (coefficient β = 14.282, P = 0.005) and a longer lipid length (coefficient β = 1.368, P = 0.003).
Table 3
Univariable linear regression
Variable
Maximal lipid arc
Lipid length
Coefficients
P value
Coefficients
P value
Age
1.731 [0.213 to 3.25]
0.026
− 0.105 [− 0.241 to 0.031]
0.801
Male
16.734 [− 19.134 to 52.603]
0.358
0.711 [− 2.476 to 3.898]
0.457
BMI
− 0.393 [− 6.995 to 6.21]
0.905
0.202 [− 0.284 to 0.688]
0.507
Smoking
25.688 [− 3.812 to 55.189]
0.087
1.603 [− 1.025 to 4.231]
0.041
Hypertension
8.539 [− 19.310 to 36.388]
0.546
1.755 [− 0.702 to 4.211]
0.069
Dyslipidemia
10.902 [− 16.926 to 38.730]
0.440
2.394 [− 0.048 to 4.837]
0.105
HbA1c
15.469 [5.965 to 24.982]
0.002
1.678 [0.848 to 2.507]
< 0.001
TC
0.148 [− 0.218 to 0.514]
0.426
0.025 [− 0.006 to 0.057]
0.069
TG
0.221 [0.066 to 0.376]
0.006
0.014 [0 to 0.028]
0.001
HDL-C
− 0.537 [− 1.785 to 0.712]
0.396
− 0.147 [− 0.253 to − 0.04]
0.011
LDL-C
− 0.003 [− 0.406 to 0.401]
0.989
0.026 [− 0.010 to 0.061]
0.244
Creatinine
0.720 [0.087 to 1.354]
0.026
− 0.032 [− 0.089 to 0.025]
0.677
Statin
− 20.074 [− 58.734 to 18.587]
0.307
− 0.223 [− 3.662 to 3.216]
0.286
Prior MI
− 18.604 [− 52.728 to 15.520]
0.283
1.686 [− 1.339 to 4.711]
0.863
CKD
− 18.982 [− 78.979 to 41.014]
0.533
− 8.765 [− 13.908 to − 3.622]
0.300
STEMI
22.339 [− 6.329 to 51.007]
0.126
− 1.767 [− 4.312 to 0.779]
0.892
Hs-CRP
0.382 [− 2.66 to 3.423]
0.804
− 0.287 [− 0.548 to − 0.025]
0.707
BMI body mass index, CKD chronic kidney disease, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, HbA1c hemoglobinA1c, TC total cholesterol, TG triglyceride
Table 4
Multivariable linear regression
Variable
Coefficients
P value
For maximal lipid arc
 Age
1.933 [0.311 to 3.554]
0.020
 Smoking
48.34 [17.931 to 78.749]
0.002
 HbA1c
14.282 [4.417 to 24.147]
0.005
 TG
0.174 [0.024 to 0.323]
0.023
 Creatinine
0.427 [− 0.217 to 1.071]
0.192
For lipid length
 HbA1c
1.368 [0.469 to 2.267]
0.003
 TG
0.005 [− 0.009 to 0.019]
0.487
 HDL-C
− 0.114 [− 0.223 to − 0.004]
0.042
HDL-C high-density lipoprotein cholesterol, HbA1c hemoglobinA1c, TC total cholesterol, TG triglyceride
The prevalence of OCT plaque characteristics are shown in Table 5. Of the 305 non-culprit plaques, 157 were found to contain a lipid core (40, 43 and 54 in the NA1c, RA1c and DM groups, respectively). The prevalence of lipid-rich plaques was similar among NA1c, RA1c and DM groups (P = 0.735).
Table 5
Plaque characteristics in non-culprit lesion on optical coherence tomography
 
NA1c (n = 95)
RA1c (n = 93)
DM (n = 117)
P value
PNA1c vs. RA1c
PNA1c vs. DM
PNA1c vs. DM
Lipid, n (%)
40 (42.1)
43 (46.2)
54 (46.2)
0.802
N/A
N/A
N/A
Lipid-rich plaques, n (%)
38 (40.0)
42 (45.2)
52 (44.4)
0.735
N/A
N/A
N/A
TCFA, n (%)
12 (12.6)
19 (20.4)
18 (15.4)
0.335
N/A
N/A
N/A
Disruption, n (%)
1 (1.1)
2 (2.2)
1 (0.9)
0.689
N/A
N/A
N/A
Crystal, n (%)
4 (4.2)
0 (0.0)
6 (5.1)
0.097
N/A
N/A
N/A
Macrophage, n (%)
7 (7.4)
11 (11.8)
24 (20.5)
0.018*
0.215
0.005*
0.067
Microchannels, n (%)
7 (7.4)
9 (9.7)
15 (12.8)
0.419
N/A
N/A
N/A
Thrombus presence, n (%)
2 (2.1)
2 (2.2)
1 (0.9)
0.696
N/A
N/A
N/A
Calcification, n (%)
25 (26.3)
36 (38.7)
55 (47.0)
0.008*
0.048*
0.001*
0.143
Spotty calcification, n (%)
19 (20.0)
26 (28.0)
43 (36.8)
0.027
0.134
0.006*
0.115
Large calcification, n (%)
6 (6.3)
10 (10.8)
15 (12.8)
0.289
N/A
N/A
N/A
DM diabetes mellitus, NA1c normal haemoglobinA1c, RA1c raised haemoglobinA1c, TCFA thin-cap fibroatheroma
Values are mean ± SD or n (%). *P < 0.05
The frequency of calcification in RA1c group (P = 0.048) and DM group (P = 0.001) was higher than that in NA1c group. There was a significant difference in the prevalence of spotty calcification between DM group and NA1c group (36.8% vs. 20.0%, P = 0.006). Detailed OCT analysis of calcium deposits is summarized in Table 6.
Table 6
Optical coherence tomography calcium analysis
 
NA1c (n = 25)
RA1c (n = 36)
DM (n = 55)
P value
Total calcifications/lesion
1.0 (1.0, 1.5)
1.0 (1.0, 2.0)
1.0 (1.0,2.0)
0.714
Spotty calcium/lesion
1.0 (0.5, 1.0)
1.0 (1.0, 1.0)
1.0 (1.0, 1.0)
0.969
Large calcium/lesion
0.0 (1.0, 1.0)
0.0 (0.0, 1.0)
0.0 (0.0, 1.0)
0.907
Total calcium index, mm°
417.5 ± 426.9
438.8 ± 475.9
496.4 ± 479.2
0.807
Mean calcium index, mm°
248.6 ± 207.0
261.4 ± 192.2
308.1 ± 227.2
0.538
Maximal calcium arc, °
74.8 ± 25.2
88.4 ± 34.1
95.0 ± 44.7
0.095
Mean calcium arc, °
52.9 ± 17.8
62.5 ± 24.1
67.1 ± 31.6
0.095
Mean calcium length, mm
3.9 ± 3.3
4.3 ± 2.6
4.6 ± 3.6
0.662
Mini calcium depth, μm
151.6 ± 117.0
132.5 ± 97.9
139.8 ± 116.1
0.804
DM diabetes mellitus, NA1c normal haemoglobinA1c, RA1c raised haemoglobinA1c
Values are mean ± SD or median (interquartile range). *P < 0.05
The prevalence of TCFA (P = 0.335), disruption (P = 0.689), thrombus (P = 0.696) and microchannels (P = 0.419) was not different among the three groups. The prevalence of macrophage infiltration in the DM group was higher than that in the NA1c group (P = 0.005). Although the frequency of macrophage infiltration tended to be higher in RA1c subjects than in NA1c subjects, the difference was not significant (P = 0.215).

Discussion

This study aimed to investigate the morphologic characteristics of non-culprit plaques in ACS patients with RA1c. The lipid core of plaques was larger and calcification was more common in patients with RA1c than in patients with NA1c, similar to those with DM. DM patients had a higher prevalence of macrophages.
Due to high resolution (10–15 μm), OCT offers a more accurate and reliable depiction of specific plaque components in vivo, particularly microstructural vulnerable plaque features such as the FCT and the presence of macrophages, which has been established superior to other conventional imaging techniques such as intravascular ultra sound [9]. Previous OCT studies revealed the impairment of DM to plaque vulnerability. Reith et al. [10] found the frequency of TCFA was higher in diabetic patients compared to non-diabetic patients. Patients with DM were found, had a lower minimal FCT of the coronary target lesion than those with non-DM [11, 12]. Several studies found that patients with DM had a larger LI suggesting a larger lipid core, compared with non-DM patients [12, 13]. Kuroda et al. [14] reported that glucose fluctuation contributed to the formation of lipid-rich plaques and thinning the FCT. Consistently, the present study found a greater size of lipid core in patients with DM. Notably, we did not find a significant difference in FCT and prevalence of TCFA among patients with NA1c, RA1c or DM. Feng et al. [15] found the FCT and the frequency of TCFA were comparable between patients with DM and non-DM. Recently, Xing et al. [5] reported that the presence of lipid-rich plaque, but not the TCFA and the FCT assessed by OCT, was correlated with increased risk of non-culprit lesion-related MACEs.
Suzuki et al. [12] found that CAD patients with impaired glucose tolerance (IGT) have a greater size of lipid core and thinner FCT than those with normal glucose tolerance. A postmortem study showed a positive correlation between mean percent necrotic core size and the HbA1c level [16]. An OCT study found a significant direct correlation between HbA1c and prevalence of lipid plaques and TCFA [17]. The present study found patients with RA1c had a lager lipid core than with NA1c, similar to with DM. We also found the correlation of HbA1c with lipid size. The present study assessed exclusively ACS patients and diagnosed pre-DM as raised HbA1c, which differ from the study by Suzuki [12].
Previous physiological studies reported that long-term exposure to hyperglycemia and excess free fatty acids, together with insulin resistance in DM, resulted in dysfunction of endothelial cells, which augments vasoconstriction, increases inflammation, and promotes thrombosis, thereby promoting coronary atherosclerosis [18]. This process may initiate in the pre-diabetes phase. An animal study revealed that pre-DM increased oxidative stress [19]. CKD was reported another cause of systemic inflammation and oxidative stress and was recognized as an independent risk factor for CAD [20]. All these studies suggested that the function of endothelial cells may be impaired and advanced atherosclerotic plaque may form in patients with RA1c.
Coronary artery calcification is well associated with advanced atherosclerosis and increased risk of adverse cardiac events [21]. Therefore, subjects with coronary artery calcium have a higher short-term risk of death [22]. Previous studies showed that the prevalence of calcified plaques in the DM group was significantly higher than that in the non-DM group [17, 23, 24]. In the present study, we found that the RA1c and DM groups had a higher prevalence of calcified plaques, which was consistent with previous studies. Additionally, several studies found that spotty and superficial calcium deposits were frequently in culprit lesion of patients with ACS, suggesting an association with plaque vulnerability [2527]. However, a recent OCT study did not find any difference between patients with myocardial infarction and stable pectoris in the pattern of culprit plaque calcification [28]. In the latter study, calcium analysis was restricted to a shorter culprit segment (10 mm-long). Niccoli et al. [29] found that superficial calcified nodules were more frequently found in diabetic than in non-diabetic patients. The present study found that the frequency of spotty calcification was higher in DM group than in NA1c group.
Pathologic study revealed coronary tissue from patients with DM exhibited a larger content of macrophage infiltration than tissue from patients without DM [30]. Mita et al. [31] demonstrated that oscillations in blood glucose concentrations accelerated macrophage adhesion to the endothelial surface. An increased number of macrophages was related to necrotic core expansion and plaque instability [16]. Additionally, high glucose concentration increased the inflammatory activity of macrophages [32]. In this study, there was a higher prevalence of macrophage infiltration in patients with DM, which is consistent with previous studies [17]. Additionally, the prevalence of macrophage infiltration in patients with RA1c was higher than those with NA1c, although the difference was not significant.
Previous studies reported that HbA1c was significantly associated with ischemic heart disease mortality [33, 34]. Additionally, HbA1c has the advantage of wider application, in that it can be performed regardless of fasting or timed samples, is largely unaffected by acute illness, and may be used to guide management and to adjust therapies [35]. Taken together with the findings of the present study, the importance of HbA1c is enhanced in CAD patients, which will allow the timely diagnosis of pre-DM or latent DM.
The results of the present study indicated that an abnormality in glucose metabolism should be managed as early as possible in the prevention of cardiovascular disease [36]. The preferred approach for this is intensive lifestyle intervention, which besides reducing progression to diabetes, has also been shown to reduce all-cause mortality in a long-term follow-up study [37]. The best evidence for a pharmacological approach is with metformin [38]. However, a large-scale prospective study is warranted to evaluate whether additional glucose control will decrease the progression of plaque vulnerability and late clinical events.

