skip to main content
article

Coupling water and smoke to thin deformable and rigid shells

Published:01 July 2005Publication History
Skip Abstract Section

Abstract

We present a novel method for solid/fluid coupling that can treat infinitesimally thin solids modeled by a lower dimensional triangulated surface. Since classical solid/fluid coupling algorithms rasterize the solid body onto the fluid grid, an entirely new approach is required to treat thin objects that do not contain an interior region. Robust ray casting is used to augment a number of interpolation, finite difference and rendering techniques so that fluid does not leak through the triangulated surface. Moreover, we propose a technique for properly enforcing incompressibility so that fluid does not incorrectly compress (and appear to lose mass) near the triangulated surface. This allows for the robust interaction of cloth and shells with thin sheets of water. The proposed method works for both rigid body shells and for deformable manifolds such as cloth, and we present a two way coupling technique that allows the fluid's pressure to affect the solid. Examples illustrate that our method performs well, especially in the difficult case of water and cloth where it produces visually rich interactions between the particle level set method for treating the water/air interface and our newly proposed method for treating the solid/fluid interface. We have implemented the method on both uniform and adaptive octree grids.

Skip Supplemental Material Section

Supplemental Material

pps069.mp4

mp4

37 MB

References

  1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. SIGGRAPH 98, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 862--870. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baraff, D. 1993. Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica, 10, 292--352.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proc. SIGGRAPH 94, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Benson, D. 1992. Computational methods in lagrangian and eulerian hydrocodes. Comput. Meth. in Appl. Mech. and Eng. 99, 235--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, J., and Lobo, N. 1994. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Computer Graphics and Image Processing 57, 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 604--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cohen, J. M., and Molemaker, M. J. 2004. Practical simulation of surface tension flows. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., no. FEDSM2003-45144, ASME.Google ScholarGoogle Scholar
  14. Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures 83, 479--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 441--448. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fedkiw, R. 2002. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175, 200--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Feldman, B. E., O'Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22,3,708--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Foster, N., and Metaxas, D. 1997. Controlling fluid animation. In Computer Graphics International 1997, 178--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. of SIGGRAPH 97, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Génevaux, O., HABIBI, A., AND DISCHLER, J.-M. 2003. Simulating fluid-solid interaction. In Graphics Interface, 31--38.Google ScholarGoogle Scholar
  24. Goktekin, T. G., Bargteil. A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Grinspun, E., Hirani, A., Desbrun, M., and Schroder, P. 2003. Discrete shells. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Hadap, S., and Magnenat-Thalmann, N. 2001. Modeling Dynamic Hair as a Continuum. Comput. Graph. Forum 20, 3.Google ScholarGoogle ScholarCross RefCross Ref
  28. Hahn, J. K. 1988. Realistic animation of rigid bodies. Comput. Graph. (Proc. SIGGRAPH 88) 22, 4,299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 253--262.Google ScholarGoogle ScholarCross RefCross Ref
  30. Houston, B., Wiebe, M., and Batty, C. 2004. Rle sparse level sets. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Iversen, J., and Sakaguchi, R. 2004. Growing up with fluid simulation on "the day after tomorrow". In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kang, M., Fedkiw, R., and Liu, X.-D. 2000. A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In Computer Graphics (Proc. of SIGGRAPH 90), vol. 24, 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Kondoh, N., Kunimatsu, A., and Sasagawa, S. 2004. Creating animations of fluids and cloth with moving characters. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Lamorlette, A., and Foster, N. 2002. Structural modeling of natural flames. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729--735. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Li, Z., and Lai, M.-C. 2001. The immersed interface method for navier-stokes equations with singular forces. J. Comput. Phys. 171, 822--842. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ling, L., Damodaran, M., and Gay, K. 1996. Aerodynamic force models for animating cloth motion in air flow. In The Visual Computer, 84--104.Google ScholarGoogle Scholar
  38. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.), 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. (SIGGRAPH Proc.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Mihalef, V., Metaxas, D., and Sussman, M. 2004. Animation and control of breaking waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 315--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Moore, M., and Wilhelms, J. 1988. Collision detection and response for computer animation. Comput. Graph. (Proc. SIGGRAPH 88) 22, 4, 289--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Muller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Muller, M., Schirm, S., Teschner, M., Heidelberger, B., and Gross, M. 2004. Interaction of fluids with deformable solids. J. Comput. Anim. and Virt. Worlds 15, 3--4 (July), 159--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. In ACM Trans. Graph. (SIGGRAPH Proc.), vol. 29, 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Nixon, D., and Lobb, R. 2002. A fluid-based soft-object model. IEEE Comput. Graph. Appl. 22, 4, 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Noh, W. 1964. CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code. Academic Press, New York, 117--179.Google ScholarGoogle Scholar
  47. Osher, S., and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag. New York, NY.Google ScholarGoogle Scholar
  48. Peskin, C. 1972. Flow patterns around heart valves: A numerical method. J. Comput. Phys. 10, 252--271.Google ScholarGoogle ScholarCross RefCross Ref
  49. Peskin, C. 2002. The immersed boundary method. Acta Numerica 11, 479--517.Google ScholarGoogle ScholarCross RefCross Ref
  50. Peyret, R., and Taylor, T. D. 1983. Computational methods for fluid flow. Springer-Verlag. New York.Google ScholarGoogle Scholar
  51. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle-based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401--410.Google ScholarGoogle ScholarCross RefCross Ref
  52. Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directible photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Stam, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 724--731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. (SIGGRAPH Proc.) 22,3, 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Wei, X., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., and Kaufman, A. 2003. Blowing in the wind. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 75--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Wejchert, J., and Haumann, D. 1991. Animation Aerodynamics. Comput. Graph. 25, 4, 19--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Wiebe, M., and Houston, B. 2004. The tar monster: Creating a character with fluid simulation. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Yngve, G., O'Brien, J., and Hodgins, J. 2000. Animating explosions. In Proc. SIGGRAPH 2000, vol. 19, 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Zhu, L., and Peskin, C. 2002. Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452--468. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Coupling water and smoke to thin deformable and rigid shells

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 24, Issue 3
          July 2005
          826 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1073204
          Issue’s Table of Contents

          Copyright © 2005 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2005
          Published in tog Volume 24, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader