skip to main content
10.1145/2207676.2207690acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Understanding user experience in stereoscopic 3D games

Authors Info & Claims
Published:05 May 2012Publication History

ABSTRACT

Recent advances in digital game technology are making stereoscopic games more popular. Stereoscopic 3D graphics promise a better gaming experience but this potential has not yet been proven empirically. In this paper, we present a comprehensive study that evaluates player experience of three stereoscopic games in comparison with their monoscopic counterparts. We examined 60 participants, each playing one of the three games, using three self-reporting questionnaires and one psychophysiological instrument. Our main results are (1) stereoscopy in games increased experienced immersion, spatial presence, and simulator sickness; (2) the effects strongly differed across the three games and for both genders, indicating more affect on male users and with games involving depth animations; (3) results related to attention and cognitive involvement indicate more direct and less thoughtful interactions with stereoscopic games, pointing towards a more natural experience through stereoscopy.

References

  1. Bernhaupt, R. User Experience Evaluation in Entertainment. In R. Bernhaupt, ed., Evaluating User Experience in Games Concepts and Methods. Springer London, 2010, 3--7.Google ScholarGoogle Scholar
  2. Brockmyer, J.H., Fox, C.M., Curtiss, K.A., McBroom, E., Burkhart, K.M., and Pidruzny, J.N. The development of the Game Engagement Questionnaire: A measure of engagement in video game-playing. Journal of Experimental Social Psychology, 45 (2009), 624--634.Google ScholarGoogle ScholarCross RefCross Ref
  3. Crowley, K., Sliney, A., Pitt, I., and Murphy, D. Evaluating a Brain-Computer Interface to Categorise Human Emotional Response. 2010 10th IEEE International Conference on Advanced Learning Technologies, (2010), 276--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dodgson, N. Variation and extrema of human interpupillary distance. Stereoscopic Displays and Virtual Reality Systems XI 5291, (2004), 36--46.Google ScholarGoogle ScholarCross RefCross Ref
  5. Drachen, A., Nacke, L.E., Yannakakis, G., and Pedersen, A.L. Correlation between Heart Rate, Electrodermal Activity, and Player Experience in FirstPerson Shooter games. Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games, ACM New York, NY, USA (2010), 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Gaulin, S.J.C. and McBurney, D.H. Evolutionary Psychology. Prentice Hall, 2003.Google ScholarGoogle Scholar
  7. Hoffman, D., Girshick, A., Akeley, K., and Banks, M.S. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision 8, 3 (2008), 1--30.Google ScholarGoogle ScholarCross RefCross Ref
  8. Holliman, N., Froner, B., and Liversedge, S. An application driven comparison of depth perception on desktop 3D displays. Proceedings of SPIE, January (2007), 64900H-64900H-12.Google ScholarGoogle Scholar
  9. Howarth, P. Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review. Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians (Optometrists) 31, 2 (2011), 111--22.Google ScholarGoogle Scholar
  10. Hubona, G.S., Wheeler, P.N., Shirah, G.W., and Brandt, M. The relative contributions of stereo, lighting, and background scenes in promoting 3D depth visualization. ACM Transactions on Computer-Human Interaction 6, 3 (1999), 214--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Häkkinen, J., Kawai, T., Takatalo, J., Leisti, T., Radun, J., and Hirsaho, A. Measuring Stereoscopic Image Quality Experience with Interpretation Based Quality Methodology. System 6808, January (2008), 27--31.Google ScholarGoogle Scholar
  12. Häkkinen, J., Pölönen, M., Takatalo, J., and Nyman, G. Simulator sickness in virtual display gaming. Proceedings of the 8th conference on Human-computer interaction with mobile devices and services MobileHCI '06, ACM Press (2006), 227--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. IJsselsteijn, W., Ridder, H. de, Freeman, J., Avons, S.E.E., and Bouwhuis, D. Effects of Stereoscopic Presentation, Image Motion, and Screen Size on Subjective and Objective Corroborative Measures of Presence. Presence: Teleoperators & Virtual Environments 10, 3 (2001), 298--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jumisko-Pyykko, S., Utriainen, T., Strohmeier, D., Boev, A., and Kunze, K. Simulator sickness - Five experiments using autostereoscopic mid-sized or small mobile screens. 2010 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video, IEEE (2010), 1--4.Google ScholarGoogle Scholar
  15. Kennedy, R., Lane, N., and Berbaum, K. Simulator Sickness Questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology 3, 3 (1993), 203--220.Google ScholarGoogle ScholarCross RefCross Ref
  16. LaViola Jr, J.J. and Litwiller, T. Evaluating the benefits of 3d stereo in modern video games. Proceedings of the 2011 annual conference on Human factors in computing systems, ACM (2011), 2345--2354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lambooij, M.T.M., IJsselsteijn, W. a., and Heynderickx, I. Visual Discomfort in Stereoscopic Displays : A Review. Proceedings of SPIE 6490, May 2010 (2007), 64900I-64900I-13.Google ScholarGoogle Scholar
  18. Mehlitz, M.A. Aufbau eines medizinischen VirtualReality-Labors und Entwicklung eines VR-gestützten neuropsychologischen Testsystems mit einer präklinischen und klinischen Evaluationsstudie. 2004. http://webdoc.sub.gwdg.de/diss/2004/mehlitz/mehlitz.p df.Google ScholarGoogle Scholar
  19. Mendiburu, B. 3D movie making: stereoscopic digital cinema from script to screen. Elsevier, 2009.Google ScholarGoogle Scholar
  20. Nacke, L.E. and Drachen, A. Towards a Framework of Player Experience Research. Proceedings of EPEX'11 at FDG 2011, Bordeux, France, (2011).Google ScholarGoogle Scholar
  21. Nacke, L.E. Affective Ludology. Technology, (2010).Google ScholarGoogle Scholar
  22. Obrist, M., Wurhofer, D., Förster, F., et al. Perceived 3DTV Viewing in the Public : Insights from a ThreeDay Field Evaluation Study. Human Factors, (2011), 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Palmisano, S. Consistent stereoscopic information increases the perceived speed of vection in depth. Perception 31, 4 (2002), 463--80.Google ScholarGoogle ScholarCross RefCross Ref
  24. Rajae-Joordens, R.J.E. Measuring experiences in gaming and TV applications. Probing Experience, (2008), 77--90.Google ScholarGoogle ScholarCross RefCross Ref
  25. Rebolledo-Mendez, G., Dunwell, I., Martinez-Mirón, E., et al. Assessing NeuroSky's Usability to Detect Attention Levels in an Assessment Exercise. Lecture Notes in Computer Science 5610, Human-Computer Interaction. New Trends (2009), 149--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Schild, J. and Masuch, M. Fundamentals of Stereoscopic 3D Game Design. Proceedings of ICEC 2011, Ifip (2011), 155--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Seuntiens, P.J., Heynderickx, I., IJsselsteijn, W.A., et al. Viewing experience and naturalness of 3D images. Proceedings of SPIE 6016, 0 (2005), 601605--601605--7.Google ScholarGoogle ScholarCross RefCross Ref
  28. Shibata, T., Kim, J., Hoffman, D.M., and Banks, M.S. The zone of comfort: Predicting visual discomfort with stereo displays. Journal of vision 11, 8 (2011), 1--29.Google ScholarGoogle Scholar
  29. Takatalo, J., Kawai, T., Kaistinen, J., Nyman, G., and Häkkinen, J. User Experience in 3D Stereoscopic Games. Media Psychology 14, 4 (2011), 387--414.Google ScholarGoogle ScholarCross RefCross Ref
  30. Tam, W.J., Stelmach, L.B., and Corriveau, P.J. Psychovisual aspects of viewing stereoscopic video sequences. Proceedings of SPIE 3295, SPIE (1998), 226--235.Google ScholarGoogle Scholar
  31. Vorderer, P., Wirth, W., Gouveia, F.R., et al. MEC spatial presence questionnaire (MEC-SPQ): Short documentation and instructions for application. Report to the European Community, Project Presence: MEC (IST-2001--37661), (2004).Google ScholarGoogle Scholar
  32. Ware, C. and Mitchell, P. Reevaluating stereo and motion cues for visualizing graphs in three dimensions. Proceedings of the 2nd symposium on Applied perception in graphics and visualization - APGV '05, ACM Press (2005), 51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Woods, A., Docherty, T., and Koch, R. Image distortions in stereoscopic video systems. Stereoscopic displays and applications IV 1915, February 1993 (1993), 36--48.Google ScholarGoogle Scholar
  34. You, J., Jiang, G., Xing, L., and Perkis, A. Quality of Visual Experience for 3D Presentation - Stereoscopic Image. In M. Mrak, M. Grgic and M. Kunt, eds., HighQuality Visual Experience. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, 51--77.Google ScholarGoogle Scholar
  35. Zachara, M. and Zagal, J.P. Challenges for Success in Stereo Gaming : A Virtual Boy Case Study. Proceedings of the International Conference on Advances in Computer Entertainment Technology, ACM (2009), 99--106. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Understanding user experience in stereoscopic 3D games

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '12: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      May 2012
      3276 pages
      ISBN:9781450310154
      DOI:10.1145/2207676

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 May 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader