Skip to main content
Erschienen in: Cardiovascular Diabetology 1/2003

Open Access 01.12.2003 | Review

Metabolic syndrome and type 2 diabetes mellitus: focus on peroxisome proliferator activated receptors (PPAR)

verfasst von: Alexander Tenenbaum, Enrique Z Fisman, Michael Motro

Erschienen in: Cardiovascular Diabetology | Ausgabe 1/2003

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

The metabolic syndrome is a highly prevalent clinical entity. The recent Adult Treatment Panel (ATP III) guidelines have called specific attention to the importance of targeting the cardiovascular risk factors of the metabolic syndrome as a method of risk reduction therapy. The main factors characteristic of this syndrome are abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, insulin resistance (with or without glucose intolerance), prothrombotic and proinflammatory states. An insulin resistance following nuclear peroxisome proliferator activated receptors (PPAR) deactivation (mainly obesity-related) is the key phase of metabolic syndrome initiation. Afterwards, there are 2 principal pathways of metabolic syndrome development: 1) with preserved pancreatic beta cells function and insulin hypersecretion which can compensate for insulin resistance. This pathway leads mainly to the macrovascular complications of metabolic syndrome; 2) with massive damage of pancreatic beta cells leading to progressively decrease of insulin secretion and to hyperglycemia (e.g. overt type 2 diabetes). This pathway leads to both microvascular and macrovascular complications. We suggest that a PPAR-based appraisal of metabolic syndrome and type 2 diabetes may improve our understanding of these diseases and set a basis for a comprehensive approach in their treatment.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2840-2-4) contains supplementary material, which is available to authorized users.
Type 2 diabetes mellitus and obesity, major health problems worldwide, are considered to be closely related [16]. In the majority of cases type 2 diabetes is now widely considered to be one component within a group of disorders called the metabolic syndrome. Factors characteristic of the metabolic syndrome, also known as dysmetabolic syndrome X, are abdominal obesity, atherogenic dyslipidemia (elevated triglyceride [TG] levels, small low-density lipoprotein [LDL] particles, low high-density lipoprotein cholesterol [HDL-C] levels), elevated blood pressure, insulin resistance (with or without glucose intolerance), and prothrombotic and proinflammatory states [710].
The factor that dominates in obesity is the permanent elevation of plasma free fatty acid (FFA) and the predominant utilization of lipids by muscles inducing a diminution of glucose uptake and insulin resistance. An insulin-resistant state – as the key phase of metabolic syndrome – constitutes the major risk factor for the development of diabetes mellitus. Hyperinsulinemia appears to be a compensatory mechanism that responds to increased levels of circulating glucose. People who develop type 2 diabetes usually pass through the phases of excessive adipogenesis (obesity), nuclear peroxisome proliferator activated receptors (PPAR) modulation, insulin resistance, hyperinsulinemia, pancreatic beta cells stress and damage leading to progressively decrease of insulin secretion, impaired glucose postprandial and fasting levels [1114]. Fasting glucose is presumed to remain normal as long as insulin hypersecretion can compensate for insulin resistance. The fall in insulin secretion leading to hyperglicemia occurs as a late phenomenon and, in fact, separates the patients with metabolic syndrome from those with or without overt diabetes (Figure 1).
Table 1 shows the diagnostic criteria for the metabolic syndrome. The common underlying element of these adverse risk factors for progression of atherosclerosis is insulin resistance [10, 15].
Table 1
Diagnostic Criteria for the Metabolic Syndrome [10, 15]
Abdominal obesity (waist circumference >102 cm [40 in] in men, >88 cm [35 in] in women)
Hypertriglyceridemia (>/= 150 mg/dL)
Low HDL-C (< 40 mg/dL in men, <50 mg/dL in women)
High blood pressure (>/= 130/85 mm Hg)
High fasting glucose (IGT [blood sugar >/= 110 mg/dL and <126 mg/dL] without diabetes)
Metabolic syndrome is a term used to define a patient who presents with 3 or more of 5 risk factors: (1) abdominal obesity and waist circumference for men greater than 102 cm or 40 inches, and for women greater than 88 cm or 35 inches; (2) elevated triglycerides, defined as equal to or greater than 150 mg/dL; (3) low HDL cholesterol. Overall for the Adult Treatment Panel (ATP)-III guidelines, low HDL cholesterol is defined as under 40 mg/dL; previously it was under 35 mg/dL (for the purposes of the metabolic syndrome, there are different values for men and women: less than 40 mg/dL for men and less than 50 mg/dL for women); (4) Elevated blood pressure, defined according to lower values than those usually used to define hypertension: systolic over 130 mmHg or diastolic over 85 mmHg. (5) fasting glucose equal to or greater than 110 mg/dL [10, 15].
