Skip to main content
Erschienen in: European Spine Journal 4/2005

01.05.2005 | Original Article

Spinal muscle forces, internal loads and stability in standing under various postures and loads—application of kinematics-based algorithm

verfasst von: A. Shirazi-Adl, M. El-Rich, D. G. Pop, M. Parnianpour

Erschienen in: European Spine Journal | Ausgabe 4/2005

Einloggen, um Zugang zu erhalten

Abstract

This work aimed to evaluate trunk muscle forces, internal loads and stability margin under some simulated standing postures, with and without external loads, using a nonlinear finite element model of the T1–S1 spine with realistic nonlinear load-displacement properties. A novel kinematics-based algorithm was applied that exploited a set of spinal sagittal rotations, initially calculated to minimize balancing moments, to solve the redundant active–passive system. The loads consisted of upper body gravity distributed along the spine with or without 200 N held in the hands, either in the front of the body or on the sides. Nonlinear and linear stability/perturbation analyses at deformed, stressed configurations with a linear stiffness-force relationship for muscles identified the system stability and critical muscle stiffness coefficient. Predictions were in good agreement with reported measurements of posture, muscle EMG and intradiscal pressure. Minimal changes in posture (posterior pelvic tilt and lumbar flattening) substantially influenced muscle forces, internal loads and stability margin. Addition of 200 N load in front of the body markedly increased the system stability, global muscle forces, and internal loads, which reached anterior shear and compression forces of ~500 N and ~1,200 N, respectively, at lower lumbar levels. Co-activation in abdominal muscles (up to 3% maximum force) substantially increased extensor muscle forces, internal loads and stability margin, allowing a smaller critical muscle coefficient. A tradeoff existed between lower internal loads in passive tissues and higher stability margins, as both increased with greater muscle activation. The strength of the proposed model is in accounting for the synergy by simultaneous consideration of passive structure and muscle forces under applied postures and loads.
Literatur
1.
Zurück zum Zitat Aspden RM (1989) The spine as an arch—A new mathematical model. Spine 14:276–284 Aspden RM (1989) The spine as an arch—A new mathematical model. Spine 14:276–284
2.
Zurück zum Zitat Bergmark A (1989) Stability of the lumbar spine—A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54PubMed Bergmark A (1989) Stability of the lumbar spine—A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54PubMed
3.
Zurück zum Zitat Bogduk N, Macintosh JE, Pearcy MJ (1992) A universal model of the lumbar back muscles in the upright position. Spine 17:897–913PubMed Bogduk N, Macintosh JE, Pearcy MJ (1992) A universal model of the lumbar back muscles in the upright position. Spine 17:897–913PubMed
4.
Zurück zum Zitat Cholewicki J, McGill SM (1995) Relationship between muscle force and stiffness in the whole mammalian muscle: A simulation study. J Biomech Eng 117:339–342PubMed Cholewicki J, McGill SM (1995) Relationship between muscle force and stiffness in the whole mammalian muscle: A simulation study. J Biomech Eng 117:339–342PubMed
5.
Zurück zum Zitat Cholewicki J, McGill SM (1996) Mechanical stability of the in vivo lumbar spine: Implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon) 11:1–15 Cholewicki J, McGill SM (1996) Mechanical stability of the in vivo lumbar spine: Implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon) 11:1–15
6.
Zurück zum Zitat Cholewicki J, VanVliet JJ (2002) Relative contribution of trunk muscles to the stability of the lumbar spine during isometric exertions. Clin Biomech (Bristol, Avon) 17:99–105 Cholewicki J, VanVliet JJ (2002) Relative contribution of trunk muscles to the stability of the lumbar spine during isometric exertions. Clin Biomech (Bristol, Avon) 17:99–105
7.
Zurück zum Zitat Cholewicki J, Panjabi MM, Khachatryan A (1997) Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine 22:2207–2212CrossRefPubMed Cholewicki J, Panjabi MM, Khachatryan A (1997) Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine 22:2207–2212CrossRefPubMed
8.
Zurück zum Zitat Cholewicki J, Juluru K, McGill SM (1999) Intra-abdominal pressure mechanism for stabilizing the lumbar spine. J Biomech 25:17–28CrossRef Cholewicki J, Juluru K, McGill SM (1999) Intra-abdominal pressure mechanism for stabilizing the lumbar spine. J Biomech 25:17–28CrossRef
9.
Zurück zum Zitat Cholewicki J, Simons APD, Radebold A (2000) Effects of external trunk loads on lumbar spine stability. J Biomech 33:1377–1385CrossRefPubMed Cholewicki J, Simons APD, Radebold A (2000) Effects of external trunk loads on lumbar spine stability. J Biomech 33:1377–1385CrossRefPubMed
10.
Zurück zum Zitat Crisco JJ 3rd, Panjabi MM (1991) The intersegmental and multisegmental muscles of the lumbar spine—A biomechanical model comparing lateral stabilizing potential. Spine 16:793–799PubMed Crisco JJ 3rd, Panjabi MM (1991) The intersegmental and multisegmental muscles of the lumbar spine—A biomechanical model comparing lateral stabilizing potential. Spine 16:793–799PubMed
11.
Zurück zum Zitat Dumas GA, Poulin MJ, Roy B, Gagnon M, Jovanovic M (1991) Orientation and moment arms of some trunk muscles. Spine 16:293–303PubMed Dumas GA, Poulin MJ, Roy B, Gagnon M, Jovanovic M (1991) Orientation and moment arms of some trunk muscles. Spine 16:293–303PubMed
12.
Zurück zum Zitat Gagnon D, Larivière C, Loisel P (2001) Comparative ability of EMG, optimisation, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting. Clin Biomech (Bristol, Avon) 16:359–372 Gagnon D, Larivière C, Loisel P (2001) Comparative ability of EMG, optimisation, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting. Clin Biomech (Bristol, Avon) 16:359–372
13.
Zurück zum Zitat Gardner-Morse M, Stokes IAF (1998) The effects of abdominal muscle coactivation on lumbar spine stability. Spine 23:86–92CrossRefPubMed Gardner-Morse M, Stokes IAF (1998) The effects of abdominal muscle coactivation on lumbar spine stability. Spine 23:86–92CrossRefPubMed
14.
Zurück zum Zitat Gardner-Morse M, Stokes IAF, Laible JP (1995) Role of muscles in lumbar spine stability in maximum extension efforts. J Orthop Res 13:802–808PubMed Gardner-Morse M, Stokes IAF, Laible JP (1995) Role of muscles in lumbar spine stability in maximum extension efforts. J Orthop Res 13:802–808PubMed
15.
Zurück zum Zitat Granata KP, Marras WS (1995) An EMG-assisted model of trunk loading during free-dynamic lifting. J Biomech 28:1309–1317CrossRefPubMed Granata KP, Marras WS (1995) An EMG-assisted model of trunk loading during free-dynamic lifting. J Biomech 28:1309–1317CrossRefPubMed
16.
Zurück zum Zitat Granata KP, Orishimo KF (2001) Response of trunk muscle coactivation to changes in spinal stability. J Biomech 34:1117–1123CrossRefPubMed Granata KP, Orishimo KF (2001) Response of trunk muscle coactivation to changes in spinal stability. J Biomech 34:1117–1123CrossRefPubMed
17.
Zurück zum Zitat Han JS, Ahn JY, Goel VK, Takeuchi R, McGowan D (1997) CT-based geometric data of human spine musculature, Part 1. Japanese patients with chronic low back pain. J Spinal Disord 5:448–458 Han JS, Ahn JY, Goel VK, Takeuchi R, McGowan D (1997) CT-based geometric data of human spine musculature, Part 1. Japanese patients with chronic low back pain. J Spinal Disord 5:448–458
18.
Zurück zum Zitat Holm S, Indahl A, Solomonow M (2002) Sensorimotor control of the spine. J Electromyogr Kinesiol 12:219–234CrossRefPubMed Holm S, Indahl A, Solomonow M (2002) Sensorimotor control of the spine. J Electromyogr Kinesiol 12:219–234CrossRefPubMed
19.
Zurück zum Zitat Hughes RE, Chaffin DB, Lavender SA, Andersson GBJ (1994) Evaluation of muscle force prediction models of the lumbar trunk using surface electromyography. J Orthop Res 12:689–698PubMed Hughes RE, Chaffin DB, Lavender SA, Andersson GBJ (1994) Evaluation of muscle force prediction models of the lumbar trunk using surface electromyography. J Orthop Res 12:689–698PubMed
20.
Zurück zum Zitat Kiefer A, Shirazi-Adl A, Parnianpour M (1996) Creep stability of human spine in neutral postures. In: Engin AE (ed) Proceedings of the Engineering Systems Design and Analysis Conference. 77:27–34 Kiefer A, Shirazi-Adl A, Parnianpour M (1996) Creep stability of human spine in neutral postures. In: Engin AE (ed) Proceedings of the Engineering Systems Design and Analysis Conference. 77:27–34
21.
Zurück zum Zitat Kiefer A, Shirazi-Adl A, Parnianpour M (1997) On the stability of human spine in neutral postures. Eur Spine J 6:45–53PubMed Kiefer A, Shirazi-Adl A, Parnianpour M (1997) On the stability of human spine in neutral postures. Eur Spine J 6:45–53PubMed
22.
Zurück zum Zitat Kiefer A, Shirazi-Adl A, Parnianpour M (1998) Synergy of human spine in neutral postures. Eur Spine J 7:471–479CrossRefPubMed Kiefer A, Shirazi-Adl A, Parnianpour M (1998) Synergy of human spine in neutral postures. Eur Spine J 7:471–479CrossRefPubMed
23.
Zurück zum Zitat Lucas DB, Bresler B (1961) Stability of the ligamentous spine. Biomechanics Laboratory, University of California at Berkeley, pp 1–41 Lucas DB, Bresler B (1961) Stability of the ligamentous spine. Biomechanics Laboratory, University of California at Berkeley, pp 1–41
24.
Zurück zum Zitat Marras WS, Jorgensen MJ, Granata KP, Wiand B (2001) Female and male trunk geometry: Size and prediction of the spine loading trunk muscles derived from MRI. Clin Biomech (Bristol, Avon) 16:38–46 Marras WS, Jorgensen MJ, Granata KP, Wiand B (2001) Female and male trunk geometry: Size and prediction of the spine loading trunk muscles derived from MRI. Clin Biomech (Bristol, Avon) 16:38–46
25.
Zurück zum Zitat McGill SM, Patt N, Norman RW (1988) Measurement of the trunk musculature of active males using CT scan radiography: Implications for force and moment generating capacity about the L4/L5 joint. J Biomech 21:329–341CrossRefPubMed McGill SM, Patt N, Norman RW (1988) Measurement of the trunk musculature of active males using CT scan radiography: Implications for force and moment generating capacity about the L4/L5 joint. J Biomech 21:329–341CrossRefPubMed
26.
Zurück zum Zitat Nachemson A (1981) Disc pressure measurements. Spine 6:93–97PubMed Nachemson A (1981) Disc pressure measurements. Spine 6:93–97PubMed
27.
Zurück zum Zitat Oxland T, Lin RM, Panjabi M (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10:573-580PubMed Oxland T, Lin RM, Panjabi M (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10:573-580PubMed
28.
Zurück zum Zitat Panjabi M, Yamamoto I, Oxland T, Crisco J (1989) How does posture affect coupling in the lumbar spine? Spine 14:1002–1011PubMed Panjabi M, Yamamoto I, Oxland T, Crisco J (1989) How does posture affect coupling in the lumbar spine? Spine 14:1002–1011PubMed
29.
Zurück zum Zitat Parnianpour M, Shirazi-Adl A, Hemami H et al (1994) The effect of compressive load on the myoelectric activities of ten selected trunk muscles. In: Proceedings of the 12th Triennial Congress of the International Ergonomics Association, 3:119–121 Parnianpour M, Shirazi-Adl A, Hemami H et al (1994) The effect of compressive load on the myoelectric activities of ten selected trunk muscles. In: Proceedings of the 12th Triennial Congress of the International Ergonomics Association, 3:119–121
30.
Zurück zum Zitat Patwardhan A, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:1003–1009CrossRefPubMed Patwardhan A, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:1003–1009CrossRefPubMed
31.
Zurück zum Zitat Pearsall DJ (1994) Segmental inertial properties of the human trunk as determined from computed tomography and magnetic resonance imagery. PhD thesis, Queen’s University, Kingston, Ontario Pearsall DJ (1994) Segmental inertial properties of the human trunk as determined from computed tomography and magnetic resonance imagery. PhD thesis, Queen’s University, Kingston, Ontario
32.
Zurück zum Zitat Pop DG (2001) Analyse non linéaire par éléments finis du système actif passif de la colonne vertébrale humaine. Dissertation, Génie mécanique, École Polytechnique, Montréal, Québec Pop DG (2001) Analyse non linéaire par éléments finis du système actif passif de la colonne vertébrale humaine. Dissertation, Génie mécanique, École Polytechnique, Montréal, Québec
33.
Zurück zum Zitat Potvin JR, O’Brien PR (1998) Trunk muscle co-contraction increases during fatiguing, isometric, lateral bend exertions. Possible implications for spine stability. Spine 23:774–780CrossRefPubMed Potvin JR, O’Brien PR (1998) Trunk muscle co-contraction increases during fatiguing, isometric, lateral bend exertions. Possible implications for spine stability. Spine 23:774–780CrossRefPubMed
34.
Zurück zum Zitat Raikova RT, Prilutsky BI (2002) Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses. J Biomech 34:1243–1255CrossRef Raikova RT, Prilutsky BI (2002) Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses. J Biomech 34:1243–1255CrossRef
35.
Zurück zum Zitat Reid JG, Livingston LA, Pearsall DJ (1994) The geometry of the psoas muscle as determined by magnetic resonance imaging. Arch Phys Med Rehabil 75:703–708CrossRefPubMed Reid JG, Livingston LA, Pearsall DJ (1994) The geometry of the psoas muscle as determined by magnetic resonance imaging. Arch Phys Med Rehabil 75:703–708CrossRefPubMed
36.
Zurück zum Zitat Rohlmann A, Arntz U, Graichen F, Bergmann G (2001) Loads on an internal spinal fixation device during sitting. J Biomech 34:989–993CrossRefPubMed Rohlmann A, Arntz U, Graichen F, Bergmann G (2001) Loads on an internal spinal fixation device during sitting. J Biomech 34:989–993CrossRefPubMed
37.
Zurück zum Zitat Rohlmann A, Graichen F, Bergmann G (2002) Loads on an internal spinal fixation device during physical therapy. Phys Ther 82:44–52PubMed Rohlmann A, Graichen F, Bergmann G (2002) Loads on an internal spinal fixation device during physical therapy. Phys Ther 82:44–52PubMed
38.
Zurück zum Zitat Sadouk S (1998) Analyse mécanique par éléments finis du système actif-passif de la colonne lombaire humaine. Dissertation, Génie mécanique, École Polytechnique, Montréal, Québec Sadouk S (1998) Analyse mécanique par éléments finis du système actif-passif de la colonne lombaire humaine. Dissertation, Génie mécanique, École Polytechnique, Montréal, Québec
39.
Zurück zum Zitat Sahdmehr R, Arbib MA (1992) A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system. Biol Cybern 66:463–477PubMed Sahdmehr R, Arbib MA (1992) A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system. Biol Cybern 66:463–477PubMed
40.
Zurück zum Zitat Shirazi-Adl A, Drouin G (1988) Nonlinear gross response analysis of a lumbar motion segment in combined sagittal loadings. J Biomech Eng 110:216-222PubMed Shirazi-Adl A, Drouin G (1988) Nonlinear gross response analysis of a lumbar motion segment in combined sagittal loadings. J Biomech Eng 110:216-222PubMed
41.
Zurück zum Zitat Shirazi-Adl A, Parnianpour M (1993) Nonlinear response analysis of the human ligamentous lumbar spine in compression: On mechanisms affecting the postural stability. Spine 18:147-158PubMed Shirazi-Adl A, Parnianpour M (1993) Nonlinear response analysis of the human ligamentous lumbar spine in compression: On mechanisms affecting the postural stability. Spine 18:147-158PubMed
42.
Zurück zum Zitat Shirazi-Adl A, Parnianpour M (1996) Role of posture in mechanics of the lumbar spine in compression. J Spinal Disord 9:277–286PubMed Shirazi-Adl A, Parnianpour M (1996) Role of posture in mechanics of the lumbar spine in compression. J Spinal Disord 9:277–286PubMed
43.
Zurück zum Zitat Shirazi-Adl A, Parnianpour M (1996) Stabilizing role of moments and pelvic rotation on the human spine in compression. J Biomech Eng 118:26–31PubMed Shirazi-Adl A, Parnianpour M (1996) Stabilizing role of moments and pelvic rotation on the human spine in compression. J Biomech Eng 118:26–31PubMed
44.
Zurück zum Zitat Shirazi-Adl A, Parnianpour M (1999) Effect of changes in lordosis on mechanics of the lumbar spine—lumbar curvature in lifting. J Spinal Disord 12:436–447PubMed Shirazi-Adl A, Parnianpour M (1999) Effect of changes in lordosis on mechanics of the lumbar spine—lumbar curvature in lifting. J Spinal Disord 12:436–447PubMed
45.
Zurück zum Zitat Shirazi-Adl A, Parnianpour M (1999) Pelvic tilt and lordosis control spinal postural response in compression. In: Transactions of the Orthopaedic Research Society, Anaheim, CA, p 1012 Shirazi-Adl A, Parnianpour M (1999) Pelvic tilt and lordosis control spinal postural response in compression. In: Transactions of the Orthopaedic Research Society, Anaheim, CA, p 1012
46.
Zurück zum Zitat Shirazi-Adl A, Parnianpour M (2000) Load-bearing and stress analysis of the human spine under a novel wrapping compression loading. Clin Biomech (Bristol, Avon) 15:718–725 Shirazi-Adl A, Parnianpour M (2000) Load-bearing and stress analysis of the human spine under a novel wrapping compression loading. Clin Biomech (Bristol, Avon) 15:718–725
47.
Zurück zum Zitat Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11:914–927PubMed Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11:914–927PubMed
48.
Zurück zum Zitat Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech 19:331-350CrossRefPubMed Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech 19:331-350CrossRefPubMed
49.
Zurück zum Zitat Shirazi-Adl A, Sadouk S, Parnianpour M, Pop D, El-Rich M (2002) Muscle force evaluation and the role of posture in human lumbar spine under compression. Eur Spine J 11:519–526CrossRefPubMed Shirazi-Adl A, Sadouk S, Parnianpour M, Pop D, El-Rich M (2002) Muscle force evaluation and the role of posture in human lumbar spine under compression. Eur Spine J 11:519–526CrossRefPubMed
50.
Zurück zum Zitat Solomonow M, Zhou BH, Harris M, Lu Y, Baratta RV (1998) The ligamento-muscular stabilizing system of the spine. Spine 23:2552–2562CrossRefPubMed Solomonow M, Zhou BH, Harris M, Lu Y, Baratta RV (1998) The ligamento-muscular stabilizing system of the spine. Spine 23:2552–2562CrossRefPubMed
51.
Zurück zum Zitat Solomonow M, Zhou BH, Baratta RV, Lu Y, Harris M (1999) Biomechanics of increased exposure to lumbar injury caused by cyclic loading: Part 1. Loss of reflexive muscular stabilization. Spine 24:2426–2434CrossRefPubMed Solomonow M, Zhou BH, Baratta RV, Lu Y, Harris M (1999) Biomechanics of increased exposure to lumbar injury caused by cyclic loading: Part 1. Loss of reflexive muscular stabilization. Spine 24:2426–2434CrossRefPubMed
52.
Zurück zum Zitat Stokes IA, Gardner-Morse M (1995) Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness. J Biomech 28:173–186CrossRefPubMed Stokes IA, Gardner-Morse M (1995) Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness. J Biomech 28:173–186CrossRefPubMed
53.
Zurück zum Zitat Stokes IA, Gardner-Morse M (1998) Quantitative anatomy of the lumbar musculature. J Biomech 32:311–316CrossRef Stokes IA, Gardner-Morse M (1998) Quantitative anatomy of the lumbar musculature. J Biomech 32:311–316CrossRef
54.
Zurück zum Zitat Stokes IA, Gardner-Morse M (2001) Lumbar spinal muscle activation synergies predicted by multi-criteria cost function. J Biomech 34:733–740CrossRefPubMed Stokes IA, Gardner-Morse M (2001) Lumbar spinal muscle activation synergies predicted by multi-criteria cost function. J Biomech 34:733–740CrossRefPubMed
55.
Zurück zum Zitat Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. Spine 20:192–198PubMed Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. Spine 20:192–198PubMed
56.
Zurück zum Zitat Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–763CrossRefPubMed Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–763CrossRefPubMed
57.
Zurück zum Zitat Yamamoto I, Panjabi M, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260PubMed Yamamoto I, Panjabi M, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260PubMed
Metadaten
Titel
Spinal muscle forces, internal loads and stability in standing under various postures and loads—application of kinematics-based algorithm
verfasst von
A. Shirazi-Adl
M. El-Rich
D. G. Pop
M. Parnianpour
Publikationsdatum
01.05.2005
Verlag
Springer-Verlag
Erschienen in
European Spine Journal / Ausgabe 4/2005
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-004-0779-0

Weitere Artikel der Ausgabe 4/2005

European Spine Journal 4/2005 Zur Ausgabe

Announcements

May 2005

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Knie-TEP: Kein Vorteil durch antibiotikahaltigen Knochenzement

29.05.2024 Periprothetische Infektionen Nachrichten

Zur Zementierung einer Knie-TEP wird in Deutschland zu über 98% Knochenzement verwendet, der mit einem Antibiotikum beladen ist. Ob er wirklich besser ist als Zement ohne Antibiotikum, kann laut Registerdaten bezweifelt werden.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.