skip to main content
article

A column pre-ordering strategy for the unsymmetric-pattern multifrontal method

Published:01 June 2004Publication History
Skip Abstract Section

Abstract

A new method for sparse LU factorization is presented that combines a column pre-ordering strategy with a right-looking unsymmetric-pattern multifrontal numerical factorization. The column ordering is selected to give a good a priori upper bound on fill-in and then refined during numerical factorization (while preserving the bound). Pivot rows are selected to maintain numerical stability and to preserve sparsity. The method analyzes the matrix and automatically selects one of three pre-ordering and pivoting strategies. The number of nonzeros in the LU factors computed by the method is typically less than or equal to those found by a wide range of unsymmetric sparse LU factorization methods, including left-looking methods and prior multifrontal methods.

References

  1. Amestoy, P. R., Davis, T. A., and Duff, I. S. 1996a. An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Applic. 17, 4, 886--905. Google ScholarGoogle Scholar
  2. Amestoy, P. R., Davis, T. A., and Duff, I. S. 2004. Algorithm: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw., to appear. Google ScholarGoogle Scholar
  3. Amestoy, P. R., Davis, T. A., Duff, I. S., and Hadfield, S. M. 1996b. Parallelism in multifrontal methods for matices with unsymmetric structures. In Abstracts of the Second SIAM Conference on Sparse Matrices. Snowbird, Utah.Google ScholarGoogle Scholar
  4. Amestoy, P. R. and Duff, I. S. 1989. Vectorization of a multiprocessor multifrontal code. Intl. J. Supercomputer Appl. 3, 3, 41--59.Google ScholarGoogle Scholar
  5. Amestoy, P. R., Duff, I. S., L'Excellent, J.-Y., and Koster, J. 2001a. A fully asynchronous multifrontal solver using distributed dynmamic scheduling. SIAM J. Matrix Anal. Applic. 23, 1, 15--41. Google ScholarGoogle Scholar
  6. Amestoy, P. R., Duff, I. S., L'Excellent, J.-Y., and Li, X. S. 2001b. Analysis and comparison of two general sparse solvers for distributed memory computers. ACM Trans. Math. Softw. 27, 4, 388--421. Google ScholarGoogle Scholar
  7. Amestoy, P. R., Duff, I. S., and Puglisi, C. 1996a. Multifrontal QR factorization in a multiprocessor environment. Numer. Linear Algebra Appl. 3, 4, 275--300.Google ScholarGoogle Scholar
  8. Amestoy, P. R. and Puglisi, C. 2002. An unsymmetrized multifrontal LU factorization. SIAM J. Matrix Anal. Applic. 24, 553--569. Google ScholarGoogle Scholar
  9. Arioli, M., Demmel, J. W., and Duff, I. S. 1989. Solving sparse linear systems with sparse backward error. SIAM J. Matrix Anal. Applic. 10, 2, 165--190.Google ScholarGoogle Scholar
  10. Ashcraft, C. C. and Grimes, R. 1989. The influence of relaxed supernode partitions on the multifrontal method. ACM Trans. Math. Softw. 15, 4, 291--309. Google ScholarGoogle Scholar
  11. Ashcraft, C. C. and Liu, J. W. H. 1998. Robust ordering of sparse matrices using multisection. SIAM J. Matrix Anal. Applic. 19, 3, 816--832. Google ScholarGoogle Scholar
  12. Berger, A. J., Mulvey, J. M., Rothberg, E., and Vanderbei, R. J. 1995. Solving multistage stochastic programs using tree dissection. Tech. Rep. SOR-95-07, Dept. of Civil Eng. and Operations Research, Princeton Univ., Princeton, NJ. June.Google ScholarGoogle Scholar
  13. Brainman, I. and Toledo, S. 2002. Nested-dissection orderings for sparse LU with partial pivoting. SIAM J. Matrix Anal. Applic. 23, 998--1012. Google ScholarGoogle Scholar
  14. Bunch, J. R. and Parlett, B. N. 1971. Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8, 639--655.Google ScholarGoogle Scholar
  15. Coleman, T. F., Edenbrandt, A., and Gilbert, J. R. 1986. Predicting fill for sparse orthogonal factorization. J. ACM 33, 517--532. Google ScholarGoogle Scholar
  16. Davis, T. A. University of Florida sparse matrix collection. www.cise.ufl.edu/research/sparse.Google ScholarGoogle Scholar
  17. Davis, T. A. 2004. Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 2. Google ScholarGoogle Scholar
  18. Davis, T. A. and Duff, I. S. 1997. An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J. Matrix Anal. Applic. 18, 1, 140--158. Google ScholarGoogle Scholar
  19. Davis, T. A. and Duff, I. S. 1999. A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. Math. Softw. 25, 1, 1--19. Google ScholarGoogle Scholar
  20. Davis, T. A., Gilbert, J. R., Larimore, S. I., and Ng, E. G. 2004a. Algorithm: COLAMD, a column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw., to appear. Google ScholarGoogle Scholar
  21. Davis, T. A., Gilbert, J. R., Larimore, S. I., and Ng, E. G. 2004b. A column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw., to appear. Google ScholarGoogle Scholar
  22. Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H. 1999. A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Applic. 20, 3, 720--755. Google ScholarGoogle Scholar
  23. Dongarra, J. J., Du Croz, J. J., Duff, I. S., and Hammarling, S. 1990. A set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Softw. 16, 1--17. Google ScholarGoogle Scholar
  24. Duff, I. S. 1977. On permutations to block triangular form. J. Inst. of Math. Appl. 19, 339--342.Google ScholarGoogle Scholar
  25. Duff, I. S. 1981. On algorithms for obtaining a maximum transversal. ACM Trans. Math. Softw. 7, 315--330. Google ScholarGoogle Scholar
  26. Duff, I. S. 1984. The solution of nearly symmetric sparse linear systems. In Computing methods in applied sciences and engineering, VI, R. Glowinski and J.-L. Lions, Eds. North Holland, Amsterdam New York and London, 57--74.Google ScholarGoogle Scholar
  27. Duff, I. S. 2002. A new code for the solution of sparse symmetric definite and indefinite systems. Tech. Rep. TR-2002-024, Rutherford Appleton Laboratory.Google ScholarGoogle Scholar
  28. Duff, I. S., Erisman, A. M., and Reid, J. K. 1986. Direct Methods for Sparse Matrices. London: Oxford Univ. Press. Google ScholarGoogle Scholar
  29. Duff, I. S. and Koster, J. 2001. On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM J. Matrix Anal. Applic. 22, 4, 973--996. Google ScholarGoogle Scholar
  30. Duff, I. S. and Reid, J. K. 1982. MA27 - a set of Fortran subroutines for solving sparse symmetric sets of linear equations. Tech. Rep. AERE-R-10533, AERE Harwell Laboratory, United Kingdom Atomic Energy Authority.Google ScholarGoogle Scholar
  31. Duff, I. S. and Reid, J. K. 1983a. The multifrontal solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Softw. 9, 302--325. Google ScholarGoogle Scholar
  32. Duff, I. S. and Reid, J. K. 1983b. A note on the work involved in no-fill sparse matrix factorization. IMA J. Num. Anal. 3, 37--40.Google ScholarGoogle Scholar
  33. Duff, I. S. and Reid, J. K. 1984. The multifrontal solution of unsymmetric sets of linear equations. SIAM J. Sci. Statist. Comput. 5, 3, 633--641.Google ScholarGoogle Scholar