The 2001 ATP III guidelines have called specific attention to the importance of targeting the cardiovascular risk factors of the metabolic syndrome as a method of risk reduction therapy [15]. The ATP III guidelines also call for type 2 diabetes mellitus to be given the status of "cardiovascular disease risk equivalent"; that is, patients with type 2 diabetes are considered to have an increased risk, equivalent to those who have established heart disease.
Acquired causes of the metabolic syndrome include overweight, physical inactivity, and high carbohydrate diet in some individuals in which the carbohydrate intake makes up more than 60% of the total caloric intake. Moreover, there are genetic causes, which have not been clearly defined. However, our understanding of the metabolic syndrome has been improved by the discovery of nuclear peroxisome proliferator-activated receptors (PPARs) [11, 12, 1618]. PPARs (Figure 2) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which also includes the steroid and thyroid hormone receptors. As transcription factors, PPARs regulate the expression of numerous genes and affect:
  • glycaemic control
  • lipid metabolism
  • vascular tone
  • inflammation.
The so-called orphan receptors (identified before their natural ligand) include PPAR and retinoid X receptors (RXR). There are currently three known subtypes of PPAR: alpha, delta and gamma (g1 and g2).
Activated PPAR-alpha stimulates the expression of genes involved in fatty acid and lipoprotein metabolism. PPAR-alpha activators, such as the normolipidemic fibric acids, decrease triglyceride concentrations by increasing the expression of lipoprotein lipase and decreasing apo C-III concentration. Furthermore, they increase HDL-cholesterol by increasing the expression of apo A-I and apo A-II. PPAR-alpha activation by fibric acids improves insulin sensibility and decreases thrombosis and vascular inflammation. PPARalpha ligands also mediate potentially protective changes in the expression of several proteins not involved in lipid metabolism but implicated in the pathogenesis of heart disease. Clinical studies with bezafibrate and gemfibrozil support the hypothesis that these drugs may have a significant protective effect against cardiovascular disease [19, 20].
Activation of the isoform PPAR-gamma improves insulin sensitivity, decreases inflammation, plasma levels of free fatty acids and blood pressure. These lead to inhibition of atherogenesis, improvement of endothelial function and reduction of cardiovascular events. The thiazolidinedione group of insulin-sensitizing drugs are PPARgamma ligands, and these have beneficial effects on serum lipids in diabetic patients and have also been shown to inhibit the progression of atherosclerosis in animal models. However, their efficacy in the prevention of cardiovascular-associated mortality has yet to be determined.
Recent studies have found that PPAR delta is also a regulator of serum lipids. However, there are currently no drugs in clinical use that selectively activate this receptor.
The modulation of the expression of genes by either PPAR alpha or gamma activators, correlates with the relatively tissue-specific distribution of the respective PPARs: PPAR gamma is expressed predominantly in adipose tissues, whereas PPAR alpha in the liver.
PPARgamma was shown to have a key role in adipogenesis and proposed to be a master controller of the "thrifty gene response" leading to efficient energy storage. According to the thrifty gene hypothesis, individuals living in an environment with an unstable food supply could increase their probability of survival if they could maximize storage of surplus energy, for instance as abdominal fat. Exposing this energy-storing genotype to the abundance of food typical in western societies is detrimental, causing insulin resistance and, subsequently, type 2 diabetes [11, 21]. In addition to PPAR, there are a number of other potential thrifty genes, including those that regulate lipolysis or code for the beta3-adrenergic receptor, the hormone-sensitive lipase, and lipoprotein lipase. Type 2 diabetes develops as a consequence of a collision between thrifty genes and a hostile affluent environment.
More recently PPARgamma emerged from a role limited to metabolism (diabetes and obesity) to a power player in general transcriptional control of numerous cellular processes, with implications in cell cycle control, carcinogenesis, inflammation, atherosclerosis and immunomodulation. This widened role of PPAR gamma will certainly initiate a new flurry of research, which will not only refine our current (and often partial) knowledge of PPARgamma, but more importantly, will also establish that this receptor has a definite role as a primary link adapting cellular, tissue and whole body homeostasis to energy stores.
Based on these new concepts, we propose a novel map of a cluster of metabolic syndrome, cardiovascular risk factors and diseases, which all are developed and linked through PPARs (Figure 3).
Because of its critical and central role in the development of metabolic syndrome, type 2 diabetes and many cardiovascular disorders, we believe that targeted treatment of PPAR will be a critical component of care in shortcoming future (Figure 4). Treating metabolic syndrome can prevent or ameliorate cardiovascular disease and type 2 diabetes [2227]. It is obvious that the cornerstones of treatment for the metabolic syndrome are dietary modification and increased physical activity. The Diabetes Prevention Program (DPP) results have shown that individualized, systematic and intensive lifestyle interventions (including dietary changes, increased physical activity and weight loss) are the most effective means of prevention of type 2 diabetes in general high risk populations (unfortunately they are not easily applied in general practice) [24]. Pharmacological interventions by some medications which influence primary glucose metabolism (metformin and acarbose) or induced weight loss (orlistat, combined with dietary intervention) can also effectively delay progression to type 2 diabetes [2426], but the magnitude of the benefit seems to be somewhat less (58% for DPP lifestyle changes vs. 31% for metformin and 25% for acarbose). For the time being, the goals and methods of treating hypertension, inflammation, hypercoagulopathy and dyslipidemia are the same for people with metabolic syndrome and for the general population [2227].
In conclusion, the metabolic syndrome is a highly prevalent clinical entity. Obesity, PPAR modulation and insulin resistance are the central components of this complex syndrome. The fall in insulin secretion leading to hyperglicemia separates patients with metabolic syndrome from those with or without overt diabetes. We suggest that a PPAR-based appraisal of metabolic syndrome and type 2 diabetes may improve our understanding of these diseases and set a basis for a comprehensive approach in their treatment.
download
DOWNLOAD
print
DRUCKEN
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Felber JP, Golay A: Pathways from obesity to diabetes. Int J Obes. 2002, 26 (Suppl 2): S39-45. 10.1038/sj.ijo.0802126.CrossRef Felber JP, Golay A: Pathways from obesity to diabetes. Int J Obes. 2002, 26 (Suppl 2): S39-45. 10.1038/sj.ijo.0802126.CrossRef
3.
Zurück zum Zitat Astrup A, Finer N: Redefining Type 2 diabetes: 'Diabesity' or 'Obesity Dependent Diabetes Mellitus'?. Obes Rev. 2000, 1: 57-59. 10.1046/j.1467-789x.2000.00013.x.CrossRefPubMed Astrup A, Finer N: Redefining Type 2 diabetes: 'Diabesity' or 'Obesity Dependent Diabetes Mellitus'?. Obes Rev. 2000, 1: 57-59. 10.1046/j.1467-789x.2000.00013.x.CrossRefPubMed
4.
Zurück zum Zitat Burke JP, Williams K, Gaskill SP, Hazuda HP, Haffner SM, Stern MP: Rapid rise in the incidence of type 2 diabetes from 1987 to 1996: results from the San Antonio Heart Study. Arch Intern Med. 1999, 159: 1450-1456. 10.1001/archinte.159.13.1450.CrossRefPubMed Burke JP, Williams K, Gaskill SP, Hazuda HP, Haffner SM, Stern MP: Rapid rise in the incidence of type 2 diabetes from 1987 to 1996: results from the San Antonio Heart Study. Arch Intern Med. 1999, 159: 1450-1456. 10.1001/archinte.159.13.1450.CrossRefPubMed
5.
Zurück zum Zitat Mokdad AH, Ford ES, Bowman BA, Nelson DE, Engelgau MM, Vinicor F, Marks JS: The continuing increase of diabetes in the US. Diabetes Care. 2001, 24: 412.CrossRefPubMed Mokdad AH, Ford ES, Bowman BA, Nelson DE, Engelgau MM, Vinicor F, Marks JS: The continuing increase of diabetes in the US. Diabetes Care. 2001, 24: 412.CrossRefPubMed
6.
Zurück zum Zitat Moore LL, Visioni AJ, Wilson PW, D'Agostino RB, Finkle WD, Ellison RC: Can sustained weight loss in overweight individuals reduce the risk of diabetes mellitus?. Epidemiology. 2000, 11: 269-273. 10.1097/00001648-200005000-00007.CrossRefPubMed Moore LL, Visioni AJ, Wilson PW, D'Agostino RB, Finkle WD, Ellison RC: Can sustained weight loss in overweight individuals reduce the risk of diabetes mellitus?. Epidemiology. 2000, 11: 269-273. 10.1097/00001648-200005000-00007.CrossRefPubMed
7.
Zurück zum Zitat Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988, 37: 1595-1607.CrossRefPubMed Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988, 37: 1595-1607.CrossRefPubMed
8.
Zurück zum Zitat Kaplan NM: The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med. 1989, 149: 1514-1520. 10.1001/archinte.149.7.1514.CrossRefPubMed Kaplan NM: The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med. 1989, 149: 1514-1520. 10.1001/archinte.149.7.1514.CrossRefPubMed
9.
Zurück zum Zitat Groop LC: Insulin resistance: the fundamental trigger of type 2 diabetes. Diabetes Obes Metab. 1999, 1 (Suppl 1): S1-S7. 10.1046/j.1463-1326.1999.0010s1001.x.CrossRefPubMed Groop LC: Insulin resistance: the fundamental trigger of type 2 diabetes. Diabetes Obes Metab. 1999, 1 (Suppl 1): S1-S7. 10.1046/j.1463-1326.1999.0010s1001.x.CrossRefPubMed
10.
Zurück zum Zitat Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001, 285: 2486-2497. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001, 285: 2486-2497.
11.
Zurück zum Zitat Auwerx J: PPARgamma, the ultimate thrifty gene. Diabetologia. 1999, 42: 1033-1049. 10.1007/s001250051268.CrossRefPubMed Auwerx J: PPARgamma, the ultimate thrifty gene. Diabetologia. 1999, 42: 1033-1049. 10.1007/s001250051268.CrossRefPubMed
12.
Zurück zum Zitat Vamecq J, Latruffe N: Medical significance of peroxisome proliferator-activated receptors. Lancet. 1999, 354: 141-148. 10.1016/S0140-6736(98)10364-1.CrossRefPubMed Vamecq J, Latruffe N: Medical significance of peroxisome proliferator-activated receptors. Lancet. 1999, 354: 141-148. 10.1016/S0140-6736(98)10364-1.CrossRefPubMed
13.
Zurück zum Zitat Hayden MR, Tyagi SC: Intimal redox stress: Accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy. Cardiovasc Diabetol. 2002, 1: 3-10.1186/1475-2840-1-3.PubMedCentralCrossRefPubMed Hayden MR, Tyagi SC: Intimal redox stress: Accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy. Cardiovasc Diabetol. 2002, 1: 3-10.1186/1475-2840-1-3.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Porte D, Kahn SE: Beta-cell dysfunction and failure in type 2 diabetes: potential mechanisms. Diabetes. 2001, 50 (Suppl 1): S160-S163.CrossRefPubMed Porte D, Kahn SE: Beta-cell dysfunction and failure in type 2 diabetes: potential mechanisms. Diabetes. 2001, 50 (Suppl 1): S160-S163.CrossRefPubMed
16.
Zurück zum Zitat Guerre-Millo M, Rouault C, Poulain P, Andre J, Poitout V, Peters JM, Gonzalez FJ, Fruchart JC, Reach G, Staels B: PPAR-alpha-null mice are protected from high-fat diet-induced insulin resistance. Diabetes. 2001, 50: 2809-2814.CrossRefPubMed Guerre-Millo M, Rouault C, Poulain P, Andre J, Poitout V, Peters JM, Gonzalez FJ, Fruchart JC, Reach G, Staels B: PPAR-alpha-null mice are protected from high-fat diet-induced insulin resistance. Diabetes. 2001, 50: 2809-2814.CrossRefPubMed
17.
Zurück zum Zitat Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000, 43: 527-550. 10.1021/jm990554g.CrossRefPubMed Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000, 43: 527-550. 10.1021/jm990554g.CrossRefPubMed
18.
Zurück zum Zitat Berger J, Moller DE: The mechanisms of action of PPARs. Annu Rev Med. 2002, 53: 409-435. 10.1146/annurev.med.53.082901.104018.CrossRefPubMed Berger J, Moller DE: The mechanisms of action of PPARs. Annu Rev Med. 2002, 53: 409-435. 10.1146/annurev.med.53.082901.104018.CrossRefPubMed
19.
Zurück zum Zitat Vosper H, Khoudoli G, Graham T, Palmer C: Peroxisome proliferator-activated receptor agonists, hyperlipidaemia, and atherosclerosis. Pharmacol Ther. 2002, 95: 47-62. 10.1016/S0163-7258(02)00232-2.CrossRefPubMed Vosper H, Khoudoli G, Graham T, Palmer C: Peroxisome proliferator-activated receptor agonists, hyperlipidaemia, and atherosclerosis. Pharmacol Ther. 2002, 95: 47-62. 10.1016/S0163-7258(02)00232-2.CrossRefPubMed
20.
Zurück zum Zitat Fruchart JC, Staels B, Duriez P: The role of fibric acids in atherosclerosis. Curr Atheroscler Rep. 2001, 3: 83-92.CrossRefPubMed Fruchart JC, Staels B, Duriez P: The role of fibric acids in atherosclerosis. Curr Atheroscler Rep. 2001, 3: 83-92.CrossRefPubMed
21.
Zurück zum Zitat Groop LC: Insulin resistance: the fundamental trigger of type 2 diabetes. Diab Obes Metab. 1999, 1 (Suppl 1): S1-7. 10.1046/j.1463-1326.1999.0010s1001.x.CrossRef Groop LC: Insulin resistance: the fundamental trigger of type 2 diabetes. Diab Obes Metab. 1999, 1 (Suppl 1): S1-7. 10.1046/j.1463-1326.1999.0010s1001.x.CrossRef
22.
Zurück zum Zitat Knowler WC, Barrett-Connor E, Fowler SE: Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002, 346: 393-403. 10.1056/NEJMoa012512.CrossRefPubMed Knowler WC, Barrett-Connor E, Fowler SE: Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002, 346: 393-403. 10.1056/NEJMoa012512.CrossRefPubMed
23.
Zurück zum Zitat Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB: Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997, 20: 537-544.CrossRefPubMed Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB: Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997, 20: 537-544.CrossRefPubMed
24.
Zurück zum Zitat Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001, 344: 1343-1350. 10.1056/NEJM200105033441801.CrossRefPubMed Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001, 344: 1343-1350. 10.1056/NEJM200105033441801.CrossRefPubMed
25.
Zurück zum Zitat Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M: STOP-NIDDM Trail Research Group. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002, 359: 2072-2077. 10.1016/S0140-6736(02)08905-5.CrossRefPubMed Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M: STOP-NIDDM Trail Research Group. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002, 359: 2072-2077. 10.1016/S0140-6736(02)08905-5.CrossRefPubMed
26.
Zurück zum Zitat Heymsfield SB, Segal KR, Hauptman J, Lucas CP, Boldrin MN, Rissanen A, Wilding JP, Sjostrom L: Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults. Arch Intern Med. 2000, 160: 1321-1326. 10.1001/archinte.160.9.1321.CrossRefPubMed Heymsfield SB, Segal KR, Hauptman J, Lucas CP, Boldrin MN, Rissanen A, Wilding JP, Sjostrom L: Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults. Arch Intern Med. 2000, 160: 1321-1326. 10.1001/archinte.160.9.1321.CrossRefPubMed
27.
Zurück zum Zitat Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolffenbuttel BH, Zinman B: HOPE Study Investigators. Ramipril and the development of diabetes. JAMA. 2001, 286: 1882-1885. 10.1001/jama.286.15.1882.CrossRefPubMed Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolffenbuttel BH, Zinman B: HOPE Study Investigators. Ramipril and the development of diabetes. JAMA. 2001, 286: 1882-1885. 10.1001/jama.286.15.1882.CrossRefPubMed
Metadaten
Titel
Metabolic syndrome and type 2 diabetes mellitus: focus on peroxisome proliferator activated receptors (PPAR)
verfasst von
Alexander Tenenbaum
Enrique Z Fisman
Michael Motro
Publikationsdatum
01.12.2003
Verlag
BioMed Central
Erschienen in
Cardiovascular Diabetology / Ausgabe 1/2003
Elektronische ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-2-4

Weitere Artikel der Ausgabe 1/2003

Cardiovascular Diabetology 1/2003 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.