Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2012

Open Access 01.12.2012 | Research article

Do prescription stimulants increase the risk of adverse cardiovascular events?: A systematic review

verfasst von: Arthur N Westover, Ethan A Halm

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2012

Abstract

Background

There is increasing concern that prescription stimulants may be associated with adverse cardiovascular events such as stroke, myocardial infarction, and sudden death. Public health concerns are amplified by increasing use of prescription stimulants among adults.

Methods

The objective of this study was to conduct a systematic review of the evidence of an association between prescription stimulant use and adverse cardiovascular outcomes. PUBMED, MEDLINE, EMBASE and Google Scholar searches were conducted using key words related to these topics (MESH): ADHD; Adults; Amphetamine; Amphetamines; Arrhythmias, Cardiac; Cardiovascular Diseases; Cardiovascular System; Central Nervous Stimulants; Cerebrovascular; Cohort Studies; Case–control Studies; Death; Death, Sudden, Cardiac; Dextroamphetamine; Drug Toxicity; Methamphetamine; Methylphenidate; Myocardial Infarction; Stimulant; Stroke; Safety. Eligible studies were population-based studies of children, adolescents, or adults using prescription stimulant use as the independent variable and a hard cardiovascular outcome as the dependent variable.

Results

Ten population-based observational studies which evaluated prescription stimulant use with cardiovascular outcomes were reviewed. Six out of seven studies in children and adolescents did not show an association between stimulant use and adverse cardiovascular outcomes. In contrast, two out of three studies in adults found an association.

Conclusions

Findings of an association between prescription stimulant use and adverse cardiovascular outcomes are mixed. Studies of children and adolescents suggest that statistical power is limited in available study populations, and the absolute risk of an event is low. More suggestive of a safety signal, studies of adults found an increased risk for transient ischemic attack and sudden death/ventricular arrhythmia. Interpretation was limited due to differences in population, cardiovascular outcome selection/ascertainment, and methodology. Accounting for confounding and selection biases in these studies is of particular concern. Future studies should address this and other methodological issues.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2261-12-41) contains supplementary material, which is available to authorized users.

Competing interests

AW has consulted as an expert witness for a private university. EH has no competing interests.

Authors’ contributions

AW and EH both contributed to the design and conception, drafting and revision of the manuscript, and have read and approved the final manuscript.

Background

There has been increasing concern that prescription stimulant use may be linked to adverse cardiovascular events such as sudden death, myocardial infarction, and stroke. Scrutiny has increased, in part, due to the burgeoning use of prescription stimulants among adults [13]. Older adults using prescription stimulants [4] may be particularly vulnerable to adverse cardiovascular events, given their higher background rate of cardiovascular events and comorbid conditions, higher doses of stimulants [2, 5], and slower drug elimination [6].
Prescription stimulants are primarily used in the treatment of attention deficit hyperactivity disorder (ADHD), but also for obesity [7] and narcolepsy [8] as well as “off-label” indications such as depression [9], stroke rehabilitation [10], and traumatic brain injury [11]. Stimulants act by blocking reuptake of norepinephrine and dopamine as well as increasing their release into the extracellular space [12]. Stimulants may cause adverse cardiovascular events by 1) increasing blood pressure and heart rate [1317], 2) inducing vasospasm through increased levels of circulating catecholamines [1827], 3) causing vasculitis by inducing formation of circulating proinflammatory immunoactive gylcation end products [19, 2838], and 4) prolonging the cardiac QT interval, which is associated with torsades de pointes [3941]. The cardiovascular epidemiological literature has shown that even modest increases in blood pressure have been associated with increased risk of adverse cardiovascular events [4245]. Prescription stimulants have been linked to adverse cardiovascular events in case reports [2426, 35, 4649].
Safety concerns have impacted governmental regulatory policy. In 2006, the US Food and Drug Administration (FDA) issued a class-specific warning for prescription stimulants regarding potentially increased risk of adverse cardiovascular events [50]. In 2008, the American Heart Association (AHA) published a scientific statement on the use of prescription stimulants in children and adolescents [51]. It recommended obtaining a careful history and performing a physical exam prior to initiating stimulants. Reflecting the prevailing uncertainty about cardiovascular safety, the guideline was non-committal regarding the need for a pre-treatment electrocardiogram. Nor did the AHA statement specify any absolute contraindications to use of stimulants, including the presence of structural heart disease. Nor did they address prescription stimulant use in adults—the population presumably at the highest risk of adverse outcomes. Subsequently, the American Academy of Pediatrics (AAP) recommended not routinely obtaining electrocardiograms in children in a 2008 policy statement [52]. The AAP and AHA released a consensus statement later in 2008 that described obtaining an ECG prior to initiating stimulant therapy as reasonable but not mandatory, and that treatment should not be withheld on the basis of not having obtained an ECG [53]. Conversely, Health Canada recommended avoiding stimulant use in patients with symptomatic cardiovascular disease and known structural cardiac abnormalities [54]. Since then screening of children initiated on stimulants by non-cardiologists and cardiologists increased in Canada and the US [55, 56]. Australian draft guidelines on ADHD completed in 2009 recommended assessment of cardiac risk factors prior to initiating stimulant use. But these guidelines remain unapproved due to concerns about the scientific integrity of some referenced studies [57].
Recently, two prescription stimulants have fallen under strict US regulatory scrutiny. Sibutramine, a compound marketed as an appetite suppressant and closely related to the amphetamine-family, was withdrawn from the US market in October 2010 by its manufacturer Abbott Laboratories, at the request of the FDA [58]. An increased risk of adverse cardiovascular events (16%) was weighed against modest weight loss. Qnexa, a combination of topiramate and the stimulant phentermine, failed to achieve FDA approval in 2010 for the treatment of weight loss due in part to concerns about cardiovascular risk [59]. This was despite its clear efficacy in weight loss. In a reversal, an FDA advisory committee voted overwhelmingly to recommend approval of the drug, persuaded in part that the benefit of treating obesity outweighs the risk of adverse events [60].

Rationale

Only recently have observational studies begun to address whether prescription stimulants are associated with adverse cardiovascular events. Providers, patients, and policy makers need clearer guidance on the best way to balance potential benefits and harms of these rapidly increasingly used medications.

Objective

The aim of this study was to systematically review population-based studies of children and adults that tested the association between exposure to prescription stimulants and adverse cardiovascular outcomes. Methodological challenges that face the field and suggestions for future directions of research are described.
In this review, “prescription stimulants” refer to prescribed medications in the amphetamine-family of drugs, namely comprised of amphetamine, methylphenidate, methamphetamine and their variants. Sometimes stimulants are referred to in the plural as “amphetamines” (as distinguished from the drug amphetamine which has a specific chemical structure).

Methods

Methods

For the systematic review, studies were considered using the following criteria: 1) retrospective or prospective population-based study, 2) children or adults as participants, 3) prescription stimulant use as the independent variable, and 4) one or more hard cardiovascular outcomes as the dependent variable and primary outcome. Blood pressure, pulse, and EKG changes—established physiological effects of stimulants—were not considered hard clinical events. PUBMED, MEDLINE, EMBASE, and Google Scholar databases were searched for studies published in English in peer-reviewed journals between January 1, 1990 and April 1, 2012 using MESH terms and keywords: ADHD; Adults; Amphetamine; Amphetamines; Arrhythmias, Cardiac; Cardiovascular Diseases; Cardiovascular System; Central Nervous Stimulants; Cerebrovascular; Cohort Studies; Case–control Studies; Death; Death, Sudden, Cardiac; Dextroamphetamine; Drug Toxicity; Methamphetamine; Methylphenidate; Myocardial Infarction; Stimulant; Stroke; Safety. In addition, we hand-searched potentially relevant studies cited in the reference section of electronically identified articles. Titles and abstracts were screened for inclusion/exclusion, and full text versions were retrieved. Selected population-based studies of children were categorized separately from studies of adults for the purpose of comparisons. Studies were assessed for bias at both the study and outcome levels. Catchment, comparison groups, exposure and outcome ascertainment, statistical power and methodologies were assessed.

Results

Population-based observational studies of prescription stimulant use

Overall, 551 unique records were identified in searches. Most records were excluded based on review of titles and abstracts due to not being topical to prescription stimulants and not having appropriate endpoints. Twenty-seven full-text articles were assessed for eligibility. Most (14) were eliminated due to lack of hard cardiovascular endpoints. Ten studies met the inclusion criteria and were included in the qualitative synthesis (Figure 1). These studies, using large population-based datasets specifically designed to detect a signal of cardiovascular harm associated with medical use of stimulants, found mixed results (Table 1).
Table 1
Population-Based Observational Studies of Prescription Stimulants and Adverse Cardiovascular Events
Year
Author
Study-Type/Drugs
Data Source
Population
Independent Variable
Outcome Variables
Statistical Approach
Result/Conclusion
2007
Winterstein et al.
Retrospective cohort/methylphenidate, amphetamines, and pemoline
Florida Medicaid
3 to 20 years old with new diagnosis of ADHD (124,932 person-years)
Current use, former use, nonuse
1) Cardiac Death
Cox regression
No increased risk of cardiac death or hospitalizations. Observed 20% increase in hazard for CV ER visits with current use over nonuse.
2) First Cardiovascular (CV) Hospitalization
3) First CV ER visit
2009
Winterstein et al.
Retrospective cohort/methylphenidate, amphetamine salts
Florida Medicaid
3 to 20 years old with diagnosis of ADHD (52,783 person-years) and newly started on methylphenidate or amphetamine salts
Current use, former use
First CV ER visit
Cox regression
No difference in risk of first CV ER visit between methylphenidate and amphetamine salts
2009
Holick et al.
Retrospective matched cohort/atemoextine, “ADHD medication” (methylphenidate, amphetamine salts)
Health insurance database (Ingenix Research DataMart)
18 years or older, atomoxetine initiators (n = 21,606) matched to “ADHD medication” initiators (n = 21,606)
Current use, recent use, past use, nonuse
1) Cerebrovascular accident (CVA)
Propensity scoring, Cox regression
No increased risk of CVA or TIA with atomoxetine compared to stimulants. Increased risk of TIA with ADHD medication compared to general population (hazard ratio 3.44, 95% confidence interval 1.13-10.60).
2) Transient ischemic attack (TIA)
2009
McCarthy et al.
Descriptive cohort/methylphenidate, dextroamphetamine, atomoxetine
UK General Practice Research Database
2 to 21 years old (18,637 person-years)
Ever used
Sudden death
Incident rate ratio, standardized mortality ratio
No increased risk of sudden death with stimulant and atomoxetine use.
2009
Gould et al.
Matched case–control/amphetamine, dextroampheamine, methamphamine, methylphenidate
State vital statistics offices
7 to 19 years old, sudden death associated with stimulant use (n = 926) versus matched controls (n = 564; motor vehicle accident fatalities)
Stimulant use immediately prior to death
Sudden death
Logistic regression analysis of matched pairs
Increased risk of sudden death associated with stimulant use (odds ratio 7.4, 95% confidence interval 1.4 to 74.9).
2011
Schelleman et al.
Retrospective matched cohort/amphetamines, atomoxetine, methylphenidate
Medicaid (5 states) and health insurance database (HealthCore)
3 to 17 years old incident ADHD medication users matched to nonusers
Current use
1) Sudden death/ventricular arrhythmia
Proportional hazards regression
No statistically significant difference in rates of outcomes between exposed and non-exposed.
2) Stroke
3) Myocardial infarction (MI)
4) Composite stroke/MI
2011
Cooper et al.
Retrospective matched cohort/amphetamines, methylphenidate, pemoline, atomoxetine
Medicaid (Tennessee and Washington), health insurance databases (Kaiser Permanente California and OptumInsight Epidemiology), state death certificates, National Death Index
2 to 24 years old ADHD medication users matched to nonusers (2,579,104 person-years)
Current use, former use, nonuse
1) Sudden cardiac death
Cox regression, propensity scoring
No increased risk of serious cardiovascular events for current users (adjusted hazard ratio 0.75, 95% confidence interval 0.31 to 1.85).
2) Stroke
3) Myocardial infarction
2011
Habel et al. (Journal of the American Medical Association)
Retrospective matched cohort/amphetamines, methyldphenidate, pemoline, atomoxetine
Tennessee Medicaid, health insurance databases (Kaiser Permanente California and OptumInsight Epidemiology), HMO Research Network, state death records, National Death Index
Adults 25 to 64 years old ADHD medication users matched to nonusers (806,182 person-years)
Current use, indeterminate use, former use, remote use, nonuse
1) Myocardial infarction (MI)
Poisson regression adjusted by cardiovascular risk score and confounders; propensity scoring and external adjustment methods used in secondary analyses
No increased risk of serious cardiovascular events (MI/SCD/stroke) for current users compared to nonusers (adjusted rate ratio 0.83, 95% confidence interval 0.72-0.96)
2) Sudden cardiac death (SCD)
3) Stroke
2012
Schelleman et al.
Retrospective matched cohort/methylphenidate
Medicaid (5 states) and health insurance database (HealthCore)
18 years and older methylphenidate users (n = 43,999) matched to nonusers (n = 175,955)
Current use, nonuse
1) Sudden death/ventricular arrhythmia
Proportional hazards regression adjusted for age and data source; propensity scoring as secondary analysis
Increased risk of sudden death or ventricular arrhythmia for current users (adjusted hazard ratio 1.84, 95% confidence interval 1.33 to 2.55). No increased risk of stroke, myocardial infarction, or composite stroke/MI.
2) Stroke
3) Myocardial infarction (MI)
4) Composite stroke/MI
2012
Olfson et al.
Retrospective cohort/methylphenidate, amphetamines
Health insurance database (MarketScan Research Databases)
6 to 21 years old with ADHD and non know cardiovascular risk factors, treated with stimulants (n = 89,031) or not treated with stimulants (n = 82,095)
Current use, former use, nonuse
1) Severe cardiovascular events (AMI, subarachnoid hemorrhage, stroke, ischemic heart disease, sudden death, respiratory arrest
Logistic regression adjusted for age, days from index diagnosis, and propensity score
No analysis for severe cardiovascular events was performed due to only one incident event in the entire cohort. For less severe cardiovascular events, there was no increased risk associated with stimulant use compared to nonuse (adjusted odds ratio 0.69, 95% CI 0.42-1.12)
2) Less severe cardiovascular events (angina pectoris, cardiac dysrhythmias, transient cerebral ischemia)

Children and adolescents

In Winterstein et al.’s study of 55,383 Florida Medicaid beneficiaries, 3 to 20 years old, no increase in cardiac death or hospitalizations was observed [61]. However, there was a 20% increased risk in cardiac-related emergency room visits among current users of stimulants. A second study by Winterstein et al., compared the risk between methylphenidate and amphetamine salt medication preparations [62]. In 2,131,953 Florida Medicaid beneficiaries, 3 to 20 years old, no difference was found in risk of emergency room visits for cardiac reasons between the two medication groups.
McCarthy et al. studied a UK database of patients, 2 to 21 years old, who were prescribed methylphenidate, dexamphetamine, or atomoxetine to determine whether use was associated with a greater risk of sudden death [63]. In 18,637 patient-years, six of the seven deaths were determined to not be cases of sudden death, and one death was of indeterminate cause. Compared to a reference rate of sudden death, the investigators did not find a significantly increased risk of sudden death associated with use of these medications.
Gould et al. conducted a case–control study of 564 cases of sudden death among youth 7 to 19 years old, matched with 564 deceased passenger victims in motor vehicle accidents. Stimulant use (amphetamine, dextroamphetamine, methamphetamine, methylphenidate) was associated with increased odds of sudden death (odds ratio = 7.4; 95% CI 1.4 to 74.9) [64].
Schelleman et al. (2011) studied youth 3 to 17 years (n = 241,417), derived from a 5-state Medicaid database and a 14-state health insurance database [65]. Hazard ratios for incident exposure to stimulants (amphetamines, atomoxetine, methylphenidate, or combination therapy) compared to non-exposure were not significantly elevated for primary outcomes of sudden death/ventricular arrhythmia, stroke, myocardial infarction, and composite stroke/myocardial infarction. Cardiovascular outcomes were validated via medical records and independent adjudication. However, only 48% of requested records were obtained, and the adjudicators were not reported as blinded. In secondary analyses using claims-based outcomes (not validated) and prevalent (i.e. not incident) stimulant use, significant associations were found between sudden death/ventricular arrhythmia and methylphenidate, atomoxetine, and any ADHD medication.
Recently in 2011, Cooper et al. conducted a retrospective matched cohort study of children and young adults 2 to 24 years (n = 1,200,438) using Medicaid (Tennessee and Washington), health insurance, state death certificates, and the National Death Index [66]. Current use of ADHD medications was not significantly associated with increased risk for serious cardiovascular events (sudden death, stroke, and myocardial infarction). Additional secondary analyses, with adjustments to inclusion criteria and independent and dependent variables did not find a significant relationship between ADHD medication use and cardiovascular events. Analyses were adjusted for baseline and time-varying covariates as well as site-specific propensity scores. The study benefitted from review of medical records (79% availability) to perform end-point validation [67].
Olfson et al. in 2012 studied 6 to 21 year olds (n = 171,126) with ADHD and no known cardiovascular risk factors, comparing stimulant users to nonusers [68]. The investigators intended to evaluate the risk of “severe cardiovascular events” which included sudden death, stroke, acute myocardial infarction, and respiratory arrest. But only one incident event in the entire cohort was discovered and no analysis was conducted due to lack of power. The risk of “less severe cardiovascular events” among persons with ADHD—comprising angina pectoris, cardiac dysrhythmias, and transient cerebral ischemia—was not significantly different between stimulant users and nonusers.

Adults

Holick et al.’s population-based study of adults 18 years and older (adults ≥ 65 years old were included) compared use of atomoxetine (a non-stimulant used in the treatment of ADHD that is associated with increases in blood pressure [69]; n = 21,606) to use of stimulant ADHD medications (n = 21,606) [70]. Propensity scoring was used to match atomoxetine and prescription stimulant users. Use of atomoxetine was not associated with a either a greater risk of stroke or transient ischemic attack (TIA), compared to stimulant ADHD medications. In a secondary analysis, atomoxetine and stimulant users, matched to a general population cohort (n = 42,993), had a significantly increased risk of TIA, but not stroke.
The study by Habel et al. represents the largest and most comprehensive study of ADHD medications and cardiovascular outcomes in adults to date (n = 443,198) [71]. In this retrospective cohort study of adults 25 through 64 years old, each ADHD medication user was matched to two nonusers. Medical charts, autopsy reports and death certificates were obtained and adjudicated for myocardial infarction (MI), sudden cardiac death (SCD), and stroke outcomes where available. Adjustment for confounding included the use of a cardiovascular risk score (CRS), which summarized cardiovascular risk factors. Unexpectedly, current use of ADHD medications compared to nonuse was significantly protective against serious cardiovascular events (MI, SCD, or stroke; adjusted rate ratio 0.83, 95% CI, 0.72-0.96). The authors submitted a more detailed report to the AHRQ, using only MI and SCD as outcomes, with the same conclusion that the results did not support an association between ADHD medication use and the risk of MI and SCD [72].
The most recent study of adults (18 years and older), by Schelleman et al. (2012), matched methylphenidate users (n = 43,999) to nonusers (n = 175,955) and found an increased risk of sudden death or ventricular arrhythmia among users (adjusted hazard ratio 1.84, 95% CI 1.33 to 2.55) [73]. No statistically significant difference in risk was found for stroke, myocardial infarction, and a combined endpoint of stroke/myocardial infarction. In a secondary analysis, the risk of all-cause death was significantly increased for methylphenidate users compared to nonusers (adjusted hazard ratio 2.38, 95% CI 2.20 to 2.56).

Discussion

Six out of seven studies in children and adolescents did not show an increased risk of adverse cardiovascular events (Table 1). Because the incidence of cardiovascular events in children is low, the power needed to detect an association between prescription stimulants and events is extraordinarily high, leading to an increased likelihood of a false negative outcome (type II error). The study among the seven with the most power, by Cooper et al. (n = 1,200,438), could not rule out a doubling of risk due to the low incidence of serious cardiovascular events (n = 81) in those 2 to 24 years old. Lack of statistical power was an issue in other studies. Winterstein et al. stated that 16 times more person-years would have been required for their study to detect a doubling of the hazard ratio [61]. The Schelleman et al. study (2011) found no validated cases of ADHD-associated stroke and myocardial infarction, strongly suggesting that the study was under-powered. Likewise Olfson et al. found no severe cardiovascular events in the study cohort. The study by McCarthy et al. was also underpowered. There were other limitations in the studies of children and adolescents. The study by Gould et al., the only one to find an association between prescription stimulants and adverse cardiovascular outcomes in children and adolescents, was unable match on race and geographical region, both of which may have confounded the association. Additionally, exposure to prescription stimulants was not derived from pharmacy data, but rather from informants, medical records, toxicology findings, and death certificates. Misclassification of exposure was also a concern, if persons who were illicitly using street methamphetamine were classified as exposed to prescription stimulants. In Schelleman et al.’s study (2011), analyses were not adjusted for confounders, nor selection bias.
The three studies of adults had mixed findings, with two of the studies showing a safety signal regarding prescription stimulant use and cardiovascular outcomes. Holick et al. found an increased risk of transient ischemic attack (TIA), but not stroke, among ADHD medication initiators compared to the general population in a secondary analysis. However, unlike the primary analysis, propensity scoring was not used to match the general population cohort with the combined atomoxetine and prescription stimulant use cohorts. A strength of this study was that investigators attempted to corroborate drug exposure and stroke/TIA outcomes in claims data with medical records. In the Schelleman et al. study (2012), methylphenidate use was associated with a 1.8-fold increased risk of sudden death or ventricular arrhythmia, but was not associated with increased risk of stroke, myocardial infarction or combined stroke/myocardial infarction. However, primary analyses were adjusted for only age and data source. In post hoc analyses to account for confounding, propensity scores were used and found similar results to the primary analyses, with attenuated, but still significantly increased risks of sudden death/ventricular arrhythmia and all-cause death. The largest and most ambitious of the three studies of adults, by Habel et al., did not find an increased risk of MI, sudden cardiac death, and stroke among adults with short median exposure (median 0.33 years) to ADHD medications. In fact, statistical results suggested that ADHD medications were protective against serious cardiovascular events [71] which the authors acknowledged as “biologically implausible” [72]. With survey data from Kaiser Permanente, external adjustment methods were used to account for unmeasured confounders among the entire cohort—including the Tennessee Medicaid population which was sicker and used ADHD medications for shorter periods of time on average [72]. ADHD medication users were more educated and less likely to be black or Hispanic, leading the investigators to state that the true estimate of the adjusted risk ratio was likely higher but was masked due to healthy user bias. In general the study population had a low rate of cardiovascular risk factors. A strength of this study included the numerous sensitivity analyses that were performed, including that of new users, current users versus remote users, and the construction of a propensity score using variables included in the cardiovascular risk score. These analyses did not suggest a significant association between prescription stimulant use and adverse cardiovascular outcomes. Although the authors had 80% power to detect a rate ratio of 1.23 for the primary analysis (current use versus nonuse), they concluded that “a modestly elevated risk cannot be ruled out, given limited power and a lack of complete information on some potentially important risk factors and other factors related to use of these medications.” The study could not make any conclusions about the elderly, as patients 65 years or older were not analyzed.

Considerations for future studies: Methodological challenges and proposed strategies

In the following section, we summarize the main methodological challenges and outline considerations and strategies for future studies. Low Absolute Rate of Cardiovascular Events. Randomized clinical trials (RCTs) are not feasible because of the low incidence rate of stroke, acute myocardial infarction and cardiovascular death, the need for very large numbers of patients, and ethical concerns. Due to power considerations, future work will need to rely on very large population-based cohorts. Hard Clinical Outcomes. Future investigations should be designed with hard clinical endpoints such as death, myocardial infarction, and stroke as the primary outcomes of interest. While prior literature has demonstrated that small increases in blood pressure lead to increased cardiovascular morbidity and mortality on a population-basis [45], there is no proven association between stimulant-induced soft endpoints (e.g. increases in blood pressure and heart rate) and hard cardiovascular endpoints. Study Populations. Because the baseline rates of sudden death, stroke, and myocardial infarction in children are so low, increases in risk may not have a large absolute impact. However in adults a modest increase in risk could have significant clinical impact. Thus an important strategy is to use an enriched population, such as older adults, as greater than 80% of deaths due to heart disease occur in those 65 years or older [74]. Measurement of Prescription Stimulant Use. The relationship of time and dose of stimulants to the risk of adverse cardiovascular events is unknown. It may be that there are both acute and chronic risks with prescription stimulant use. It stands to reason that a higher dose of stimulants incurs more risk than a lower dose, but this has not been proven [27]. Sensitivity analyses, where modeling of use is varied, can help address this problem. Confounders/Selection Bias/Control Groups. Accounting for confounding and selection bias is the greatest challenge for observational studies seeking to study stimulants and the risk of cardiovascular events. Confounding. Observational studies attempt to account for confounding by including known confounders as covariates in a multivariate analysis. Of particular concern is confounding by indication, when a variable is present in the non-exposed, but also an indication for the exposure of interest (e.g. treatment of obesity with prescription stimulants). Confounding by contraindication, where a patient avoids treatment due a contraindication, is also a potential problem. One way to address confounding by indication or contraindication is to limit the study population, by excluding persons with the problematic indication(s). But this comes at the expense of generalizability. Selection Bias. Persons that use prescription amphetamines differ in important ways from persons that are not prescribed amphetamines. Some of these ways are known and measured, and can normally be adjusted for in an analysis, such as comorbid medical risk factors for cardiovascular events. But groups differ in ways that are unmeasured. These unmeasured factors are known in some cases (e.g. poor diet), and unknown in others. Propensity scoring and instrumental variable techniques are two more sophisticated statistical approaches used to adjust for biases in observational data. To date, five studies have used propensity scoring [66, 68, 70, 71, 73]. Studies that do not account for selection bias are extremely difficult to interpret, as it becomes unclear whether the risk is due to the independent variable (prescription stimulant use), or the differences in the populations that are compared. Even with studies that do use propensity scoring, such as the study by Habel et al., it can be difficult to determine whether such techniques adequately accounted for unmeasured confounders. For example, inability of these techniques to fully control for healthy user effects probably explains why Habel et al. found a lower risk-adjusted rate of adverse cardiovascular events among stimulants users. Use of propensity scoring and instrument variables offers the promise of adjusting for selection biases. As the ability to control for confounding and selection bias increases, so does the confidence in the results of such studies.

Conclusions

Seven of the ten studies included in this systematic review did not find an association between prescription stimulant use and adverse cardiovascular outcomes. Six of the seven studies of children and adolescents did not find an association between prescription stimulant use and adverse cardiovascular outcomes. Low incidence of adverse cardiovascular outcomes among children and adolescents in the general population hampered these studies. In adults, however, a safety signal—prescription stimulant use associated with adverse cardiovascular outcomes—was demonstrated in two of three studies. Of primary concern in these studies were problems of confounding and selection bias. Future studies must, in particular, address these issue. Studies of at-risk populations, including the elderly and those with a high burden of cardiovascular disease are needed as well.

Acknowledgments

T. Michael Kashner, PhD, MPH for consultation and advice. Financial support received from NIH CTSA Grant UL1 RR024982. The NIH had no involvement in any aspect of the manuscript.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

AW has consulted as an expert witness for a private university. EH has no competing interests.

Authors’ contributions

AW and EH both contributed to the design and conception, drafting and revision of the manuscript, and have read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
2.
Zurück zum Zitat Castle L, Aubert RE, Verbrugge RR, Khalid M, Epstein RS: Trends in medication treatment for ADHD. J Atten Disord. 2007, 10: 335-342. 10.1177/1087054707299597.CrossRefPubMed Castle L, Aubert RE, Verbrugge RR, Khalid M, Epstein RS: Trends in medication treatment for ADHD. J Atten Disord. 2007, 10: 335-342. 10.1177/1087054707299597.CrossRefPubMed
3.
Zurück zum Zitat Robison LM, Sclar DA, Skaer TL: Datapoints: trends in ADHD and stimulant use among adults: 1995–2002. Psychiatr Serv. 2005, 56: 1497-10.1176/appi.ps.56.12.1497.CrossRefPubMed Robison LM, Sclar DA, Skaer TL: Datapoints: trends in ADHD and stimulant use among adults: 1995–2002. Psychiatr Serv. 2005, 56: 1497-10.1176/appi.ps.56.12.1497.CrossRefPubMed
4.
Zurück zum Zitat Nissen SE: ADHD Drugs and Cardiovascular Risk. N Engl J Med. 2006, 354: 1445-1448. 10.1056/NEJMp068049.CrossRefPubMed Nissen SE: ADHD Drugs and Cardiovascular Risk. N Engl J Med. 2006, 354: 1445-1448. 10.1056/NEJMp068049.CrossRefPubMed
5.
Zurück zum Zitat Olfson M, Marcus SC, Zhang HF, Wan GJ: Stimulant dosing in the community treatment of adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol. 2008, 28: 255-257. 10.1097/JCP.0b013e31816740be.CrossRefPubMed Olfson M, Marcus SC, Zhang HF, Wan GJ: Stimulant dosing in the community treatment of adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol. 2008, 28: 255-257. 10.1097/JCP.0b013e31816740be.CrossRefPubMed
6.
Zurück zum Zitat Brown GL, Hunt RD, Ebert MH, Bunney WE, Kopin IJ: Plasma levels of d-amphetamine in hyperactive children. Serial behavior and motor responses. Psychopharmacology (Berl). 1979, 62: 133-140. 10.1007/BF00427126.CrossRef Brown GL, Hunt RD, Ebert MH, Bunney WE, Kopin IJ: Plasma levels of d-amphetamine in hyperactive children. Serial behavior and motor responses. Psychopharmacology (Berl). 1979, 62: 133-140. 10.1007/BF00427126.CrossRef
7.
Zurück zum Zitat Berman SM, Kuczenski R, McCracken JT, London ED: Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry. 2009, 14 (2): 123-142. 10.1038/mp.2008.90.CrossRefPubMed Berman SM, Kuczenski R, McCracken JT, London ED: Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry. 2009, 14 (2): 123-142. 10.1038/mp.2008.90.CrossRefPubMed
8.
Zurück zum Zitat Thorpy M: Therapeutic advances in narcolepsy. Sleep Med. 2007, 8: 427-440. 10.1016/j.sleep.2007.03.004.CrossRefPubMed Thorpy M: Therapeutic advances in narcolepsy. Sleep Med. 2007, 8: 427-440. 10.1016/j.sleep.2007.03.004.CrossRefPubMed
9.
Zurück zum Zitat Hardy SE: Methylphenidate for the treatment of depressive symptoms, including fatigue and apathy, in medically ill older adults and terminally ill adults. Am J Geriatr Pharmacother. 2009, 7: 34-59. 10.1016/j.amjopharm.2009.02.006.CrossRefPubMedPubMedCentral Hardy SE: Methylphenidate for the treatment of depressive symptoms, including fatigue and apathy, in medically ill older adults and terminally ill adults. Am J Geriatr Pharmacother. 2009, 7: 34-59. 10.1016/j.amjopharm.2009.02.006.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Jordan LC, Hillis AE: Disorders of speech and language: aphasia, apraxia and dysarthria. Curr Opin Neurol. 2006, 19: 580-585. 10.1097/WCO.0b013e3280109260.CrossRefPubMed Jordan LC, Hillis AE: Disorders of speech and language: aphasia, apraxia and dysarthria. Curr Opin Neurol. 2006, 19: 580-585. 10.1097/WCO.0b013e3280109260.CrossRefPubMed
11.
Zurück zum Zitat Forsyth RJ, Jayamoni B, Paine TC: Monoaminergic agonists for acute traumatic brain injury. Cochrane Database Syst Rev. 2006, CD003984-4 Forsyth RJ, Jayamoni B, Paine TC: Monoaminergic agonists for acute traumatic brain injury. Cochrane Database Syst Rev. 2006, CD003984-4
12.
Zurück zum Zitat Volkow ND, Wang GJ, Fowler JS, Molina PE, Logan J, Gatley SJ, Gifford A, Ding YS, Wong C, Pappas NR, et al: Cardiovascular effects of methylphenidate in humans are associated with increases of dopamine in brain and of epinephrine in plasma. Psychopharmacology. 2003, 166: 264-270.PubMed Volkow ND, Wang GJ, Fowler JS, Molina PE, Logan J, Gatley SJ, Gifford A, Ding YS, Wong C, Pappas NR, et al: Cardiovascular effects of methylphenidate in humans are associated with increases of dopamine in brain and of epinephrine in plasma. Psychopharmacology. 2003, 166: 264-270.PubMed
13.
Zurück zum Zitat Wilens TE, Hammerness PG, Biederman J, Kwon A, Spencer TJ, Clark S, Scott M, Podolski A, Ditterline JW, Morris MC, et al: Blood pressure changes associated with medication treatment of adults with attention-deficit/hyperactivity disorder. J Clin Psychiatry. 2005, 66: 253-259. 10.4088/JCP.v66n0215.CrossRefPubMed Wilens TE, Hammerness PG, Biederman J, Kwon A, Spencer TJ, Clark S, Scott M, Podolski A, Ditterline JW, Morris MC, et al: Blood pressure changes associated with medication treatment of adults with attention-deficit/hyperactivity disorder. J Clin Psychiatry. 2005, 66: 253-259. 10.4088/JCP.v66n0215.CrossRefPubMed
14.
Zurück zum Zitat Biederman J, Mick E, Surman C, Doyle R, Hammerness P, Harpold T, Dunkel S, Dougherty M, Aleardi M, Spencer T: A randomized, placebo-controlled trial of OROS methylphenidate in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2006, 59: 829-835. 10.1016/j.biopsych.2005.09.011.CrossRefPubMed Biederman J, Mick E, Surman C, Doyle R, Hammerness P, Harpold T, Dunkel S, Dougherty M, Aleardi M, Spencer T: A randomized, placebo-controlled trial of OROS methylphenidate in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2006, 59: 829-835. 10.1016/j.biopsych.2005.09.011.CrossRefPubMed
15.
Zurück zum Zitat Samuels JA, Franco K, Wan F, Sorof JM: Effect of stimulants on 24-h ambulatory blood pressure in children with ADHD: a double-blind, randomized, cross-over trial. Pediatr Nephrol. 2006, 21: 92-95. 10.1007/s00467-005-2051-1.CrossRefPubMed Samuels JA, Franco K, Wan F, Sorof JM: Effect of stimulants on 24-h ambulatory blood pressure in children with ADHD: a double-blind, randomized, cross-over trial. Pediatr Nephrol. 2006, 21: 92-95. 10.1007/s00467-005-2051-1.CrossRefPubMed
16.
Zurück zum Zitat Findling RL, Short EJ, Manos MJ: Short-term cardiovascular effects of methylphenidate and adderall. J Am Acad Child Adolesc Psychiatry. 2001, 40: 525-529. 10.1097/00004583-200105000-00011.CrossRefPubMed Findling RL, Short EJ, Manos MJ: Short-term cardiovascular effects of methylphenidate and adderall. J Am Acad Child Adolesc Psychiatry. 2001, 40: 525-529. 10.1097/00004583-200105000-00011.CrossRefPubMed
17.
Zurück zum Zitat Stowe CD, Gardner SF, Gist CC, Schulz EG, Wells TG: 24-hour ambulatory blood pressure monitoring in male children receiving stimulant therapy. Ann Pharmacother. 2002, 36: 1142-1149.CrossRefPubMed Stowe CD, Gardner SF, Gist CC, Schulz EG, Wells TG: 24-hour ambulatory blood pressure monitoring in male children receiving stimulant therapy. Ann Pharmacother. 2002, 36: 1142-1149.CrossRefPubMed
18.
Zurück zum Zitat Wang AM, Suojanen JN, Colucci VM, Rumbaugh CL, Hollenberg NK: Cocaine- and methamphetamine-induced acute cerebral vasospasm: an angiographic study in rabbits. AJNR Am J Neuroradiol. 1990, 11: 1141-1146.PubMed Wang AM, Suojanen JN, Colucci VM, Rumbaugh CL, Hollenberg NK: Cocaine- and methamphetamine-induced acute cerebral vasospasm: an angiographic study in rabbits. AJNR Am J Neuroradiol. 1990, 11: 1141-1146.PubMed
19.
Zurück zum Zitat Rumbaugh CL, Bergeron RT, Scanlan RL, Teal JS, Segall HD, Fang HC, McCormick R: Cerebral vascular changes secondary to amphetamine abuse in the experimental animal. Radiology. 1971, 101: 345-351.CrossRefPubMed Rumbaugh CL, Bergeron RT, Scanlan RL, Teal JS, Segall HD, Fang HC, McCormick R: Cerebral vascular changes secondary to amphetamine abuse in the experimental animal. Radiology. 1971, 101: 345-351.CrossRefPubMed
20.
Zurück zum Zitat De Silva DA, Wong MC, Lee MP, Chen CL-H, Chang HM: Amphetamine-Associated Ischemic Stroke: Clinical Presentation and Proposed Pathogenesis. J Stroke Cerebrovasc Dis. 2007, 16: 185-186. 10.1016/j.jstrokecerebrovasdis.2007.04.001.CrossRefPubMed De Silva DA, Wong MC, Lee MP, Chen CL-H, Chang HM: Amphetamine-Associated Ischemic Stroke: Clinical Presentation and Proposed Pathogenesis. J Stroke Cerebrovasc Dis. 2007, 16: 185-186. 10.1016/j.jstrokecerebrovasdis.2007.04.001.CrossRefPubMed
21.
Zurück zum Zitat Chen JP: Methamphetamine-associated acute myocardial infarction and cardiogenic shock with normal coronary arteries: refractory global coronary microvascular spasm. J Invasive Cardiol. 2007, 19: E89-E92.CrossRefPubMed Chen JP: Methamphetamine-associated acute myocardial infarction and cardiogenic shock with normal coronary arteries: refractory global coronary microvascular spasm. J Invasive Cardiol. 2007, 19: E89-E92.CrossRefPubMed
22.
Zurück zum Zitat Conci F, D’Angelo V, Tampieri D, Vecchi G: Intracerebral hemorrhage and angiographic beading following amphetamine abuse. Ital J Neurol Sci. 1988, 9: 77-81. 10.1007/BF02334412.CrossRefPubMed Conci F, D’Angelo V, Tampieri D, Vecchi G: Intracerebral hemorrhage and angiographic beading following amphetamine abuse. Ital J Neurol Sci. 1988, 9: 77-81. 10.1007/BF02334412.CrossRefPubMed
23.
Zurück zum Zitat Watts DJ, McCollester L: Methamphetamine-induced myocardial infarction with elevated troponin I. Am J Emerg Med. 2006, 24: 132-134. 10.1016/j.ajem.2005.08.005.CrossRefPubMed Watts DJ, McCollester L: Methamphetamine-induced myocardial infarction with elevated troponin I. Am J Emerg Med. 2006, 24: 132-134. 10.1016/j.ajem.2005.08.005.CrossRefPubMed
24.
Zurück zum Zitat Thompson J, Thompson JR: Acute Myocardial Infarction Related to Methylphenidate for Adult Attention Deficit Disorder. J Emerg Med. 2007, 38 (1): 18-21.CrossRefPubMed Thompson J, Thompson JR: Acute Myocardial Infarction Related to Methylphenidate for Adult Attention Deficit Disorder. J Emerg Med. 2007, 38 (1): 18-21.CrossRefPubMed
25.
Zurück zum Zitat Bromberg-Marin G, Mahmud E, Tsimikas S: Spontaneous multivessel coronary vasospasm leading to cardiogenic shock. J Invasive Cardiol. 2007, 19: E85-E88.PubMed Bromberg-Marin G, Mahmud E, Tsimikas S: Spontaneous multivessel coronary vasospasm leading to cardiogenic shock. J Invasive Cardiol. 2007, 19: E85-E88.PubMed
26.
Zurück zum Zitat Gandhi PJ, Ezeala GU, Luyen TT, Tu TC, Tran MT: Myocardial infarction in an adolescent taking Adderall. Am J Health Syst Pharm. 2005, 62: 1494-1497. 10.2146/ajhp040220.CrossRefPubMed Gandhi PJ, Ezeala GU, Luyen TT, Tu TC, Tran MT: Myocardial infarction in an adolescent taking Adderall. Am J Health Syst Pharm. 2005, 62: 1494-1497. 10.2146/ajhp040220.CrossRefPubMed
27.
Zurück zum Zitat Kaye S, McKetin R, Duflou J, Darke S: Methamphetamine and cardiovascular pathology: a review of the evidence. Addiction. 2007, 102: 1204-1211. 10.1111/j.1360-0443.2007.01874.x.CrossRefPubMed Kaye S, McKetin R, Duflou J, Darke S: Methamphetamine and cardiovascular pathology: a review of the evidence. Addiction. 2007, 102: 1204-1211. 10.1111/j.1360-0443.2007.01874.x.CrossRefPubMed
28.
Zurück zum Zitat Rumbaugh CL, Fang HC, Higgins RE, Bergeron RT, Segall HD, Teal JS: Cerebral microvascular injury in experimental drug abuse. Invest Radiol. 1976, 11: 282-294. 10.1097/00004424-197607000-00005.CrossRefPubMed Rumbaugh CL, Fang HC, Higgins RE, Bergeron RT, Segall HD, Teal JS: Cerebral microvascular injury in experimental drug abuse. Invest Radiol. 1976, 11: 282-294. 10.1097/00004424-197607000-00005.CrossRefPubMed
29.
Zurück zum Zitat Rumbaugh CL, Bergeron RT, Fang HC, McCormick R: Cerebral angiographic changes in the drug abuse patient. Radiology. 1971, 101: 335-344.CrossRefPubMed Rumbaugh CL, Bergeron RT, Fang HC, McCormick R: Cerebral angiographic changes in the drug abuse patient. Radiology. 1971, 101: 335-344.CrossRefPubMed
30.
Zurück zum Zitat Brust JC: Vasculitis owing to substance abuse. Neurol Clin. 1997, 15: 945-957. 10.1016/S0733-8619(05)70357-1.CrossRefPubMed Brust JC: Vasculitis owing to substance abuse. Neurol Clin. 1997, 15: 945-957. 10.1016/S0733-8619(05)70357-1.CrossRefPubMed
31.
Zurück zum Zitat Wooten MR, Khangure MS, Murphy MJ: Intracerebral hemorrhage and vasculitis related to ephedrine abuse. Ann Neurol. 1983, 13: 337-340. 10.1002/ana.410130321.CrossRefPubMed Wooten MR, Khangure MS, Murphy MJ: Intracerebral hemorrhage and vasculitis related to ephedrine abuse. Ann Neurol. 1983, 13: 337-340. 10.1002/ana.410130321.CrossRefPubMed
32.
Zurück zum Zitat Bostwick DG: Amphetamine induced cerebral vasculitis. Hum Pathol. 1981, 12: 1031-1033. 10.1016/S0046-8177(81)80262-6.CrossRefPubMed Bostwick DG: Amphetamine induced cerebral vasculitis. Hum Pathol. 1981, 12: 1031-1033. 10.1016/S0046-8177(81)80262-6.CrossRefPubMed
33.
Zurück zum Zitat Citron BP, Halpern M, McCarron M, Lundberg GD, McCormick R, Pincus IJ, Tatter D, Haverback BJ: Necrotizing angiitis associated with drug abuse. N Engl J Med. 1970, 283: 1003-1011. 10.1056/NEJM197011052831901.CrossRefPubMed Citron BP, Halpern M, McCarron M, Lundberg GD, McCormick R, Pincus IJ, Tatter D, Haverback BJ: Necrotizing angiitis associated with drug abuse. N Engl J Med. 1970, 283: 1003-1011. 10.1056/NEJM197011052831901.CrossRefPubMed
34.
Zurück zum Zitat Ohta K, Mori M, Yoritaka A, Okamoto K, Kishida S: Delayed ischemic stroke associated with methamphetamine use. J Emerg Med. 2005, 28: 165-167. 10.1016/j.jemermed.2004.06.015.CrossRefPubMed Ohta K, Mori M, Yoritaka A, Okamoto K, Kishida S: Delayed ischemic stroke associated with methamphetamine use. J Emerg Med. 2005, 28: 165-167. 10.1016/j.jemermed.2004.06.015.CrossRefPubMed
35.
Zurück zum Zitat Schteinschnaider A, Plaghos LL, Garbugino S, Riveros D, Lazarowski A, Intruvini S, Massaro M: Cerebral arteritis following methylphenidate use. J Child Neurol. 2000, 15: 265-267. 10.1177/088307380001500414.CrossRefPubMed Schteinschnaider A, Plaghos LL, Garbugino S, Riveros D, Lazarowski A, Intruvini S, Massaro M: Cerebral arteritis following methylphenidate use. J Child Neurol. 2000, 15: 265-267. 10.1177/088307380001500414.CrossRefPubMed
36.
Zurück zum Zitat Dickerson TJ, Yamamoto N, Ruiz DI, Janda KD: Immunological Consequences of Methamphetamine Protein Glycation. J Am Chem Soc. 2004, 126: 11446-11447. 10.1021/ja047690h.CrossRefPubMed Dickerson TJ, Yamamoto N, Ruiz DI, Janda KD: Immunological Consequences of Methamphetamine Protein Glycation. J Am Chem Soc. 2004, 126: 11446-11447. 10.1021/ja047690h.CrossRefPubMed
37.
Zurück zum Zitat Treweek J, Wee S, Koob GF, Dickerson TJ, Janda KD: Self-vaccination by methamphetamine glycation products chemically links chronic drug abuse and cardiovascular disease. Proc Natl Acad Sci. 2007, 104: 11580-11584. 10.1073/pnas.0701328104.CrossRefPubMedPubMedCentral Treweek J, Wee S, Koob GF, Dickerson TJ, Janda KD: Self-vaccination by methamphetamine glycation products chemically links chronic drug abuse and cardiovascular disease. Proc Natl Acad Sci. 2007, 104: 11580-11584. 10.1073/pnas.0701328104.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Treweek JB, Dickerson TJ, Janda KD: Drugs of abuse that mediate advanced glycation end product formation: a chemical link to disease pathology. Acc Chem Res. 2009, 42: 659-669. 10.1021/ar800247d.CrossRefPubMedPubMedCentral Treweek JB, Dickerson TJ, Janda KD: Drugs of abuse that mediate advanced glycation end product formation: a chemical link to disease pathology. Acc Chem Res. 2009, 42: 659-669. 10.1021/ar800247d.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Haning W, Goebert D: Electrocardiographic abnormalities in methamphetamine abusers. Addiction. 2007, 102 (Suppl 1): 70-75.CrossRefPubMed Haning W, Goebert D: Electrocardiographic abnormalities in methamphetamine abusers. Addiction. 2007, 102 (Suppl 1): 70-75.CrossRefPubMed
40.
Zurück zum Zitat Reimherr FW, Williams ED, Strong RE, Mestas R, Soni P, Marchant BK: A double-blind, placebo-controlled, crossover study of osmotic release oral system methylphenidate in adults with ADHD with assessment of oppositional and emotional dimensions of the disorder. J Clin Psychiatry. 2007, 68: 93-101. 10.4088/JCP.v68n0113.CrossRefPubMed Reimherr FW, Williams ED, Strong RE, Mestas R, Soni P, Marchant BK: A double-blind, placebo-controlled, crossover study of osmotic release oral system methylphenidate in adults with ADHD with assessment of oppositional and emotional dimensions of the disorder. J Clin Psychiatry. 2007, 68: 93-101. 10.4088/JCP.v68n0113.CrossRefPubMed
42.
Zurück zum Zitat Winegarden CR: From “prehypertension” to hypertension? Additional evidence. Ann Epidemiol. 2005, 15: 720-725. 10.1016/j.annepidem.2005.02.010.CrossRefPubMed Winegarden CR: From “prehypertension” to hypertension? Additional evidence. Ann Epidemiol. 2005, 15: 720-725. 10.1016/j.annepidem.2005.02.010.CrossRefPubMed
43.
Zurück zum Zitat Qureshi AI, Suri MF, Kirmani JF, Divani AA, Mohammad Y: Is prehypertension a risk factor for cardiovascular diseases?. Stroke. 2005, 36: 1859-1863. 10.1161/01.STR.0000177495.45580.f1.CrossRefPubMed Qureshi AI, Suri MF, Kirmani JF, Divani AA, Mohammad Y: Is prehypertension a risk factor for cardiovascular diseases?. Stroke. 2005, 36: 1859-1863. 10.1161/01.STR.0000177495.45580.f1.CrossRefPubMed
44.
Zurück zum Zitat Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, Levy D: Impact of High-Normal Blood Pressure on the Risk of Cardiovascular Disease. N Engl J Med. 2001, 345: 1291-1297. 10.1056/NEJMoa003417.CrossRefPubMed Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, Levy D: Impact of High-Normal Blood Pressure on the Risk of Cardiovascular Disease. N Engl J Med. 2001, 345: 1291-1297. 10.1056/NEJMoa003417.CrossRefPubMed
45.
Zurück zum Zitat Psaty BM, Furberg CD, Kuller LH, Cushman M, Savage PJ, Levine D, O’Leary DH, Bryan RN, Anderson M, Lumley T: Association between blood pressure level and the risk of myocardial infarction, stroke, and total mortality: the cardiovascular health study. Arch Intern Med. 2001, 161: 1183-1192. 10.1001/archinte.161.9.1183.CrossRefPubMed Psaty BM, Furberg CD, Kuller LH, Cushman M, Savage PJ, Levine D, O’Leary DH, Bryan RN, Anderson M, Lumley T: Association between blood pressure level and the risk of myocardial infarction, stroke, and total mortality: the cardiovascular health study. Arch Intern Med. 2001, 161: 1183-1192. 10.1001/archinte.161.9.1183.CrossRefPubMed
46.
47.
Zurück zum Zitat Sadeghian H: Lacunar stroke associated with methylphenidate abuse. Can J Neurol Sci. 2004, 31: 109-111.CrossRefPubMed Sadeghian H: Lacunar stroke associated with methylphenidate abuse. Can J Neurol Sci. 2004, 31: 109-111.CrossRefPubMed
48.
Zurück zum Zitat George AK, Kunwar AR, Awasthi A: Acute myocardial infarction in a young male on methylphenidate, bupropion, and erythromycin. J Child Adolesc Psychopharmacol. 2005, 15: 693-695. 10.1089/cap.2005.15.693.CrossRefPubMed George AK, Kunwar AR, Awasthi A: Acute myocardial infarction in a young male on methylphenidate, bupropion, and erythromycin. J Child Adolesc Psychopharmacol. 2005, 15: 693-695. 10.1089/cap.2005.15.693.CrossRefPubMed
51.
Zurück zum Zitat Vetter VL, Elia J, Erickson C, Berger S, Blum N, Uzark K, Webb CL: Cardiovascular Monitoring of Children and Adolescents With Heart Disease Receiving Medications for Attention Deficit/Hyperactivity Disorder: A Scientific Statement From the American Heart Association Council on Cardiovascular Disease in the Young Congenital Cardiac Defects Committee and the Council on Cardiovascular Nursing. Circulation. 2008, 117: 2407-2423. 10.1161/CIRCULATIONAHA.107.189473.CrossRefPubMed Vetter VL, Elia J, Erickson C, Berger S, Blum N, Uzark K, Webb CL: Cardiovascular Monitoring of Children and Adolescents With Heart Disease Receiving Medications for Attention Deficit/Hyperactivity Disorder: A Scientific Statement From the American Heart Association Council on Cardiovascular Disease in the Young Congenital Cardiac Defects Committee and the Council on Cardiovascular Nursing. Circulation. 2008, 117: 2407-2423. 10.1161/CIRCULATIONAHA.107.189473.CrossRefPubMed
52.
Zurück zum Zitat Perrin JM, Friedman RA, Knilans TK, the Black Box Working Group the Section on Cardiology and Cardiac Surgery: Cardiovascular Monitoring and Stimulant Drugs for Attention-Deficit/Hyperactivity Disorder. Pediatrics. 2008, 122: 451-453. 10.1542/peds.2008-1573.CrossRefPubMed Perrin JM, Friedman RA, Knilans TK, the Black Box Working Group the Section on Cardiology and Cardiac Surgery: Cardiovascular Monitoring and Stimulant Drugs for Attention-Deficit/Hyperactivity Disorder. Pediatrics. 2008, 122: 451-453. 10.1542/peds.2008-1573.CrossRefPubMed
53.
Zurück zum Zitat American Academy of Pediatrics/American Heart Association clarification of statement on cardiovascular evaluation and monitoring of children and adolescents with heart disease receiving medications for ADHD: May 16, 2008. J Dev Behav Pediatr. 2008, 29: 335-10.1097/DBP.0b013e31318185dc14. American Academy of Pediatrics/American Heart Association clarification of statement on cardiovascular evaluation and monitoring of children and adolescents with heart disease receiving medications for ADHD: May 16, 2008. J Dev Behav Pediatr. 2008, 29: 335-10.1097/DBP.0b013e31318185dc14.
55.
Zurück zum Zitat Conway J, Wong KK, O’Connell C, Warren AE: Cardiovascular Risk Screening Before Starting Stimulant Medications and Prescribing Practices of Canadian Physicians: Impact of the Health Canada Advisory. Pediatrics. 2008, 122: e828-e834. 10.1542/peds.2008-0276.CrossRefPubMed Conway J, Wong KK, O’Connell C, Warren AE: Cardiovascular Risk Screening Before Starting Stimulant Medications and Prescribing Practices of Canadian Physicians: Impact of the Health Canada Advisory. Pediatrics. 2008, 122: e828-e834. 10.1542/peds.2008-0276.CrossRefPubMed
56.
Zurück zum Zitat Thomas PE, Carlo WF, Decker JA, Cannon BC, Kertesz NJ, Friedman RA, Kim JJ: Impact of the American Heart Association Scientific Statement on Screening Electrocardiograms and Stimulant Medications. Arch Pediatr Adolesc Med. 2011, 165: 166-170. 10.1001/archpediatrics.2010.278.CrossRefPubMed Thomas PE, Carlo WF, Decker JA, Cannon BC, Kertesz NJ, Friedman RA, Kim JJ: Impact of the American Heart Association Scientific Statement on Screening Electrocardiograms and Stimulant Medications. Arch Pediatr Adolesc Med. 2011, 165: 166-170. 10.1001/archpediatrics.2010.278.CrossRefPubMed
61.
Zurück zum Zitat Winterstein AG, Gerhard T, Shuster J, Johnson M, Zito JM, Saidi A: Cardiac safety of central nervous system stimulants in children and adolescents with attention-deficit/hyperactivity disorder. Pediatrics. 2007, 120: e1494-e1501. 10.1542/peds.2007-0675.CrossRefPubMed Winterstein AG, Gerhard T, Shuster J, Johnson M, Zito JM, Saidi A: Cardiac safety of central nervous system stimulants in children and adolescents with attention-deficit/hyperactivity disorder. Pediatrics. 2007, 120: e1494-e1501. 10.1542/peds.2007-0675.CrossRefPubMed
62.
Zurück zum Zitat Winterstein AG, Gerhard T, Shuster J, Saidi A: Cardiac safety of methylphenidate versus amphetamine salts in the treatment of ADHD. Pediatrics. 2009, 124: e75-e80. 10.1542/peds.2008-3138.CrossRefPubMed Winterstein AG, Gerhard T, Shuster J, Saidi A: Cardiac safety of methylphenidate versus amphetamine salts in the treatment of ADHD. Pediatrics. 2009, 124: e75-e80. 10.1542/peds.2008-3138.CrossRefPubMed
63.
Zurück zum Zitat McCarthy S, Cranswick N, Potts L, Taylor E, Wong IC: Mortality associated with attention-deficit hyperactivity disorder (ADHD) drug treatment: a retrospective cohort study of children, adolescents and young adults using the general practice research database. Drug Saf. 2009, 32: 1089-1096. 10.2165/11317630-000000000-00000.CrossRefPubMed McCarthy S, Cranswick N, Potts L, Taylor E, Wong IC: Mortality associated with attention-deficit hyperactivity disorder (ADHD) drug treatment: a retrospective cohort study of children, adolescents and young adults using the general practice research database. Drug Saf. 2009, 32: 1089-1096. 10.2165/11317630-000000000-00000.CrossRefPubMed
64.
Zurück zum Zitat Gould MS, Walsh BT, Munfakh JL, Kleinman M, Duan N, Olfson M, Greenhill L, Cooper T: Sudden death and use of stimulant medications in youths. Am J Psychiatry. 2009, 166: 992-1001. 10.1176/appi.ajp.2009.09040472.CrossRefPubMed Gould MS, Walsh BT, Munfakh JL, Kleinman M, Duan N, Olfson M, Greenhill L, Cooper T: Sudden death and use of stimulant medications in youths. Am J Psychiatry. 2009, 166: 992-1001. 10.1176/appi.ajp.2009.09040472.CrossRefPubMed
65.
Zurück zum Zitat Schelleman H, Bilker WB, Strom BL, Kimmel SE, Newcomb C, Guevara JP, Daniel GW, Cziraky MJ, Hennessy S: Cardiovascular Events and Death in Children Exposed and Unexposed to ADHD Agents. Pediatrics. 2011, 127: 1102-1110. 10.1542/peds.2010-3371.CrossRefPubMedPubMedCentral Schelleman H, Bilker WB, Strom BL, Kimmel SE, Newcomb C, Guevara JP, Daniel GW, Cziraky MJ, Hennessy S: Cardiovascular Events and Death in Children Exposed and Unexposed to ADHD Agents. Pediatrics. 2011, 127: 1102-1110. 10.1542/peds.2010-3371.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Cooper WO, Habel LA, Sox CM, Chan KA, Arbogast PG, Cheetham TC, Murray KT, Quinn VP, Stein CM, Callahan ST, et al: ADHD Drugs and Serious Cardiovascular Events in Children and Young Adults. N Engl J Med. 2011, 365: 1896-1904. 10.1056/NEJMoa1110212.CrossRefPubMed Cooper WO, Habel LA, Sox CM, Chan KA, Arbogast PG, Cheetham TC, Murray KT, Quinn VP, Stein CM, Callahan ST, et al: ADHD Drugs and Serious Cardiovascular Events in Children and Young Adults. N Engl J Med. 2011, 365: 1896-1904. 10.1056/NEJMoa1110212.CrossRefPubMed
67.
Zurück zum Zitat Cooper WO, Habel LA, Sox CM, Chan KA, Arbogast PG, Cheetham TC, Murray KT, Quinn VP, Stein CM, Callahan ST, Fireman BH, Fish FA, Kirshner HS, O'Duffy A, Connell FA, Ray WA: Attention Deficit Hyperactivity Disorder Medications and Risk of Serious Cardiovascular Disease in Children and Youth. Effective Health Care Program Research Report No. 12-EHC006-EF. (Prepared by Vanderbilt and HMORN DEcIDE Centers under Contract Nos. HHSA HHSA290-2005-0042-I and HHSA290-2005-0033-I, respectively.). Agency for Healthcare Research and Quality. http://www.effectivehealthcare.ahrq.gov/ehc/products/395/885/DEcIDE35_YouthADHD_20111031.pdf. 2011. Accessed 25 May 2012 Cooper WO, Habel LA, Sox CM, Chan KA, Arbogast PG, Cheetham TC, Murray KT, Quinn VP, Stein CM, Callahan ST, Fireman BH, Fish FA, Kirshner HS, O'Duffy A, Connell FA, Ray WA: Attention Deficit Hyperactivity Disorder Medications and Risk of Serious Cardiovascular Disease in Children and Youth. Effective Health Care Program Research Report No. 12-EHC006-EF. (Prepared by Vanderbilt and HMORN DEcIDE Centers under Contract Nos. HHSA HHSA290-2005-0042-I and HHSA290-2005-0033-I, respectively.). Agency for Healthcare Research and Quality. http://​www.​effectivehealthc​are.​ahrq.​gov/​ehc/​products/​395/​885/​DEcIDE35_​YouthADHD_​20111031.​pdf. 2011. Accessed 25 May 2012
68.
Zurück zum Zitat Olfson M, Huang C, Gerhard T, Winterstein AG, Crystal S, Allison PD, Marcus SC: Stimulants and cardiovascular events in youth with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2012, 51: 147-156. 10.1016/j.jaac.2011.11.008.CrossRefPubMed Olfson M, Huang C, Gerhard T, Winterstein AG, Crystal S, Allison PD, Marcus SC: Stimulants and cardiovascular events in youth with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2012, 51: 147-156. 10.1016/j.jaac.2011.11.008.CrossRefPubMed
69.
Zurück zum Zitat Wernicke JF, Faries D, Girod D, Brown J, Gao H, Kelsey D, Quintana H, Lipetz R, Michelson D, Heiligenstein J: Cardiovascular effects of atomoxetine in children, adolescents, and adults. Drug Saf. 2003, 26: 729-740. 10.2165/00002018-200326100-00006.CrossRefPubMed Wernicke JF, Faries D, Girod D, Brown J, Gao H, Kelsey D, Quintana H, Lipetz R, Michelson D, Heiligenstein J: Cardiovascular effects of atomoxetine in children, adolescents, and adults. Drug Saf. 2003, 26: 729-740. 10.2165/00002018-200326100-00006.CrossRefPubMed
70.
Zurück zum Zitat Holick CN, Turnbull BR, Jones ME, Chaudhry S, Bangs ME, Seeger JD: Atomoxetine and cerebrovascular outcomes in adults. J Clin Psychopharmacol. 2009, 29: 453-460. 10.1097/JCP.0b013e3181b2b828.CrossRefPubMed Holick CN, Turnbull BR, Jones ME, Chaudhry S, Bangs ME, Seeger JD: Atomoxetine and cerebrovascular outcomes in adults. J Clin Psychopharmacol. 2009, 29: 453-460. 10.1097/JCP.0b013e3181b2b828.CrossRefPubMed
71.
Zurück zum Zitat Habel LA, Cooper WO, Sox CM, Chan KA, Fireman BH, Arbogast PG, Cheetham TC, Quinn VP, Dublin S, Boudreau DM, et al: ADHD medications and risk of serious cardiovascular events in young and middle-aged adults. JAMA. 2011, 306: 2673-2683. 10.1001/jama.2011.1830.CrossRefPubMedPubMedCentral Habel LA, Cooper WO, Sox CM, Chan KA, Fireman BH, Arbogast PG, Cheetham TC, Quinn VP, Dublin S, Boudreau DM, et al: ADHD medications and risk of serious cardiovascular events in young and middle-aged adults. JAMA. 2011, 306: 2673-2683. 10.1001/jama.2011.1830.CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Habel LA, Cooper WO, Sox CM, Chan KA, Arbogast PG, Cheetham TC, Quinn VP, Fireman BH, Dublin S, Boudreau DM, Andrade SE, Pawloski PA, Raebel MA, Smith DH, Achacoso N, Uratsu C, Go AS, Sidney S, Nguyen-Huynh MN, Ray WA, Selby JV: ADHD Medications and Risk of Serious Coronary Heart Disease in Young and Middle-Aged Adults. Effective Health Care Program Research Report No. 36. (Prepared by Vanderbilt DEcIDE Center and HMO Research Network DEcIDE Center under Contract Nos. HHSA 290-2005-0042-I and HHSA 290-2005-0033-I). AHRQ Publication No. 12-EHC011-EF. Agency for Healthcare Research and Quality. http://www.effectivehealthcare.ahrq.gov/ehc/products/394/884/DEcIDE36_ADHDMeds-Adults_20111220.pdf. 2011. Accessed 25 May 2012 Habel LA, Cooper WO, Sox CM, Chan KA, Arbogast PG, Cheetham TC, Quinn VP, Fireman BH, Dublin S, Boudreau DM, Andrade SE, Pawloski PA, Raebel MA, Smith DH, Achacoso N, Uratsu C, Go AS, Sidney S, Nguyen-Huynh MN, Ray WA, Selby JV: ADHD Medications and Risk of Serious Coronary Heart Disease in Young and Middle-Aged Adults. Effective Health Care Program Research Report No. 36. (Prepared by Vanderbilt DEcIDE Center and HMO Research Network DEcIDE Center under Contract Nos. HHSA 290-2005-0042-I and HHSA 290-2005-0033-I). AHRQ Publication No. 12-EHC011-EF. Agency for Healthcare Research and Quality. http://​www.​effectivehealthc​are.​ahrq.​gov/​ehc/​products/​394/​884/​DEcIDE36_​ADHDMeds-Adults_​20111220.​pdf. 2011. Accessed 25 May 2012
73.
Zurück zum Zitat Schelleman H, Bilker WB, Kimmel SE, Daniel GW, Newcomb C, Guevara JP, Cziraky MJ, Strom BL, Hennessy S: Methylphenidate and risk of serious cardiovascular events in adults. Am J Psychiatry. 2012, 169: 178-185. 10.1176/appi.ajp.2011.11010125.CrossRefPubMed Schelleman H, Bilker WB, Kimmel SE, Daniel GW, Newcomb C, Guevara JP, Cziraky MJ, Strom BL, Hennessy S: Methylphenidate and risk of serious cardiovascular events in adults. Am J Psychiatry. 2012, 169: 178-185. 10.1176/appi.ajp.2011.11010125.CrossRefPubMed
74.
Zurück zum Zitat Arias E, Anderson R, Hsiang-Ching K, Murphy S, Kochanek K: National vital statistics reports. Deaths: Final data for 2001. 2003, National Center for Health Statistics, Hyattsville, Maryland, 3- Arias E, Anderson R, Hsiang-Ching K, Murphy S, Kochanek K: National vital statistics reports. Deaths: Final data for 2001. 2003, National Center for Health Statistics, Hyattsville, Maryland, 3-
Metadaten
Titel
Do prescription stimulants increase the risk of adverse cardiovascular events?: A systematic review
verfasst von
Arthur N Westover
Ethan A Halm
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2012
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/1471-2261-12-41

Weitere Artikel der Ausgabe 1/2012

BMC Cardiovascular Disorders 1/2012 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.