Study limitations

In the present study, there were several limitations. First, this was a retrospective study using a registry database. Therefore, potential selection bias is unavoidable. Patients with cardiogenic shock (hemodynamic instability), congestive heart failure, chronic total occlusion, left main disease, or renal failure were not included. Second, FPG and 2-h PG concentrations may be increased in ACS, which increases the risk of inadvertently classifying patients with non-DM as having DM. Third, the exact measurements of necrotic core and plaque burden by OCT were not possible because of the relatively shallow axial penetration. However, because the most important morphological determinants of plaque vulnerability are superficial, the region of greatest interest was still within the imaging range of current OCT systems. Finally, the impairment of duration of RA1c to plaque vulnerability was not considered in this study.

Conclusions

Compared to patients with NA1c, the non-culprit plaques in ACS patients with RA1c were more vulnerable, similar to DM. Thus, preventing patients from progressing from pre-DM to DM is important.

Authors’ contributions

SZ and JD contributed to the study design, data acquisition, and data analysis and wrote the manuscript. BY, HJ, and SH contributed to the study design. HD, NL, YZ, and SJ contributed to the data acquisition. YZ, YZ and RS reviewed and edited the intellectual content. All authors gave final approval for this version to be published. All authors read and approved the final manuscript.

Acknowledgements

The authors thank the study subjects for their participation and support of this study.

Competing interests

All authors have reported that they have no relationships relevant to the contents of this paper to disclose.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Not applicable.
The study protocol was approved by the Ethics Committee of The 2nd Affiliated Hospital of Harbin Medical University (Harbin, China), and the study was conducted according to the principles of the Helsinki Declaration II. All patients were informed of the purpose of the study after which consent was obtained.

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 81330033 to B.Y.) and National Key R&D Program of China (Grant No. 2016YFC1301100 to B.Y.).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Diabetes Canada Clinical Practice Guidelines Expert C, Punthakee Z, Goldenberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. 2018;42(Suppl 1):S10–5. Diabetes Canada Clinical Practice Guidelines Expert C, Punthakee Z, Goldenberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. 2018;42(Suppl 1):S10–5.
2.
Zurück zum Zitat Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953.CrossRefPubMedPubMedCentral Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81–90.CrossRef American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81–90.CrossRef
4.
Zurück zum Zitat Yun KH, Mintz GS, Farhat N, Marso SP, Taglieri N, Verheye S, Foster MC, Margolis MP, Templin B, Xu K, et al. Relation between angiographic lesion severity, vulnerable plaque morphology and future adverse cardiac events (from the Providing Regional Observations to Study Predictors of Events in the Coronary Tree study). Am J Cardiol. 2012;110(4):471–7.CrossRefPubMed Yun KH, Mintz GS, Farhat N, Marso SP, Taglieri N, Verheye S, Foster MC, Margolis MP, Templin B, Xu K, et al. Relation between angiographic lesion severity, vulnerable plaque morphology and future adverse cardiac events (from the Providing Regional Observations to Study Predictors of Events in the Coronary Tree study). Am J Cardiol. 2012;110(4):471–7.CrossRefPubMed
5.
Zurück zum Zitat Xing L, Higuma T, Wang Z, Aguirre AD, Mizuno K, Takano M, Dauerman HL, Park SJ, Jang Y, Kim CJ, et al. Clinical significance of lipid-rich plaque detected by optical coherence tomography: a 4-year follow-up study. J Am Coll Cardiol. 2017;69(20):2502–13.CrossRefPubMed Xing L, Higuma T, Wang Z, Aguirre AD, Mizuno K, Takano M, Dauerman HL, Park SJ, Jang Y, Kim CJ, et al. Clinical significance of lipid-rich plaque detected by optical coherence tomography: a 4-year follow-up study. J Am Coll Cardiol. 2017;69(20):2502–13.CrossRefPubMed
6.
Zurück zum Zitat Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107(1):113–9.CrossRefPubMed Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107(1):113–9.CrossRefPubMed
7.
Zurück zum Zitat Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.CrossRefPubMed Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.CrossRefPubMed
8.
Zurück zum Zitat Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–5.CrossRefPubMedPubMedCentral Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–5.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Reith S, Battermann S, Hoffmann R, Marx N, Burgmaier M. Optical coherence tomography derived differences of plaque characteristics in coronary culprit lesions between type 2 diabetic patients with and without acute coronary syndrome. Catheter Cardiovasc Interv. 2014;84(5):700–7.CrossRefPubMed Reith S, Battermann S, Hoffmann R, Marx N, Burgmaier M. Optical coherence tomography derived differences of plaque characteristics in coronary culprit lesions between type 2 diabetic patients with and without acute coronary syndrome. Catheter Cardiovasc Interv. 2014;84(5):700–7.CrossRefPubMed
10.
Zurück zum Zitat Reith S, Battermann S, Hellmich M, Marx N, Burgmaier M. Correlation between optical coherence tomography-derived intraluminal parameters and fractional flow reserve measurements in intermediate grade coronary lesions: a comparison between diabetic and non-diabetic patients. Clin Res Cardiol. 2015;104(1):59–70.CrossRefPubMed Reith S, Battermann S, Hellmich M, Marx N, Burgmaier M. Correlation between optical coherence tomography-derived intraluminal parameters and fractional flow reserve measurements in intermediate grade coronary lesions: a comparison between diabetic and non-diabetic patients. Clin Res Cardiol. 2015;104(1):59–70.CrossRefPubMed
11.
Zurück zum Zitat Milzi A, Burgmaier M, Burgmaier K, Hellmich M, Marx N, Reith S. Type 2 diabetes mellitus is associated with a lower fibrous cap thickness but has no impact on calcification morphology: an intracoronary optical coherence tomography study. Cardiovasc Diabetol. 2017;16(1):152.CrossRefPubMedPubMedCentral Milzi A, Burgmaier M, Burgmaier K, Hellmich M, Marx N, Reith S. Type 2 diabetes mellitus is associated with a lower fibrous cap thickness but has no impact on calcification morphology: an intracoronary optical coherence tomography study. Cardiovasc Diabetol. 2017;16(1):152.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Suzuki K, Takano H, Kubota Y, Inui K, Nakamura S, Tokita Y, Kato K, Asai K, Shimizu W. Plaque characteristics in coronary artery disease patients with impaired glucose tolerance. PLoS ONE. 2016;11(12):e0167645.CrossRefPubMedPubMedCentral Suzuki K, Takano H, Kubota Y, Inui K, Nakamura S, Tokita Y, Kato K, Asai K, Shimizu W. Plaque characteristics in coronary artery disease patients with impaired glucose tolerance. PLoS ONE. 2016;11(12):e0167645.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, McNulty I, Yeh RW, Sakhuja R, Zhang S, Uemura S, et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv. 2012;5(11):1150–8.CrossRefPubMed Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, McNulty I, Yeh RW, Sakhuja R, Zhang S, Uemura S, et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv. 2012;5(11):1150–8.CrossRefPubMed
14.
Zurück zum Zitat Kuroda M, Shinke T, Sakaguchi K, Otake H, Takaya T, Hirota Y, Osue T, Kinutani H, Konishi A, Takahashi H, et al. Association between daily glucose fluctuation and coronary plaque properties in patients receiving adequate lipid-lowering therapy assessed by continuous glucose monitoring and optical coherence tomography. Cardiovasc Diabetol. 2015;14:78.CrossRefPubMedPubMedCentral Kuroda M, Shinke T, Sakaguchi K, Otake H, Takaya T, Hirota Y, Osue T, Kinutani H, Konishi A, Takahashi H, et al. Association between daily glucose fluctuation and coronary plaque properties in patients receiving adequate lipid-lowering therapy assessed by continuous glucose monitoring and optical coherence tomography. Cardiovasc Diabetol. 2015;14:78.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Feng T, Yundai C, Lian C, Zhijun S, Changfu L, Jun G, Hongbin L. Assessment of coronary plaque characteristics by optical coherence tomography in patients with diabetes mellitus complicated with unstable angina pectoris. Atherosclerosis. 2010;213(2):482–5.CrossRefPubMed Feng T, Yundai C, Lian C, Zhijun S, Changfu L, Jun G, Hongbin L. Assessment of coronary plaque characteristics by optical coherence tomography in patients with diabetes mellitus complicated with unstable angina pectoris. Atherosclerosis. 2010;213(2):482–5.CrossRefPubMed
16.
Zurück zum Zitat Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, Farb A, Virmani R. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol. 2004;24(7):1266–71.CrossRefPubMed Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, Farb A, Virmani R. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol. 2004;24(7):1266–71.CrossRefPubMed
17.
Zurück zum Zitat De Rosa R, Vasa-Nicotera M, Leistner DM, Reis SM, Thome CE, Boeckel JN, Fichtlscherer S, Zeiher AM. Coronary atherosclerotic plaque characteristics and cardiovascular risk factors—insights from an optical coherence tomography study. Circ J. 2017;81(8):1165–73.CrossRefPubMed De Rosa R, Vasa-Nicotera M, Leistner DM, Reis SM, Thome CE, Boeckel JN, Fichtlscherer S, Zeiher AM. Coronary atherosclerotic plaque characteristics and cardiovascular risk factors—insights from an optical coherence tomography study. Circ J. 2017;81(8):1165–73.CrossRefPubMed
18.
Zurück zum Zitat Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.CrossRefPubMed Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.CrossRefPubMed
19.
Zurück zum Zitat Rato L, Duarte AI, Tomas GD, Santos MS, Moreira PI, Socorro S, Cavaco JE, Alves MG, Oliveira PF. Pre-diabetes alters testicular PGC1-alpha/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim Biophys Acta. 2014;1837(3):335–44.CrossRefPubMed Rato L, Duarte AI, Tomas GD, Santos MS, Moreira PI, Socorro S, Cavaco JE, Alves MG, Oliveira PF. Pre-diabetes alters testicular PGC1-alpha/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim Biophys Acta. 2014;1837(3):335–44.CrossRefPubMed
20.
Zurück zum Zitat Kakuta K, Dohi K, Miyoshi M, Yamanaka T, Kawamura M, Masuda J, Kurita T, Ogura T, Yamada N, Sumida Y, et al. Impact of renal function on the underlying pathophysiology of coronary plaque composition in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16(1):131.CrossRefPubMedPubMedCentral Kakuta K, Dohi K, Miyoshi M, Yamanaka T, Kawamura M, Masuda J, Kurita T, Ogura T, Yamada N, Sumida Y, et al. Impact of renal function on the underlying pathophysiology of coronary plaque composition in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16(1):131.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Hosoi M, Sato T, Yamagami K, Hasegawa T, Yamakita T, Miyamoto M, Yoshioka K, Yamamoto T, Ishii T, Tanaka S, et al. Impact of diabetes on coronary stenosis and coronary artery calcification detected by electron-beam computed tomography in symptomatic patients. Diabetes Care. 2002;25(4):696–701.CrossRefPubMed Hosoi M, Sato T, Yamagami K, Hasegawa T, Yamakita T, Miyamoto M, Yoshioka K, Yamamoto T, Ishii T, Tanaka S, et al. Impact of diabetes on coronary stenosis and coronary artery calcification detected by electron-beam computed tomography in symptomatic patients. Diabetes Care. 2002;25(4):696–701.CrossRefPubMed
