Skip to main content
Erschienen in: International Ophthalmology 1/2024

Open Access 01.12.2024 | Original Paper

Ocular injuries associated with motor vehicle accidents: long term effects on quality of life

verfasst von: Judith Brody, Meydan Ben Ishai, Irena Serov-Volach, Keren Mano-Tamir, Dan D. Gaton, Inbal Avisar

Erschienen in: International Ophthalmology | Ausgabe 1/2024

Abstract

Purpose

To describe the prevalence and outcome of motor vehicle accidents-associated ocular injuries.

Methods

A survey of patients who presented to the emergency room at a level 1 trauma center with motor vehicle accidents-associated ocular injuries. A patient questionnaire and review of clinical notes were conducted for all patients.

Results

Of 274 motor vehicle accident victims with ocular injuries who presented to the emergency room, 40 (15%) responded to the survey. Over half of them were driving a vehicle, and most reported wearing a seat belt or a helmet. Most ocular injuries were mild. The most common injuries were bone fractures, subconjunctival hemorrhage, eyelid involvement and corneal injury. Most respondents had no change in vision and perceived their ocular involvement as a minor part of their injury. Most respondents returned to work and to driving within a year.

Conclusion

Our study sheds light on the details and extent of ocular involvement and the visual ability to perform daily activities following motor vehicle accidents.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Traumatic injuries due to motor vehicle accidents (MVA) are a common global occurrence and the leading cause of death among children and young adults aged 5–29. About 1.35 million people die each year due to MVAs [1]. Head and facial injuries are commonly associated with high rates of ocular injury and resultant morbidity [2]. MVAs present specific risk factors for eye injuries, including exposure to broken glass and other foreign bodies, rapid changes in velocity, lack of passenger restraint such as seatbelts, and airbag deployment [37]. Ocular injury is the second leading cause of monocular blindness in the United States, second only to cataracts as the most common cause of visual impairment [8]. An evaluation of the characteristics of open globe injuries following road accidents showed that most patients suffered from rupture, while only 20% had penetrating eye injuries [9]; only 40% of patients reported using a seat belt in that study [9]. A review of the impact of vehicle occupant restraint systems on eye injuries showed that airbags could lead to corneal abrasions, alkali burns, and globe compression [10]. The occupational, financial, and psychosocial consequences of road injuries carry a personal and public burden, which reduces the injured individual's quality of life [11]. Assessment of long-term visual and social outcomes of patients with ocular injuries is essential for describing the burden of MVA; however, the literature lacks studies that directly address these issues [10]. In this study, we aimed to describe the prevalence and outcome of MVA-associated ocular injuries in a tertiary medical center in the country. We emphasize the impact of ocular injuries regarding visual tasks and functional outcomes on long-term follow-up.

Materials and methods

Study design and population

We analyzed medical charts of patients who presented to the emergency room at a level 1 trauma center in the country with MVA-associated ocular injuries between 2000 and 2010 and were referred to the ophthalmology department for evaluation.
The Institutional Review Board of Rabin Medical Center approved the study and conducted it according to its rules and regulations, following the tenets of the Declaration of Helsinki.
A telephone survey was conducted at a minimum of 3 years following the accident to assess the characteristics of each accident. The respondents were asked about the MVA: the type of vehicle, if the patient was a driver, passenger (behind or next to the driver), or pedestrian, and the safety measures at the time of the accident (helmet, seatbelt, airbag deployment). The respondents were also interrogated about visual difficulties performing daily activities such as reading, watching television, and operating a computer. The time lap from the accident until returning to work and driving following the injury was also documented. The Ethics Committee of this medical centre has approved the study. Written informed consent from patients was not required.

Statistical analysis

The data were analyzed using the SAS® version 9.3 (SAS Institute, Cary, North Carolina). Statistical analysis included descriptive statistics with continuous variables summarized using the arithmetic mean, standard deviation, median, minimum and maximum values, and absolute values summarized using absolute and relative frequencies. Cross-tables were generated by safety measures, accident type, and fracture outcome, and the chi-squared test was applied to analyze the difference in proportions for the above parameters. P values of less than 0.05 were considered statistically significant.

Results

Over ten years, 274 MVA victims with ocular injuries presented to the ER. Of these, 40 individuals (15%) responded to the telephone survey. The reasons for non-response, respondent demographics and MVA characteristics are presented in Table 1.
Table 1
Participant demographics and MVA characteristics
 
Survey respondents
N = 40
Median age, years (range)
26.5 (17.0–67.0)
Gender, n (%)
Males
25 (62.5%)
Females
15 (37.5%)
Vehicle type
Private
38 (95%)
Commercial
2 (5.0%)
Respondent’s role during the MVA
Car driver
14 (32.5%)
Motorcycle driver
6 (15%)
Bicycle rider
1 (2.5%)
Car passenger
13 (32.5%)
Pedestrian
5 (12.5%)
Safety measures during the accident
Seatbelt
17 (42.5%)
Airbag deployment
7 (17.5%)
Helmet
5 (12.5%)
None
11 (27.5%)
The mean time interval between the occurrence of injury and questionnaire response was 9 years. Of the 40 responders to the telephone survey, 27 responders (67.5%) were in a car when the accident occurred; 17 (42.5%) reported wearing seat belts, and seven (17.5%) reported that the car's airbags had been deployed. Of the seven respondents (17.5%) who reported riding a motorcycle or a bicycle, five (12.5%) wore a helmet at the time of the accident. The characteristics of ocular injuries are shown in Table 2.
Table 2
Ocular Injury Characteristics
 
Respondents
N = 40^
Fractures§
27 (67.5%)
 Lateral orbital wall fracture
16 (59.3%)*
 Orbital roof fracture
12 (44.4%)*
 Orbital floor fracture
11 (40.7%)*
 Medial orbital wall fracture
6 (22.2%)*
 Optic canal fracture
2 (7.4%)*
Subconjunctival hemorrhage
16 (40.0%)
Eyelid cut
9 (22.5%)
Cornea injury
5 (12.5%)
Retinal injury
3 (7.5%)
Ptosis
2 (5.0%)
Perforation
1 (2.5%)
^19 patients (47%) had more than one ocular injury
*Percentage out of 27 patients who suffered fractures
§13 patients, representing 48% out of 27 patient who suffered fractures, had more than one type of fracture
Most respondents returned to work within a year after the accident (Table 3).
Table 3
Time to return to work/studies and to driving
 
Respondents
N = 40
Returned to work/studies
25 (62.5%)
 Within 1 month
2 (5.0%)
 Within 3 months
1 (2.5%)
 Within 6 months
1 (2.5%)
 After more than 6 months
7 (17.5%)
 Within 1 year
14 (35.0%)
Returned to driving
28 (70.0%)
 Within 1 month
5 (12.5%)
 Within 6 moths
4 (10.0%)
 After more than 6 months
5 (12.5%)
 Within 1 year
14 (35.0%)
Twenty-two patients (55%) sustained severe systemic injuries, including loss of consciousness, severe head injury, and hospitalization in intensive care and neurosurgery units. Three patients had both severe systemic injury and severe ocular injury.
Most respondents (28, 70%) also resumed driving within a year, nine of which (22.5%) returned to driving within 6 months following the accident. The time to return to work, academic activity or driving was not associated with the safety measures taken while driving (seatbelt, helmet or airbag) or the type of vehicle (car, motorcycle, bicycle or pedestrian) or the occurrence of fractures (data not shown). Most respondents (70%) had no change in vision following their injury and perceived their ocular involvement as a minor part of their MVA injury. Only a minority of patients had a visual decline, according to patient reports (Table 4).
Table 4
Ocular injury outcome as reported by patients
 
Respondents
N = 40
Blurry vision
9 (22.5%)
Headache
8 (20.0%)
Difficulties in watching television
5 (12.5%)
Convergence insufficiency
4 (10.0%)
Reading difficulties
2 (5.0%)
Epiphora
2 (5.0%)
Blindness
1 (2.5%)
Safety measures are taken while driving (seatbelt, helmet or airbag) were not associated with the occurrence of orbital fracture (P < 0.12), injury severity (P < 0.21) or change in vision (P < 0.29).
The type of vehicle (car, motorcycle, bicycle or pedestrian) was not associated with the occurrence of orbital fracture (P < 0.6), injury severity (p < 0.23), or change in vision (p < 0.33).

Discussion

Our study showed that most patients presenting with eye injury following MVA were young (median age: 26.5 years) and males. These findings align with other reports showing that males are at a higher risk of being injured in MVA than females [5, 1214]. Over half of the respondents in our cohort were driving the vehicle at the time of the accident. This finding aligns with other studies that reported a higher eye injury rate among vehicle drivers than passengers [35, 12]. Most respondents reported wearing a seat belt or a helmet during the accident. Mandatory seatbelt laws have lowered the incidence of penetrating eye injuries in road traffic accidents [15, 16]. Still, it was suggested that in the event of a frontal airbag deployment, front-seat occupants of motor vehicles that sustained a frontal collision were at a two-fold risk of experiencing an ocular injury, including intraocular hemorrhages, corneal injuries, hyphema, detachments and retinal tears [5, 17].
A systematic review of the effectiveness of restraining devices on eye injury in motor vehicle collisions showed that using seat belts decreased eye injuries in motor vehicle collisions. At the same time, airbags had no significant effect on increased rates of eye injuries [18]. These findings may be due to newer airbag technology with reduced inflation force [19]. However, it was suggested that significant sight-threatening ocular injuries related to airbags, such as traumatic airbag maculopathy [20], can occur despite the lack of apparent external trauma to the eye [19]. Our analysis did not show an association between the use of seat belts or the deployment of airbags and the severity of an ocular injury or change in vision following the injury. The discrepancy between the results of our study and previous reports regarding the use of seatbelts or airbags and the seriousness of eye injuries may be related to selection bias; it is plausible that the most severe cases of eye injuries did not answer the questionnaire due to other significant morbidities. Patients with other systemic injuries may not percept their ocular injury as significant due to other health issues. Most of the ocular injuries (90%) described in our study were mild, consistent with other reports on ocular injuries following MVA [5, 13]. The most common type of ocular injury was orbital bone fracture (67.5%). The incidence of MVA-associated facial fractures, including nasal and orbital fractures, in the US, was 10.9% [21]. The higher rates noted in our cohort may be partly explained by the 15% response rate to the survey and to the fact that our study was conducted only in a level 1 trauma referral center, in contrast to various US trauma centers, including levels 1, 2, 3 and 4, in the study mentioned above. Our results showed that among orbital fractures, the lateral wall was the most common site of insult (59.3%), followed by a roof (44.4%), floor (40.7%), medial wall (22.2%) and optic canal (7.4%) involvement. Another study reported that the most frequent isolated orbital fracture because of MVA was a floor fracture, followed by medial, roof, and lateral wall fractures [22]. A retrospective cross-sectional study in the US, using the National Electronic Injury Surveillance System All Injury Program from 2001 to 2008 to assess the risk of presenting to an ED with an MVA- associated eye injury reported that the most common diagnoses were contusion/abrasion (61.5%), foreign body (19.7%) and hemorrhage (4.1%) [12]. The most common ocular injuries presenting to a northern regional medical center between 2007 and 2011 were subconjunctival hemorrhage (34%), corneal erosions (27%), hyphemia (20.3%) and lid lacerations (18%), while orbital fractures constituted only 0.9% [13].
According to a report by the US National Highway Traffic Safety Administration, the economic cost of MVA-associated injuries is enormous, with cost components including productivity losses, property damage, medical expenses, rehabilitation costs, congestion costs, legal and court costs, emergency services such as medical, police, and fire services, insurance administration costs, and the costs to employers [23]. Road traffic crashes cost most countries three percent of their gross domestic product [1]. MVA also carry a psychosocial burden on the patients and reduces their quality of life compared to the general population norms [11]. Our results showed that although the ocular injuries were considered mild and only 30% of patients regarded the MVA-associated ocular injury as a major factor following the accident, the injuries substantially affected the respondents' ability to return to work. Only four respondents (10%) returned to work within six months following the accident, whereas 62.5% returned within one year. The remaining respondents reported a continued absence from work. Even minor injuries following MVA were reported to have a major impact on returning to work and pre-injury participation during the two years after the injury, as well as on the health-related quality of life and physical and mental well-being [24, 25]. Concerning vision, only a minority of our patients had visual decline resulting in reading difficulties (5%), watching television difficulties (12.5%) and blindness (2.5%).
This study's limitations include its retrospective nature; however, we added a prospective aspect by actively contacting patients to determine the long-term consequences of their traumatic injury. This information is valuable in reflecting the impact of quality of life and social burden. The average follow-up spans over nine years and therefore entails a more precise reflection of long-term sequelae. Although a relatively large prospective quality-of-life study may be required for statistical proof, it offers information that can motivate elaborating preventive measures against ocular motor vehicle injuries to reduce their incidence. One of the challenges in the current study was to isolate the ocular injuries from other body injuries of the MVA patients and to assess their functional impact. The data was collected in one of the largest medical centers in the country and thus represented an approximation of the actual incidence of these types of injuries across the country.
In conclusion, our study sheds light on the details and extent of ocular involvement and the visual ability to perform daily life activities following MVA. Although ocular injuries were considered mild and less than a third of the patients regarded the MVA- associated ocular injury as a major factor following the accident, the injuries substantially affected the respondents' ability to return to work or driving. Further research is needed to evaluate our findings in a larger population by increasing the response rate to the survey.

Declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

The study has been approved by the Ethics Committee of Rabin Medical Center, ethical approval code 0452–12-RMC.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Global status report on road safety (2018) summary. Geneva: World Health Organization; 2018 (WHO/NMH/NVI/18.20). Licence: CC BY-NC-SA 3.0 IGO) Global status report on road safety (2018) summary. Geneva: World Health Organization; 2018 (WHO/NMH/NVI/18.20). Licence: CC BY-NC-SA 3.0 IGO)
2.
Zurück zum Zitat Odebode T, Ademola-Popoola D, Ojo T, Ayanniyi AA (2004) Ocular and visual complications of head injury. Eye 19(5):561–566CrossRef Odebode T, Ademola-Popoola D, Ojo T, Ayanniyi AA (2004) Ocular and visual complications of head injury. Eye 19(5):561–566CrossRef
3.
Zurück zum Zitat Duma SM, Jernigan MV, Stitzel JD et al (2002) The effect of frontal airbags on eye injury patterns in automobile crashes. Arch Ophthalmol 120(11):1517–22CrossRefPubMed Duma SM, Jernigan MV, Stitzel JD et al (2002) The effect of frontal airbags on eye injury patterns in automobile crashes. Arch Ophthalmol 120(11):1517–22CrossRefPubMed
4.
Zurück zum Zitat Duma SM, Rath AL, Jernigan MV, Stitzel JD, Herring IP (2005) The effects of depowered airbags on eye injuries in frontal automobile crashes. Am J Emerg Med 23(1):13–19CrossRefPubMed Duma SM, Rath AL, Jernigan MV, Stitzel JD, Herring IP (2005) The effects of depowered airbags on eye injuries in frontal automobile crashes. Am J Emerg Med 23(1):13–19CrossRefPubMed
5.
Zurück zum Zitat McGwin G Jr, Owsley C (2005) Risk factors for motor vehicle collision-related eye injuries. Arch Ophthalmol 123(1):89–95CrossRefPubMed McGwin G Jr, Owsley C (2005) Risk factors for motor vehicle collision-related eye injuries. Arch Ophthalmol 123(1):89–95CrossRefPubMed
6.
Zurück zum Zitat Ghoraba H (2002) Posterior segment glass intraocular foreign bodies following a car accident or explosion. Graefes Arch Clin Exp Ophthalmol 240(7):524–528CrossRefPubMed Ghoraba H (2002) Posterior segment glass intraocular foreign bodies following a car accident or explosion. Graefes Arch Clin Exp Ophthalmol 240(7):524–528CrossRefPubMed
7.
Zurück zum Zitat Rao SK, Greenberg PB, Filippopoulos T, Scott IU, Katsoulakis NP, Enzer YR (2008) Potential impact of seatbelt use on the spectrum of ocular injuries and visual acuity outcomes after motor vehicle accidents with airbag deployment. Ophthalmology 115(3):573–576CrossRefPubMed Rao SK, Greenberg PB, Filippopoulos T, Scott IU, Katsoulakis NP, Enzer YR (2008) Potential impact of seatbelt use on the spectrum of ocular injuries and visual acuity outcomes after motor vehicle accidents with airbag deployment. Ophthalmology 115(3):573–576CrossRefPubMed
8.
Zurück zum Zitat Leonard R (2002) Statistics on vision impairment: a resource manual. Lighthouse International, New York Leonard R (2002) Statistics on vision impairment: a resource manual. Lighthouse International, New York
9.
Zurück zum Zitat Orr CK, Bauza A, Langer PD, Zarbin MA, Bhagat N (2015) Open-globe injuries with motor vehicle accidents: a 12-year review. Graefes Arch Clin Exp Ophthalmol 253(8):1313–1317CrossRefPubMed Orr CK, Bauza A, Langer PD, Zarbin MA, Bhagat N (2015) Open-globe injuries with motor vehicle accidents: a 12-year review. Graefes Arch Clin Exp Ophthalmol 253(8):1313–1317CrossRefPubMed
10.
Zurück zum Zitat Almahmoud T, Barss P (2014) Vehicle occupant restraint systems impact on eye injuries: a review. Surv Ophthalmol 59(3):334–344CrossRefPubMed Almahmoud T, Barss P (2014) Vehicle occupant restraint systems impact on eye injuries: a review. Surv Ophthalmol 59(3):334–344CrossRefPubMed
11.
Zurück zum Zitat Rissanen R, Berg HY, Hasselberg M (2017) Quality of life following road traffic injury: a systematic literature review. Accid Anal Prev 108:308–320CrossRefPubMed Rissanen R, Berg HY, Hasselberg M (2017) Quality of life following road traffic injury: a systematic literature review. Accid Anal Prev 108:308–320CrossRefPubMed
12.
Zurück zum Zitat Armstrong GW, Chen AJ, Linakis JG, Mello MJ, Greenberg PB (2014) Motor vehicle crash-associated eye injuries presenting to US emergency departments. West J Emerg Med 15(6):693–700CrossRefPubMedPubMedCentral Armstrong GW, Chen AJ, Linakis JG, Mello MJ, Greenberg PB (2014) Motor vehicle crash-associated eye injuries presenting to US emergency departments. West J Emerg Med 15(6):693–700CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Panagiotidis DN, Theodossiadis PG, Petsias CB et al (1986) Ocular injuries 8n Ireland two years after seat belt legislation. Br J Ophthalmol 70(6):460–462CrossRef Panagiotidis DN, Theodossiadis PG, Petsias CB et al (1986) Ocular injuries 8n Ireland two years after seat belt legislation. Br J Ophthalmol 70(6):460–462CrossRef
16.
17.
Zurück zum Zitat Duma SM, Kress TA, Porta DJ et al (1996) Airbag-induced eye injuries: a report of 25 cases. J Trauma 41(1):114–119CrossRefPubMed Duma SM, Kress TA, Porta DJ et al (1996) Airbag-induced eye injuries: a report of 25 cases. J Trauma 41(1):114–119CrossRefPubMed
18.
Zurück zum Zitat Hwang K, Kim JH (2015) Effect of restraining devices on eye injury in motor vehicle collisions. J Craniofac Surg 26(1):220–221CrossRefPubMed Hwang K, Kim JH (2015) Effect of restraining devices on eye injury in motor vehicle collisions. J Craniofac Surg 26(1):220–221CrossRefPubMed
19.
Zurück zum Zitat Odouard C, Kuo CH, Tariq YM, Ha JH, Swamy B (2016) Central visual loss central visual loss following a motor vehicle accident: traumatic airbag maculopathy. Med J Aust 205(10):443–444CrossRefPubMed Odouard C, Kuo CH, Tariq YM, Ha JH, Swamy B (2016) Central visual loss central visual loss following a motor vehicle accident: traumatic airbag maculopathy. Med J Aust 205(10):443–444CrossRefPubMed
20.
Zurück zum Zitat Kung J, Leung LS, Leng T, Liao YJ (2013) Traumatic airbag maculopathy. JAMA Ophthalmol 131(5):685–687CrossRefPubMed Kung J, Leung LS, Leng T, Liao YJ (2013) Traumatic airbag maculopathy. JAMA Ophthalmol 131(5):685–687CrossRefPubMed
21.
Zurück zum Zitat Hyman DA, Saha S, Nayar HS, Doyle JF, Agarwal SK, Chaiet SR (2016) Patterns of facial fractures and protective device use in motor vehicle collisions from 2007 to 2012. JAMA Facial Plast Surg 18(6):455–461CrossRefPubMed Hyman DA, Saha S, Nayar HS, Doyle JF, Agarwal SK, Chaiet SR (2016) Patterns of facial fractures and protective device use in motor vehicle collisions from 2007 to 2012. JAMA Facial Plast Surg 18(6):455–461CrossRefPubMed
22.
Zurück zum Zitat Peltola EM, Koivikko MP, Koskinen SK (2014) The spectrum of facial fractures in motor vehicle accidents: an MDCT study of 374 patients. Emerg Radiol 21(2):165–171CrossRefPubMed Peltola EM, Koivikko MP, Koskinen SK (2014) The spectrum of facial fractures in motor vehicle accidents: an MDCT study of 374 patients. Emerg Radiol 21(2):165–171CrossRefPubMed
24.
Zurück zum Zitat Gopinath B, Jagnoor J, Elbers N, Cameron ID (2017) Overview of findings from a 2-year study of claimants who had sustained a mild or moderate injury in a road traffic crash: prospective study. BMC Res Notes 10(1):76CrossRefPubMedPubMedCentral Gopinath B, Jagnoor J, Elbers N, Cameron ID (2017) Overview of findings from a 2-year study of claimants who had sustained a mild or moderate injury in a road traffic crash: prospective study. BMC Res Notes 10(1):76CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Canavan YM, O’flaherty MJ, Archer DB, Elwood JH (1980) A 10-year survey of eye injuries in Northern Ireland, 1967–76. Br J Ophthalmol 64(8):618–625CrossRefPubMedPubMedCentral Canavan YM, O’flaherty MJ, Archer DB, Elwood JH (1980) A 10-year survey of eye injuries in Northern Ireland, 1967–76. Br J Ophthalmol 64(8):618–625CrossRefPubMedPubMedCentral
Metadaten
Titel
Ocular injuries associated with motor vehicle accidents: long term effects on quality of life
verfasst von
Judith Brody
Meydan Ben Ishai
Irena Serov-Volach
Keren Mano-Tamir
Dan D. Gaton
Inbal Avisar
Publikationsdatum
01.12.2024
Verlag
Springer Netherlands
Erschienen in
International Ophthalmology / Ausgabe 1/2024
Print ISSN: 0165-5701
Elektronische ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-024-03083-z

Weitere Artikel der Ausgabe 1/2024

International Ophthalmology 1/2024 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Metastase in der periokulären Region

Metastasen Leitthema

Orbitale und periokuläre metastatische Tumoren galten früher als sehr selten. Aber mit der ständigen Aktualisierung von Medikamenten und Nachweismethoden für die Krebsbehandlung werden neue Chemotherapien und Strahlenbehandlungen eingesetzt. Die …

Staging und Systemtherapie bei okulären und periokulären Metastasen

Metastasen Leitthema

Metastasen bösartiger Erkrankungen sind die häufigsten Tumoren, die im Auge diagnostiziert werden. Sie treten bei ungefähr 5–10 % der Patienten mit soliden Tumoren im Verlauf der Erkrankung auf. Besonders häufig sind diese beim Mammakarzinom und …

Wundheilung nach Trabekulektomie

Trabekulektomie CME-Artikel

Die überschießende Wundheilung in der filtrierenden Glaukomchirurgie ist ein zentraler Faktor für ein operatives Versagen. Nach der Einführung der Trabekulektomie in den 1960er-Jahren wurden viele Faktoren erkannt, die mit einer vermehrten …

„standard operating procedures“ (SOP) – Vorschlag zum therapeutischen Management bei periokulären sowie intraokulären Metastasen

Metastasen Leitthema

Peri- sowie intraokuläre Metastasen sind insgesamt gesehen selten und meist Zeichen einer fortgeschrittenen primären Tumorerkrankung. Die Therapie ist daher zumeist palliativ und selten kurativ. Zudem ist die Therapiefindung sehr individuell. Die …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.