skip to main content
10.1145/3038912.3052604acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Blood Pressure Prediction via Recurrent Models with Contextual Layer

Authors Info & Claims
Published:03 April 2017Publication History

ABSTRACT

Recently, the percentage of people with hypertension is increasing, and this phenomenon is widely concerned. At the same time, wireless home Blood Pressure (BP) monitors become accessible in people's life. Since machine learning methods have made important contributions in different fields, many researchers have tried to employ them in dealing with medical problems. However, the existing studies for BP prediction are all based on clinical data with short time ranges. Besides, there do not exist works which can jointly make use of historical measurement data (e.g. BP and heart rate) and contextual data (e.g. age, gender, BMI and altitude). Recurrent Neural Networks (RNNs), especially those using Long Short-Term Memory (LSTM) units, can capture long range dependencies, so they are effective in modeling variable-length sequences. In this paper, we propose a novel model named recurrent models with contextual layer, which can model the sequential measurement data and contextual data simultaneously to predict the trend of users' BP. We conduct our experiments on the BP data set collected from a type of wireless home BP monitors, and experimental results show that the proposed models outperform several competitive compared methods.

References

  1. M. Auli, M. Galley, C. Quirk, and G. Zweig. Joint language and translation modeling with recurrent neural networks. American Journal of Psychoanalysis, 74(2):212--3, 2013.Google ScholarGoogle Scholar
  2. G. E. Batista and M. C. Monard. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5--6):519--533, 2003.Google ScholarGoogle Scholar
  3. F. P. Cappuccio, S. M. Kerry, L. Forbes, and A. Donald. Blood pressure control by home monitoring: Meta-analysis of randomised trials. Bmj, 329(7458):145, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  4. P. R. Chang and J. T. Hu. Optimal nonlinear adaptive prediction and modeling of mpeg video in atm networks using pipelined recurrent neural networks. IEEE Journal on Selected Areas in Communications, 15(6):1087--1100, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. V. Chobanian, G. L. Bakris, H. R. Black, W. C. Cushman, L. A. Green, J. L. Izzo Jr, D. W. Jones, B. J. Materson, S. Oparil, J. T. Wright Jr, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the jnc 7 report. Jama, 289(19):2560--2571, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. Eprint Arxiv, 2014.Google ScholarGoogle Scholar
  7. F. Dabek and J. J. Caban. A Neural Network Based Model for Predicting Psychological Conditions. 2015.Google ScholarGoogle ScholarCross RefCross Ref
  8. G. B. Ehret, K. M. Rice, M. Bochud, A. D. Johnson, D. I. Chasman, A. V. Smith, M. D. Tobin, G. C. Verwoert, S. J. Hwang, and V. Pihur. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 478(7367):103--109, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  9. X. H. Fang, W. T. Longstreth Jr, S. C. Li, R. A. Kronmal, X. M. Cheng, W. Z. Wang, S. Wu, X. L. Du, and X. Y. Dai. Longitudinal study of blood pressure and stroke in over 37,000 people in china. Cerebrovascular Diseases, 11(3):225--9, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189--1232, 2001.Google ScholarGoogle Scholar
  11. M. Gerrard, F. X. Gibbons, A. E. Houlihan, M. L. Stock, and E. A. Pomery. Probabilistic detection of short events, with application to critical care monitoring. In NIPS, pages 49--56, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Gers F., J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with lstm. Neural Computation, 12(10):2451--71, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. F. Golino, L. S. Amaral, S. F. Duarte, C. M. Gomes, T. J. Soares, L. A. Dos Reis, and J. Santos. Predicting increased blood pressure using machine learning. Journal of Obesity, 2014(5):637635--637635, 2014.Google ScholarGoogle Scholar
  14. A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber. A novel connectionist system for unconstrained handwriting recognition. TPAMI, 31(5):855--868, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Graves, A. R. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. 1(2003):6645--6649, 2013.Google ScholarGoogle Scholar
  16. N. Hammerla, J. Fisher, P. Andras, L. Rochester, R. Walker, and T. Ploetz. Pd disease state assessment in naturalistic environments using deep learning. 2015.Google ScholarGoogle Scholar