22.
Zurück zum Zitat Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663–9.CrossRefPubMed Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663–9.CrossRefPubMed
23.
Zurück zum Zitat Kim LK, Yoon JW, Lee DH, Kim KM, Choi SH, Park KS, Jang HC, Kim MK, Park HE, Choi SY, et al. Impact of metabolic syndrome on the progression of coronary calcium and of coronary artery disease assessed by repeated cardiac computed tomography scans. Cardiovasc Diabetol. 2016;15:92.CrossRefPubMedPubMedCentral Kim LK, Yoon JW, Lee DH, Kim KM, Choi SH, Park KS, Jang HC, Kim MK, Park HE, Choi SY, et al. Impact of metabolic syndrome on the progression of coronary calcium and of coronary artery disease assessed by repeated cardiac computed tomography scans. Cardiovasc Diabetol. 2016;15:92.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Nicoll R, Zhao Y, Wiklund U, Diederichsen A, Mickley H, Ovrehus K, Zamorano J, Gueret P, Schmermund A, Maffei E, et al. Diabetes and male sex are key risk factor correlates of the extent of coronary artery calcification: a Euro-CCAD study. J Diabetes Complications. 2017;31(7):1096–102.CrossRefPubMed Nicoll R, Zhao Y, Wiklund U, Diederichsen A, Mickley H, Ovrehus K, Zamorano J, Gueret P, Schmermund A, Maffei E, et al. Diabetes and male sex are key risk factor correlates of the extent of coronary artery calcification: a Euro-CCAD study. J Diabetes Complications. 2017;31(7):1096–102.CrossRefPubMed
25.
Zurück zum Zitat Mizukoshi M, Kubo T, Takarada S, Kitabata H, Ino Y, Tanimoto T, Komukai K, Tanaka A, Imanishi T, Akasaka T. Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2013;112(1):34–40.CrossRefPubMed Mizukoshi M, Kubo T, Takarada S, Kitabata H, Ino Y, Tanimoto T, Komukai K, Tanaka A, Imanishi T, Akasaka T. Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2013;112(1):34–40.CrossRefPubMed
26.
Zurück zum Zitat Fujii K, Carlier SG, Mintz GS, Takebayashi H, Yasuda T, Costa RA, Moussa I, Dangas G, Mehran R, Lansky AJ, et al. Intravascular ultrasound study of patterns of calcium in ruptured coronary plaques. Am J Cardiol. 2005;96(3):352–7.CrossRefPubMed Fujii K, Carlier SG, Mintz GS, Takebayashi H, Yasuda T, Costa RA, Moussa I, Dangas G, Mehran R, Lansky AJ, et al. Intravascular ultrasound study of patterns of calcium in ruptured coronary plaques. Am J Cardiol. 2005;96(3):352–7.CrossRefPubMed
27.
Zurück zum Zitat Krishnamoorthy P, Vengrenyuk Y, Ueda H, Yoshimura T, Pena J, Motoyama S, Baber U, Hasan C, Kesanakurthy S, Sweeny JM, et al. Three-dimensional volumetric assessment of coronary artery calcification in patients with stable coronary artery disease by OCT. EuroIntervention. 2017;13(3):312–9.CrossRefPubMed Krishnamoorthy P, Vengrenyuk Y, Ueda H, Yoshimura T, Pena J, Motoyama S, Baber U, Hasan C, Kesanakurthy S, Sweeny JM, et al. Three-dimensional volumetric assessment of coronary artery calcification in patients with stable coronary artery disease by OCT. EuroIntervention. 2017;13(3):312–9.CrossRefPubMed
28.
Zurück zum Zitat Ong DS, Lee JS, Soeda T, Higuma T, Minami Y, Wang Z, Lee H, Yokoyama H, Yokota T, Okumura K, et al. Coronary calcification and plaque vulnerability: an optical coherence tomographic study. Circ Cardiovasc Imaging. 2016;9(1):e003929.PubMedCrossRef Ong DS, Lee JS, Soeda T, Higuma T, Minami Y, Wang Z, Lee H, Yokoyama H, Yokota T, Okumura K, et al. Coronary calcification and plaque vulnerability: an optical coherence tomographic study. Circ Cardiovasc Imaging. 2016;9(1):e003929.PubMedCrossRef
29.
Zurück zum Zitat Niccoli G, Giubilato S, Di Vito L, Leo A, Cosentino N, Pitocco D, Marco V, Ghirlanda G, Prati F, Crea F. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J. 2013;34(10):729–41.CrossRefPubMed Niccoli G, Giubilato S, Di Vito L, Leo A, Cosentino N, Pitocco D, Marco V, Ghirlanda G, Prati F, Crea F. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J. 2013;34(10):729–41.CrossRefPubMed
30.
