Skip to main content

04.05.2024 | Review

The mechanisms of ferroptosis in the pathogenesis of kidney diseases

verfasst von: Jia Liu, Jianheng Chen, Jie Lv, Yuhang Gong, Jie Song

Erschienen in: Journal of Nephrology

Einloggen, um Zugang zu erhalten

Abstract

The pathological features of acute and chronic kidney diseases are closely associated with cell death in glomeruli and tubules. Ferroptosis is a form of programmed cell death characterized by iron overload-induced oxidative stress. Ferroptosis has recently gained increasing attention as a pathogenic mechanism of kidney damage. Specifically, the ferroptosis signaling pathway has been found to be involved in the pathological process of acute and chronic kidney injury, potentially contributing to the development of both acute and chronic kidney diseases. This paper aims to elucidate the underlying mechanisms of ferroptosis and its role in the pathogenesis of kidney disease, highlighting its significance and proposing novel directions for its treatment.
Literatur
1.
Zurück zum Zitat Kurzhagen J, Dellepiane S, Cantaluppi V, Rabb H (2020) AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 33(6):1171–1187PubMedCrossRef Kurzhagen J, Dellepiane S, Cantaluppi V, Rabb H (2020) AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 33(6):1171–1187PubMedCrossRef
2.
Zurück zum Zitat Belavgeni A, Meyer C, Stumpf J, Hugo C, Linkermann A (2020) Ferroptosis and necroptosis in the kidney. Cell Chem Biol 27(4):448–462PubMedCrossRef Belavgeni A, Meyer C, Stumpf J, Hugo C, Linkermann A (2020) Ferroptosis and necroptosis in the kidney. Cell Chem Biol 27(4):448–462PubMedCrossRef
4.
Zurück zum Zitat Li S, Zheng L, Zhang J, Liu X, Wu Z (2021) Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radical Biol Med 162:435–449CrossRef Li S, Zheng L, Zhang J, Liu X, Wu Z (2021) Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radical Biol Med 162:435–449CrossRef
5.
Zurück zum Zitat Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP (1999) Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91(13):1138–1146PubMedCrossRef Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP (1999) Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91(13):1138–1146PubMedCrossRef
6.
Zurück zum Zitat Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296PubMedCrossRef Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296PubMedCrossRef
7.
Zurück zum Zitat Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metab 8(3):237–248PubMedCrossRef Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metab 8(3):237–248PubMedCrossRef
8.
Zurück zum Zitat Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245PubMedPubMedCentralCrossRef Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072PubMedPubMedCentralCrossRef Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136(12):4551–4556PubMedPubMedCentralCrossRef Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136(12):4551–4556PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, St Croix C et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90PubMedCrossRef Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, St Croix C et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90PubMedCrossRef
13.
Zurück zum Zitat Latunde-Dada GO (2017) Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta (BBA) Gen Subj 1861(8):1893–1900CrossRef Latunde-Dada GO (2017) Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta (BBA) Gen Subj 1861(8):1893–1900CrossRef
15.
Zurück zum Zitat Li Y, Xiu W, Yang K, Wen Q, Yuwen L, Luo Z et al (2021) A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Mater Horiz 8(4):1264–1271PubMedCrossRef Li Y, Xiu W, Yang K, Wen Q, Yuwen L, Luo Z et al (2021) A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Mater Horiz 8(4):1264–1271PubMedCrossRef
16.
Zurück zum Zitat Zhu W, Fang T, Zhang W, Liang A, Zhang H, Zhang Z-P et al (2021) A ROS scavenging protein nanocage for in vitro and in vivo antioxidant treatment. Nanoscale 13(8):4634–4643PubMedCrossRef Zhu W, Fang T, Zhang W, Liang A, Zhang H, Zhang Z-P et al (2021) A ROS scavenging protein nanocage for in vitro and in vivo antioxidant treatment. Nanoscale 13(8):4634–4643PubMedCrossRef
17.
Zurück zum Zitat Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D (2021) SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett 522:211–224PubMedCrossRef Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D (2021) SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett 522:211–224PubMedCrossRef
18.
Zurück zum Zitat Homma T, Kobayashi S, Fujii J (2020) Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs). Free Radic Res 54(6):397–407PubMedCrossRef Homma T, Kobayashi S, Fujii J (2020) Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs). Free Radic Res 54(6):397–407PubMedCrossRef
19.
Zurück zum Zitat Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H et al (2020) Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 483:127–136PubMedCrossRef Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H et al (2020) Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 483:127–136PubMedCrossRef
20.
Zurück zum Zitat Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081PubMedCrossRef Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081PubMedCrossRef
21.
Zurück zum Zitat Sha W, Hu F, Xi Y, Chu Y, Bu S (2021) Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res 2021:1–10CrossRef Sha W, Hu F, Xi Y, Chu Y, Bu S (2021) Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res 2021:1–10CrossRef
22.
Zurück zum Zitat Lane DJ, Metselaar B, Greenough M, Bush AI, Ayton SJ (2021) Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer’s disease. Essays Biochem 65(7):925–940PubMedCrossRef Lane DJ, Metselaar B, Greenough M, Bush AI, Ayton SJ (2021) Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer’s disease. Essays Biochem 65(7):925–940PubMedCrossRef
23.
Zurück zum Zitat Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y et al (2022) ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol 51:102262PubMedPubMedCentralCrossRef Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y et al (2022) ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol 51:102262PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D et al (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26(11):2284–2299PubMedPubMedCentralCrossRef Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D et al (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26(11):2284–2299PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Hu Q, Zhang Y, Lou H, Ou Z, Liu J, Duan W et al (2021) GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis 12(7):1–9CrossRef Hu Q, Zhang Y, Lou H, Ou Z, Liu J, Duan W et al (2021) GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis 12(7):1–9CrossRef
26.
Zurück zum Zitat Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ et al (2020) Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol 22(9):1042–1048PubMedPubMedCentralCrossRef Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ et al (2020) Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol 22(9):1042–1048PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Zhang H, He Y, Wang J-X, Chen M-H, Xu J-J, Jiang M-H et al (2020) miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol 29:101402PubMedCrossRef Zhang H, He Y, Wang J-X, Chen M-H, Xu J-J, Jiang M-H et al (2020) miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol 29:101402PubMedCrossRef
28.
Zurück zum Zitat Liu M-r, Zhu W-t, Pei D-s (2021) System Xc−: a key regulatory target of ferroptosis in cancer. Investig New Drugs 39(4):1123–1131CrossRef Liu M-r, Zhu W-t, Pei D-s (2021) System Xc−: a key regulatory target of ferroptosis in cancer. Investig New Drugs 39(4):1123–1131CrossRef
30.
Zurück zum Zitat Wang L, Liu Y, Du T, Yang H, Lei L, Guo M et al (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ 27(2):662–675PubMedCrossRef Wang L, Liu Y, Du T, Yang H, Lei L, Guo M et al (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ 27(2):662–675PubMedCrossRef
31.
Zurück zum Zitat Sun L, Dong H, Zhang W, Wang N, Ni N, Bai X et al (2021) Lipid peroxidation, GSH depletion, and SLC7A11 inhibition are common causes of EMT and ferroptosis in A549 cells, but different in specific mechanisms. DNA Cell Biol 40(2):172–183PubMedCrossRef Sun L, Dong H, Zhang W, Wang N, Ni N, Bai X et al (2021) Lipid peroxidation, GSH depletion, and SLC7A11 inhibition are common causes of EMT and ferroptosis in A549 cells, but different in specific mechanisms. DNA Cell Biol 40(2):172–183PubMedCrossRef
32.
Zurück zum Zitat Delgir S, Bastami M, Ilkhani K, Safi A, Seif F, Alivand MR (2021) The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer. Mutat Res Rev Mutat Res 787:108366PubMedCrossRef Delgir S, Bastami M, Ilkhani K, Safi A, Seif F, Alivand MR (2021) The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer. Mutat Res Rev Mutat Res 787:108366PubMedCrossRef
33.
Zurück zum Zitat Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci 107(16):7455–7460PubMedPubMedCentralCrossRef Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci 107(16):7455–7460PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M et al (2018) RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol 9:1371PubMedPubMedCentralCrossRef Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M et al (2018) RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol 9:1371PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331PubMedPubMedCentralCrossRef Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Nikolic D, Banach M, Chianetta R, Luzzu LM, Pantea Stoian A, Diaconu CC et al (2020) An overview of statin-induced myopathy and perspectives for the future. Expert Opin Drug Saf 19(5):601–615PubMedCrossRef Nikolic D, Banach M, Chianetta R, Luzzu LM, Pantea Stoian A, Diaconu CC et al (2020) An overview of statin-induced myopathy and perspectives for the future. Expert Opin Drug Saf 19(5):601–615PubMedCrossRef
37.
Zurück zum Zitat Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692PubMedPubMedCentralCrossRef Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692PubMedPubMedCentralCrossRef
39.
40.
Zurück zum Zitat Campbell MR, Karaca M, Adamski KN, Chorley BN, Wang X, Bell DA (2013) Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. Oxid Med Cel Longev 2013:1–12CrossRef Campbell MR, Karaca M, Adamski KN, Chorley BN, Wang X, Bell DA (2013) Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. Oxid Med Cel Longev 2013:1–12CrossRef
41.
Zurück zum Zitat Hsieh C-H, Hsieh H-C, Shih F-S, Wang P-W, Yang L-X, Shieh D-B et al (2021) An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 11(14):7072PubMedPubMedCentralCrossRef Hsieh C-H, Hsieh H-C, Shih F-S, Wang P-W, Yang L-X, Shieh D-B et al (2021) An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 11(14):7072PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F et al (2020) Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ 27(9):2635–2650PubMedPubMedCentralCrossRef Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F et al (2020) Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ 27(9):2635–2650PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D (2020) Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol 27(4):420–435PubMedPubMedCentralCrossRef Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D (2020) Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol 27(4):420–435PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Ryu M-S, Duck KA, Philpott CC (2018) Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells. Blood Cells Mol Dis 69:75–81PubMedCrossRef Ryu M-S, Duck KA, Philpott CC (2018) Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells. Blood Cells Mol Dis 69:75–81PubMedCrossRef
45.
Zurück zum Zitat Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100PubMedCrossRef Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100PubMedCrossRef
46.
Zurück zum Zitat Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H et al (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508(4):997–1003PubMedCrossRef Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H et al (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508(4):997–1003PubMedCrossRef
47.
Zurück zum Zitat Han Y-C, Tang S-Q, Liu Y-T, Li A-M, Zhan M, Yang M et al (2021) AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis 12(10):1–12CrossRef Han Y-C, Tang S-Q, Liu Y-T, Li A-M, Zhan M, Yang M et al (2021) AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis 12(10):1–12CrossRef
48.
Zurück zum Zitat Yang S, Sun D, Wang L, Wang X, Shi M, Jiang X et al (2019) The role of STAT3/mTOR-regulated autophagy in angiotensin II-induced senescence of human glomerular mesangial cells. Cell Signal 53:327–338PubMedCrossRef Yang S, Sun D, Wang L, Wang X, Shi M, Jiang X et al (2019) The role of STAT3/mTOR-regulated autophagy in angiotensin II-induced senescence of human glomerular mesangial cells. Cell Signal 53:327–338PubMedCrossRef
49.
Zurück zum Zitat Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503(3):1550–1556PubMedCrossRef Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503(3):1550–1556PubMedCrossRef
50.
Zurück zum Zitat Liu J, Yang M, Kang R, Klionsky DJ, Tang D (2019) Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy 15(11):2033–2035PubMedPubMedCentralCrossRef Liu J, Yang M, Kang R, Klionsky DJ, Tang D (2019) Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy 15(11):2033–2035PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Qiao L, Ma J, Zhang Z, Sui W, Zhai C, Xu D et al (2021) Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circ Res 129(12):1141–1157PubMedPubMedCentralCrossRef Qiao L, Ma J, Zhang Z, Sui W, Zhai C, Xu D et al (2021) Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circ Res 129(12):1141–1157PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X et al (2019) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radical Biol Med 131:356–369CrossRef Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X et al (2019) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radical Biol Med 131:356–369CrossRef
53.
Zurück zum Zitat Wang H, Liu C, Zhao Y, Gao G (2020) Mitochondria regulation in ferroptosis. Eur J Cell Biol 99(1):151058PubMedCrossRef Wang H, Liu C, Zhao Y, Gao G (2020) Mitochondria regulation in ferroptosis. Eur J Cell Biol 99(1):151058PubMedCrossRef
55.
Zurück zum Zitat Swaminathan S (2018) Iron homeostasis pathways as therapeutic targets in acute kidney injury. Nephron 140(2):156–159PubMedCrossRef Swaminathan S (2018) Iron homeostasis pathways as therapeutic targets in acute kidney injury. Nephron 140(2):156–159PubMedCrossRef
56.
Zurück zum Zitat Ma D, Li C, Jiang P, Jiang Y, Wang J, Zhang D (2021) Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Dig Dis Sci 66(2):483–492PubMedCrossRef Ma D, Li C, Jiang P, Jiang Y, Wang J, Zhang D (2021) Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Dig Dis Sci 66(2):483–492PubMedCrossRef
57.
Zurück zum Zitat Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T et al (2021) Involvement of GPX4 in irisin’s protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol 236(2):931–945PubMedCrossRef Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T et al (2021) Involvement of GPX4 in irisin’s protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol 236(2):931–945PubMedCrossRef
58.
Zurück zum Zitat Wang X, Zheng X, Zhang J, Zhao S, Wang Z, Wang F et al (2018) Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am J Physiol Renal Physiol 315(4):F1042–F1057PubMedPubMedCentralCrossRef Wang X, Zheng X, Zhang J, Zhao S, Wang Z, Wang F et al (2018) Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am J Physiol Renal Physiol 315(4):F1042–F1057PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Leaf DE, Rajapurkar M, Lele SS, Mukhopadhyay B, Boerger EA, Mc Causland FR et al (2019) Iron, hepcidin, and death in human AKI. J Am Soc Nephrol 30(3):493–504PubMedPubMedCentralCrossRef Leaf DE, Rajapurkar M, Lele SS, Mukhopadhyay B, Boerger EA, Mc Causland FR et al (2019) Iron, hepcidin, and death in human AKI. J Am Soc Nephrol 30(3):493–504PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W et al (2022) Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 131:155194PubMedCrossRef Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W et al (2022) Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 131:155194PubMedCrossRef
61.
Zurück zum Zitat Van Driest SL, Jooste EH, Shi Y, Choi L, Darghosian L, Hill KD et al (2018) Association between early postoperative acetaminophen exposure and acute kidney injury in pediatric patients undergoing cardiac surgery. JAMA Pediatr 172(7):655–663PubMedPubMedCentralCrossRef Van Driest SL, Jooste EH, Shi Y, Choi L, Darghosian L, Hill KD et al (2018) Association between early postoperative acetaminophen exposure and acute kidney injury in pediatric patients undergoing cardiac surgery. JAMA Pediatr 172(7):655–663PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Proneth B, Conrad M (2019) Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ 26(1):14–24PubMedCrossRef Proneth B, Conrad M (2019) Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ 26(1):14–24PubMedCrossRef
63.
Zurück zum Zitat Giuliani KT, Grivei A, Nag P, Wang X, Rist M, Kildey K et al (2022) Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c+ dendritic cells. Cell Death Dis 13(8):739PubMedPubMedCentralCrossRef Giuliani KT, Grivei A, Nag P, Wang X, Rist M, Kildey K et al (2022) Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c+ dendritic cells. Cell Death Dis 13(8):739PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Kang H, Han M, Xue J, Baek Y, Chang J, Hu S et al (2019) Renal clearable nanochelators for iron overload therapy. Nat Commun 10(1):1–11CrossRef Kang H, Han M, Xue J, Baek Y, Chang J, Hu S et al (2019) Renal clearable nanochelators for iron overload therapy. Nat Commun 10(1):1–11CrossRef
65.
Zurück zum Zitat Balzer MS, Doke T, Yang Y-W, Aldridge DL, Hu H, Mai H et al (2022) Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat Commun 13(1):4018PubMedPubMedCentralCrossRef Balzer MS, Doke T, Yang Y-W, Aldridge DL, Hu H, Mai H et al (2022) Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat Commun 13(1):4018PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Kim S, Kang S-W, Joo J, Han SH, Shin H, Nam BY et al (2021) Correction: Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis 12(4):1–1CrossRef Kim S, Kang S-W, Joo J, Han SH, Shin H, Nam BY et al (2021) Correction: Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis 12(4):1–1CrossRef
67.
Zurück zum Zitat Linehan WM, Ricketts CJ (2019) The cancer genome atlas of renal cell carcinoma: findings and clinical implications. Nat Rev Urol 16(9):539–552PubMedCrossRef Linehan WM, Ricketts CJ (2019) The cancer genome atlas of renal cell carcinoma: findings and clinical implications. Nat Rev Urol 16(9):539–552PubMedCrossRef
69.
Zurück zum Zitat Stockwell BR (2018) Ferroptosis: death by lipid peroxidation. Free Radical Biol Med 120:S7CrossRef Stockwell BR (2018) Ferroptosis: death by lipid peroxidation. Free Radical Biol Med 120:S7CrossRef
70.
Zurück zum Zitat Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD et al (2017) Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol 28(1):218–229PubMedCrossRef Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD et al (2017) Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol 28(1):218–229PubMedCrossRef
71.
Zurück zum Zitat Wenzel SE, Tyurina YY, Zhao J, Croix CMS, Dar HH, Mao G et al (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(3):628–413.e26PubMedPubMedCentralCrossRef Wenzel SE, Tyurina YY, Zhao J, Croix CMS, Dar HH, Mao G et al (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(3):628–413.e26PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Deng F, Sharma I, Dai Y, Yang M, Kanwar YS (2019) Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J Clin Investig 129(11):5033–5049PubMedPubMedCentralCrossRef Deng F, Sharma I, Dai Y, Yang M, Kanwar YS (2019) Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J Clin Investig 129(11):5033–5049PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C et al (2019) Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J 33(8):8961–8975PubMedCrossRef Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C et al (2019) Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J 33(8):8961–8975PubMedCrossRef
74.
Zurück zum Zitat Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F et al (2014) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 111(47):16836–16841PubMedPubMedCentralCrossRef Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F et al (2014) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 111(47):16836–16841PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Dong X-Q, Chu L-K, Cao X, Xiong Q-W, Mao Y-M, Chen C-H et al (2023) Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis. Redox Rep 28(1):2152607PubMedPubMedCentralCrossRef Dong X-Q, Chu L-K, Cao X, Xiong Q-W, Mao Y-M, Chen C-H et al (2023) Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis. Redox Rep 28(1):2152607PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W et al (2021) Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis 12(9):1–10PubMedPubMedCentralCrossRef Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W et al (2021) Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis 12(9):1–10PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C et al (2020) Ferroptosis involves in renal tubular cell death in diabetic nephropathy. Eur J Pharmacol 888:173574PubMedCrossRef Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C et al (2020) Ferroptosis involves in renal tubular cell death in diabetic nephropathy. Eur J Pharmacol 888:173574PubMedCrossRef
78.
Zurück zum Zitat Deng H-F, Yue L-X, Wang N-N, Zhou Y-Q, Zhou W, Liu X et al (2021) Mitochondrial iron overload-mediated inhibition of Nrf2-HO-1/GPX4 assisted ALI-induced nephrotoxicity. Front Pharmacol 11:624529PubMedPubMedCentralCrossRef Deng H-F, Yue L-X, Wang N-N, Zhou Y-Q, Zhou W, Liu X et al (2021) Mitochondrial iron overload-mediated inhibition of Nrf2-HO-1/GPX4 assisted ALI-induced nephrotoxicity. Front Pharmacol 11:624529PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Abdel-Daim MM, Aleya L, El-Bialy BE, Abushouk AI, Alkahtani S, Alarifi S et al (2019) The ameliorative effects of ceftriaxone and vitamin E against cisplatin-induced nephrotoxicity. Environ Sci Pollut Res Int 26(15):15248–15254PubMedCrossRef Abdel-Daim MM, Aleya L, El-Bialy BE, Abushouk AI, Alkahtani S, Alarifi S et al (2019) The ameliorative effects of ceftriaxone and vitamin E against cisplatin-induced nephrotoxicity. Environ Sci Pollut Res Int 26(15):15248–15254PubMedCrossRef
Metadaten
Titel
The mechanisms of ferroptosis in the pathogenesis of kidney diseases
verfasst von
Jia Liu
Jianheng Chen
Jie Lv
Yuhang Gong
Jie Song
Publikationsdatum
04.05.2024
Verlag
Springer International Publishing
Erschienen in
Journal of Nephrology
Print ISSN: 1121-8428
Elektronische ISSN: 1724-6059
DOI
https://doi.org/10.1007/s40620-024-01927-6

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Ist Fasten vor Koronarinterventionen wirklich nötig?

Wenn Eingriffe wie eine Koronarangiografie oder eine Koronarangioplastie anstehen, wird häufig empfohlen, in den Stunden zuvor nüchtern zu bleiben. Ein französisches Forscherteam hat diese Maßnahme hinterfragt.

Typ-2-Diabetes: Ernährungsunsicherheit vervierfacht Risiko für schwere Hypoglykämien

04.06.2024 Typ-2-Diabetes Nachrichten

Wenn ältere Menschen mit Typ-2-Diabetes Schwierigkeiten beim Beschaffen und Zubereiten von Mahlzeiten haben, geht dies mit einem deutlich gesteigerten Risiko für schwere Hypoglykämien einher.

Mehr Brustkrebs, aber weniger andere gynäkologische Tumoren mit Levonorgestrel-IUS

04.06.2024 Levonorgestrel Nachrichten

Unter Frauen, die ein Levonorgestrel-freisetzendes intrauterines System (IUS) verwenden, ist die Brustkrebsrate um 13% erhöht. Dafür kommt es deutlich seltener zu Endometrium-, Zervix- und Ovarialkarzinomen.

GLP-1-Agonist Semaglutid wirkt kardio- und nephroprotektiv

03.06.2024 Semaglutid Nachrichten

Der GLP-1-Agonist Semaglutid hat in der FLOW-Studie bewiesen, dass sich damit die Progression chronischer Nierenerkrankungen bei Patienten mit Typ-2-Diabetes bremsen lässt. Auch in kardiovaskulärer Hinsicht war die Therapie erfolgreich.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.