  17. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735--1780, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. A. James, S. Oparil, B. L. Carter, W. C. Cushman, C. Dennison-Himmelfarb, J. Handler, D. T. Lackland, M. L. LeFevre, T. D. MacKenzie, O. Ogedegbe, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint national committee (jnc 8). Jama, 311(5):507--520, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  19. J. Kolen and S. Kremer. Gradient Flow in Recurrent Nets: The Difficulty of Learning LongTerm Dependencies. Wiley-IEEE Press, 2009.Google ScholarGoogle Scholar
  20. S. Kombrink, T. Mikolov, M. Karafiät, and L. Burget. Recurrent neural network based language modeling in meeting recognition. In INTERSPEECH, volume 11, pages 2877--2880, 2011.Google ScholarGoogle Scholar
  21. Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell. Learning to diagnose with lstm recurrent neural networks. Computer Science, 2015.Google ScholarGoogle Scholar
  22. Q. Liu, S. Wu, D. Wang, Z. Li, and L. Wang. Context-aware sequential recommendation. 2016.Google ScholarGoogle ScholarCross RefCross Ref
  23. Q. Liu, S. Wu, L. Wang, and T. Tan. Predicting the next location: A recurrent model with spatial and temporal contexts. In Thirtieth AAAI Conference on Artificial Intelligence, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. G. Logan, A. Dunai, W. J. Mcisaac, M. J. Irvine, and A. Tisler. Attitudes of primary care physicians and their patients about home blood pressure monitoring in ontario. Journal of Hypertension, 26(3):446--52, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. F. Members, G. Mancia, R. Fagard, K. Narkiewicz, J. Redon, A. Zanchetti, M. B Ãühm, T. Christiaens, R. Cifkova, and G. D. Backer. 2013 esh/esc guidelines for the management of arterial hypertension. European Heart Journal, 34(28):2159--219, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  26. T. Mikolov, M. Karafiát, L. Burget, J. Cernock'y, and S. Khudanpur. Recurrent neural network based language model. In Interspeech, volume 2, page 3, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  27. W. H. Organization. Q&As on hypertension. http://www.who.int/features/qa/82/en/, 2015.Google ScholarGoogle Scholar
  28. L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257--286, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. Rendle. Factorization machines. In ICDM, pages 995--1000. IEEE, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Sideris, H. Kalantarian, E. Nemati, and M. Sarrafzadeh. Building continuous arterial blood pressure prediction models using recurrent networks. In IEEE International Conference on Smart Computing, pages 1--5, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  31. A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and computing, 14(3):199--222, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Somanchi, S. Adhikari, A. Lin, E. Eneva, and R. Ghani. Early prediction of cardiac arrest (code blue) using electronic medical records. In ACM SIGKDD, pages 2119--2126, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. G. S. Stergiou and E. G. Nasothimiou. Hypertension: Does home telemonitoring improve hypertension management? Nature Reviews Nephrology, 7(9):493--5, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  34. P. W. Wilson, R. B. D'Agostino, D. Levy, A. M. Belanger, H. Silbershatz, and W. B. Kannel. Prediction of coronary heart disease using risk factor categories. Circulation, 97(18):1837--1847, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  35. T. H. Wu, K. H. Pang, and W. Y. Kwong. Predicting systolic blood pressure using machine learning. pages 1--6, 2015.Google ScholarGoogle Scholar
  36. Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and T. Y. Liu. Sequential click prediction for sponsored search with recurrent neural networks. Computer Science, 2014Google ScholarGoogle Scholar

Index Terms

  1. Blood Pressure Prediction via Recurrent Models with Contextual Layer

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      WWW '17: Proceedings of the 26th International Conference on World Wide Web
      April 2017
      1678 pages
      ISBN:9781450349130

      Copyright © 2017 Copyright is held by the International World Wide Web Conference Committee (IW3C2).

      Publisher

      International World Wide Web Conferences Steering Committee

      Republic and Canton of Geneva, Switzerland

      Publication History

      • Published: 3 April 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Author Tags

      Qualifiers

      • research-article

      Acceptance Rates

      WWW '17 Paper Acceptance Rate164of966submissions,17%Overall Acceptance Rate1,899of8,196submissions,23%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader