Skip to main content
Erschienen in: Critical Care 1/2021

Open Access 01.12.2021 | Research Letter

Evaluation of right ventricular function and driving pressure with blood gas analysis could better select patients eligible for VV ECMO in severe ARDS

verfasst von: Matthieu Petit, Armand Mekontso-Dessap, Paul Masi, Annick Legras, Philippe Vignon, Antoine Vieillard-Baron

Erschienen in: Critical Care | Ausgabe 1/2021

Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ARDS
Acute Respiratory Distress Syndrome
ECMO
Extra-Corporeal Membrane Oxygenation
TV
Tidal Volume
ACP
Acute Core Pulmonale
PEEP
Positive End Expiratory Pressure
SAPS II
Simplified Acute Physiology Score II
ICU
Intensive Care Unit
RRT
Renal Replacement Therapy
RVEDA
Right Ventricular End-Diastolic Area
LVDEA
Left Ventricular End-Diastolic Area

To the Editor,

The Acute Respiratory Distress Syndrome (ARDS) is still associated with high mortality [1], despite application of recent guidelines [2, 3]. The EOLIA study suggested that Extra- Corporeal Membrane Oxygenation (ECMO) could be effective in some of the most severe patients, but failed to demonstrate a 20% increase in survival [4]. One reason could be that criteria for selecting patients were only based on blood gas analysis. Our hypothesis is that adding other factors could allow a better selection of patients who could benefit from ECMO.
We took advantages to have a large multicentric cohort of patients under protective ventilation for moderate-to-severe ARDS [5] to determine the incidence, characteristics and outcome of patients eligible for ECMO according to EOLIA-based criteria and to identify patients who would benefit the most of the technique. ECMO was only used in these centers as a recue therapy.
Mechanical ventilation was applied in the volume-assist control mode, with a target tidal volume (TV) of 6–8 mL/kg (predicted body weight) and a plateau pressure < 30 cmH2O. Respiratory rate could be increased in case of high arterial carbon dioxide partial pressure (PaCO2). Prone positioning was left to the discretion of the attending physician, but was typically performed in patients with a PaO2/FiO2 < 100 mmHg and/or an acute core pulmonale (ACP) [6]. Patients eligible for ECMO according to EOLIA-based criteria were identified as follows: PaO2/FiO2 < 80 mmHg with optimal PEEP, or a pH < 7.25 and PaCO2 > 60 mmHg with a respiratory rate ≥ 35 cycles/min, despite the use of prone positioning or nitric oxide inhalation.
Statistical analysis was performed with R.4.0.4. Patients eligible for ECMO were compared to the rest of the cohort. Continuous data, expressed as medians (interquartile ranges), were compared with Mann–Whitney test. Categorical variables, expressed as numbers and percentages, were compared using the chi-square test or Fisher exact test. To evaluate independent factors associated with ICU mortality in this identified subgroup of patients, significant or marginally significant (p < 0.10) bivariate risk factors were examined using univariate and multivariable backward stepwise mixed logistic regression stratified on the center. SAPS II was forced in the model.
752 patients were studied. Characteristics and outcome are given in the Table 1. 67 (9%) patients were potentially eligible for ECMO. They had lower PaO2/FiO2 (62 [55–72] versus 114 [90–120] mmHg: p < 0.01) and higher incidence of ACP (42% versus 20%, p < 0.001). Only 8 of them underwent the procedure. In-ICU mortality in the whole cohort was 36%. Causes of death in patients eligible for ECMO was multi-organ failure in 21 (68%), neurologic in 4 (13%) and ECMO complication in 3 (10%). Only 3 patients (10%) died from hypoxic cardiac arrest.
Table 1
Clinical characteristics and outcome of the entire cohort according to EOLIA criteria
Characteristics, outcomes and complications
ARDS patients without EOLIA criteria
(n = 685)
ARDS patients with EOLIA criteria
(n = 67)
p-value
Age (years)
59 (47–72)
56 (47–70)
0.43
Male sex, n (%)
465 (68)
42 (63)
0.47
SAPS II
51 (38–65)
47 (33–64)
0.27
Weight (kg)
77 (65–84)
70 (59–86)
0.43
Cause of ARDS, n (%)
  
0.20
 Pneumonia
83 (12)
8 (12)
 
 Aspiration
259 (39)
34 (51))
 
 Non-pulmonary sepsis
245 (37)
17 (26)
 
 Other causes
83 (12)
7 (11)
 
Respiratory setting at inclusion
   
 Tidal volume (ml/kg)
6.7 (6.0–8.0)
6.02 (5.4–6.9)
 < 0.01
 Respiratory rate (cycle/min)
22 (16–27)
26 (22–30)
 < 0.01
 PEEP (cmH2O)
8 (5–10)
10 (7–12)
 < 0.01
 Plateau pressure (cmH2O)
24 (21–28)
27 (25–29)
 < 0.01
 Compliance (ml/cmH2O)
30.7 (24–39.1)
25.9 (19.3–33.8)
 < 0.01
 Driving pressure (cmH2O)
15 (13–19)
17 (14–19.8)
0.04
Arterial blood gases
   
 PaO2/FiO2 ratio (mmHg)
114 (90–120)
62 (55–72)
 < 0.01
 PaCO2 (mmHg)
44 (38–52)
48 (41–60)
 < 0.01
Shock, n (%)
449 (66)
53 (79)
0.04
Prone positioning, n (%)
163 (24)
55 (82)
 < 0.01
VV ECMO in rescue during ARDS course, n (%)
0 (0)
8 (12)
 < 0.01
RRT during ARDS course, n (%)
126 (30)
15 (40)
0.27
Echocardiographic findings
   
RVEDA/LVEDA
0.68 (0.57–0.81)
0.83 (0.64–1.04)
 < 0.01
 Systolic pulmonary artery pressure (mmHg)
35 (20–48)
52 (35–59)
 < 0.01
 Severe acute cor pulmonale
43 (6)
11 (16)
 < 0.01
Outcome, n (%)
   
 ICU mortality
243 (36)
31 (46)
0.10
 ICU stay (days)
16 (8–30)
15 (6–31)
0.43
Values are expressed as median (interquartile range) or n (%)
ARDS, Acute Respiratory Distress Syndrome; PEEP, Positive End-Expiratory Pressure; VV ECMO, Veno-Venous Extracorporeal Membrane Oxygenation; RRT, Renal Remplacement Therapy; RVEDA, Right Ventricular End-Diastolic Area; LVDEA, Left Ventricular End-Diastolic Area; ICU, Intensive Care Unit
Characteristics and outcome of patients potentially eligible for ECMO according to ICU mortality are given in the Table 2. In multivariable analysis, severe right ventricular dilatation (right-to-left ventricle end-diastolic area ratio > 1) and driving pressure were the only factors associated with in-ICU mortality (OR [95% CI]: 5.62 [1.44–27.39], p = 0.02 and 1.14 [1.01–1.31], p = 0.04, respectively).
Table 2
Clinical characteristics and echocardiographic findings of ARDS patients eligible for ECMO
Characteristics, outcomes and complications
Survivors
(n = 36)
Non survivors
(n = 31)
p-value
Age (years)
56 (45–70)
57 (48–70)
0.44
Male sex, n (%)
23 (64)
19 (61)
0.47
SAPS II
44 (32–58)
53 (36–75)
0.15
Weight (kg)
74 (63–97)
67 (56–80)
0.22
Cause of ARDS, n (%)
  
0.63
 Pneumonia
6 (17)
2 (7)
 
 Aspiration
18 (50))
16 (53)
 
 Non-pulmonary sepsis
8 (22)
9 (30)
 
 Other causes
4 (11)
3 (10)
 
Respiratory setting at inclusion
   
 Tidal volume (ml/kg)
6.3 (5.5–7.6)
5.9 (5.3–6.6)
0.13
 Respiratory rate (cycle/min)
25 (20–27)
30 (25–30)
 < 0.01
 PEEP (cmH2O)
10 (8–12)
10 (7–12)
0.72
 Plateau pressure (cmH2O)
26 (24–29)
28 (25–38)
0.07
 Compliance (ml/cmH2O)
30 (2338)
23 (16–28)
 < 0.01
 Driving pressure (cmH2O)
16 (14–19)
19 (16–22)
0.05
Arterial blood gases
   
 PaO2/FiO2 ratio (mmHg)
69 (58–74)
60 (55–67)
0.08
 PaCO2 (mmHg)
48 (40–52)
51 (42–70)
0.17
Shock, n (%)
25 (70)
28 (90)
0.07
Prone positioning, n (%)
31 (86)
24 (77)
0.52
VV ECMO in rescue during ARDS course, n (%)
2 (1)
6 (19)
0.13
RRT during ARDS course, n (%)
9 (33)
6 (55)
0.28
Echocardiographic findings
   
 RVEDA/LVEDA
0.71 (0.57–0.93)
0.98 (0.71–1.10)
0.10
 Pulmonary hypertension (mmHg)
51 (44–55)
52 (34–63)
0.85
 Severe acute cor pulmonale
3 (8)
8 (26)
0.09
 ICU stay (days)
19 (14–34)
12 (3–20)
0.16
Values are expressed as median (interquartile range) or n (%)
ARDS, Acute Respiratory Distress Syndrome; PEEP, Positive End-Expiratory Pressure; VV ECMO, Veno-Venous Extracorporeal Membrane Oxygenation; RRT, Renal Remplacement Therapy; RVEDA, Right Ventricular End-Diastolic Area; LVDEA, Left Ventricular End-Diastolic Area; ICU, Intensive Care Unit
A limitation of our study is that eight patients of the cohort received ECMO as a rescue therapy, which may have influenced our results, especially since the technique is now safer when performed in expert centers. However, six of these eight patients died.
In conclusion, we report a 9% incidence of patients who reach the EOLIA-based criteria for ECMO in a large non-selected cohort of ARDS patients ventilated with moderate-to-severe ARDS. These patients exhibited higher driving pressure and more frequent right ventricle failure, both being independently associated with ICU mortality. How this subgroup of patients could be considered as the ideal target for ECMO selection strategy should better be evaluated in the future.

Acknowledgements

Not applicable.

Declaration

The study was approved by the Institutional Review Boards of participating centers as a component of standard of care and requirement for patient’s consent was waived.
Not applicable.

Competing interests

MP, PM, AL, PV declare no competing interest. AMD reports grants from Fischer Paykel, Baxter, and Ferring, and personal fees from Air Liquide, Amomed, and Addmedica, all outside the submitted work. AVB reports research Grant from GSK, outside the submitted work.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRef Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRef
2.
Zurück zum Zitat Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63.CrossRef Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63.CrossRef
3.
Zurück zum Zitat Papazian L, Aubron C, Brochard L, Chiche J-D, Combes A, Dreyfuss D, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69.CrossRef Papazian L, Aubron C, Brochard L, Chiche J-D, Combes A, Dreyfuss D, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69.CrossRef
4.
Zurück zum Zitat Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.CrossRef Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.CrossRef
5.
Zurück zum Zitat Mekontso Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42(5):862–70.CrossRef Mekontso Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42(5):862–70.CrossRef
6.
Zurück zum Zitat Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;166(10):1310–9.CrossRef Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;166(10):1310–9.CrossRef
Metadaten
Titel
Evaluation of right ventricular function and driving pressure with blood gas analysis could better select patients eligible for VV ECMO in severe ARDS
verfasst von
Matthieu Petit
Armand Mekontso-Dessap
Paul Masi
Annick Legras
Philippe Vignon
Antoine Vieillard-Baron
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2021
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03646-x

Weitere Artikel der Ausgabe 1/2021

Critical Care 1/2021 Zur Ausgabe

Mit dem Seitenschneider gegen das Reißverschluss-Malheur

03.06.2024 Urologische Notfallmedizin Nachrichten

Wer ihn je erlebt hat, wird ihn nicht vergessen: den Schmerz, den die beim Öffnen oder Schließen des Reißverschlusses am Hosenschlitz eingeklemmte Haut am Penis oder Skrotum verursacht. Eine neue Methode für rasche Abhilfe hat ein US-Team getestet.

Schlaganfall: frühzeitige Blutdrucksenkung im Krankenwagen ohne Nutzen

31.05.2024 Apoplex Nachrichten

Der optimale Ansatz für die Blutdruckkontrolle bei Patientinnen und Patienten mit akutem Schlaganfall ist noch nicht gefunden. Ob sich eine frühzeitige Therapie der Hypertonie noch während des Transports in die Klinik lohnt, hat jetzt eine Studie aus China untersucht.

Reanimation bei Kindern – besser vor Ort oder während Transport?

29.05.2024 Reanimation im Kindesalter Nachrichten

Zwar scheint es laut einer Studie aus den USA und Kanada bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.