Zurück zum Zitat Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, Fallon JT. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000;102(18):2180–4.CrossRefPubMed Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, Fallon JT. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000;102(18):2180–4.CrossRefPubMed
31.
Zurück zum Zitat Mita T, Otsuka A, Azuma K, Uchida T, Ogihara T, Fujitani Y, Hirose T, Mitsumata M, Kawamori R, Watada H. Swings in blood glucose levels accelerate atherogenesis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun. 2007;358(3):679–85.CrossRefPubMed Mita T, Otsuka A, Azuma K, Uchida T, Ogihara T, Fujitani Y, Hirose T, Mitsumata M, Kawamori R, Watada H. Swings in blood glucose levels accelerate atherogenesis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun. 2007;358(3):679–85.CrossRefPubMed
32.
Zurück zum Zitat Torres-Castro I, Arroyo-Camarena UD, Martinez-Reyes CP, Gomez-Arauz AY, Duenas-Andrade Y, Hernandez-Ruiz J, Bejar YL, Zaga-Clavellina V, Morales-Montor J, Terrazas LI, et al. Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett. 2016;176:81–9.CrossRefPubMed Torres-Castro I, Arroyo-Camarena UD, Martinez-Reyes CP, Gomez-Arauz AY, Duenas-Andrade Y, Hernandez-Ruiz J, Bejar YL, Zaga-Clavellina V, Morales-Montor J, Terrazas LI, et al. Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett. 2016;176:81–9.CrossRefPubMed
33.
Zurück zum Zitat Thanopoulou A, Karamanos B, Archimandritis A. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362(21):2030–1 (author reply 2031).CrossRefPubMed Thanopoulou A, Karamanos B, Archimandritis A. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362(21):2030–1 (author reply 2031).CrossRefPubMed
34.
Zurück zum Zitat Timmer JR, Hoekstra M, Nijsten MW, van der Horst IC, Ottervanger JP, Slingerland RJ, Dambrink JH, Bilo HJ, Zijlstra F, van ‘t Hof AW. Prognostic value of admission glycosylated hemoglobin and glucose in nondiabetic patients with ST-segment-elevation myocardial infarction treated with percutaneous coronary intervention. Circulation. 2011;124(6):704–11.CrossRefPubMed Timmer JR, Hoekstra M, Nijsten MW, van der Horst IC, Ottervanger JP, Slingerland RJ, Dambrink JH, Bilo HJ, Zijlstra F, van ‘t Hof AW. Prognostic value of admission glycosylated hemoglobin and glucose in nondiabetic patients with ST-segment-elevation myocardial infarction treated with percutaneous coronary intervention. Circulation. 2011;124(6):704–11.CrossRefPubMed
35.
Zurück zum Zitat Goldfine AB, Phua EJ, Abrahamson MJ. Glycemic management in patients with coronary artery disease and prediabetes or type 2 diabetes mellitus. Circulation. 2014;129(24):2567–73.CrossRefPubMedPubMedCentral Goldfine AB, Phua EJ, Abrahamson MJ. Glycemic management in patients with coronary artery disease and prediabetes or type 2 diabetes mellitus. Circulation. 2014;129(24):2567–73.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Li G, Zhang P, Wang J, An Y, Gong Q, Gregg EW, Yang W, Zhang B, Shuai Y, Hong J, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2(6):474–80.CrossRefPubMed Li G, Zhang P, Wang J, An Y, Gong Q, Gregg EW, Yang W, Zhang B, Shuai Y, Hong J, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2(6):474–80.CrossRefPubMed
38.
Zurück zum Zitat Aroda VR, Knowler WC, Crandall JP, Perreault L, Edelstein SL, Jeffries SL, Molitch ME, Pi-Sunyer X, Darwin C, Heckman-Stoddard BM, et al. Metformin for diabetes prevention: insights gained from the Diabetes Prevention Program/Diabetes Prevention Program Outcomes Study. Diabetologia. 2017;60(9):1601–11.CrossRefPubMedPubMedCentral Aroda VR, Knowler WC, Crandall JP, Perreault L, Edelstein SL, Jeffries SL, Molitch ME, Pi-Sunyer X, Darwin C, Heckman-Stoddard BM, et al. Metformin for diabetes prevention: insights gained from the Diabetes Prevention Program/Diabetes Prevention Program Outcomes Study. Diabetologia. 2017;60(9):1601–11.CrossRefPubMedPubMedCentral
Metadaten
Titel
Non-culprit plaque characteristics in acute coronary syndrome patients with raised hemoglobinA1c: an intravascular optical coherence tomography study
verfasst von
Shaotao Zhang
Jiannan Dai
Haibo Jia
Sining Hu
Hongwei Du
Ning Li
Yongpeng Zou
Yanan Zou
Shenhong Jing
Yan Wang
Rong Sun
Bo Yu
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Cardiovascular Diabetology / Ausgabe 1/2018
Elektronische ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-018-0729-5

Weitere Artikel der Ausgabe 1/2018

Cardiovascular Diabetology 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.