  34. Duff, I. S. and Reid, J. K. 1996. The design of MA48, a code for the direct solution of sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw. 22, 2, 187--226. Google ScholarGoogle Scholar
  35. Duff, I. S. and Scott, J. A. 1996. The design of a new frontal code for solving sparse unsymmetric systems. ACM Trans. Math. Softw. 22, 1, 30--45. Google ScholarGoogle Scholar
  36. Eisenstat, S. C. and Liu, J. W. H. 1992. Exploiting structural symmetry in unsymmetric sparse symbolic factorization. SIAM J. Matrix Anal. Applic. 13, 1, 202--211. Google ScholarGoogle Scholar
  37. George, A. and Liu, J. W. H. 1981. Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs, New Jersey: Prentice-Hall. Google ScholarGoogle Scholar
  38. George, A. and Liu, J. W. H. 1989. The evolution of the minimum degree ordering algorithm. SIAM Rev. 31, 1, 1--19. Google ScholarGoogle Scholar
  39. George, A. and Ng, E. G. 1985. An implementation of Gaussian elimination with partial pivoting for sparse systems. SIAM J. Sci. Statist. Comput. 6, 2, 390--409.Google ScholarGoogle Scholar
  40. George, A. and Ng, E. G. 1987. Symbolic factorization for sparse Gaussian elimination with partial pivoting. SIAM J. Sci. Statist. Comput. 8, 6 (Nov.), 877--898. Google ScholarGoogle Scholar
  41. Gilbert, J. R., Li, X. S., Ng, E. G., and Peyton, B. W. 2001. Computing row and column counts for sparse QR and LU factorization. BIT 41, 4, 693--710.Google ScholarGoogle Scholar
  42. Gilbert, J. R., Moler, C., and Schreiber, R. 1992. Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. Applic. 13, 1, 333--356. Google ScholarGoogle Scholar
  43. Gilbert, J. R. and Peierls, T. 1988. Sparse partial pivoting in time proportional to arithmetic operations. SIAM J. Sci. Statist. Comput. 9, 862--874.Google ScholarGoogle Scholar
  44. Goto, K. and van de Geijn, R. 2002. On reducing TLB misses in matrix multiplication, FLAME working note 9. Tech. Rep. TR-2002-55, The University of Texas at Austin, Department of Computer Sciences.Google ScholarGoogle Scholar
  45. Gupta, A. 2002. Improved symbolic and numerical factorization algorithms for unsymmetric sparse matrices. SIAM J. Matrix Anal. Applic. 24, 529--552. Google ScholarGoogle Scholar
  46. Gupta, A., Gustavson, F., Joshi, M., Karypis, G., and Kumar, V. 1999. PSPASES: an efficient and scalable parallel sparse direct solver. In Kluwer Intl. Series in Engineering and Science, T. Yang, Ed. Vol. 515. Kluwer.Google ScholarGoogle Scholar
  47. Hadfield, S. M. 1994. On the LU factorization of sequences of identically structured sparse matrices within a distributed memory environment. Ph.D. thesis, University of Florida, Gainesville, FL. Google ScholarGoogle Scholar
  48. Hadfield, S. M. and Davis, T. A. 1995. The use of graph theory in a parallel multifrontal method for sequences of unsymmetric pattern sparse matrices. Cong. Numer. 108, 43--52.Google ScholarGoogle Scholar
  49. Heath, M. T. and Raghavan, P. 1995. A Cartesian parallel nested dissection algorithm. SIAM J. Matrix Anal. Applic. 16, 1, 235--253. Google ScholarGoogle Scholar
  50. Hendrickson, B. and Rothberg, E. 1999. Improving the runtime and quality of nested dissection ordering. SIAM J. Sci. Comput. 20, 468--489. Google ScholarGoogle Scholar
  51. Karypis, G. and Kumar, V. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359--392. Google ScholarGoogle Scholar
  52. Larimore, S. I. 1998. An approximate minimum degree column ordering algorithm. Tech. Rep. TR-98-016, Univ. of Florida, Gainesville, FL. www.cise.ufl.edu.Google ScholarGoogle Scholar
  53. Liu, J. W. H. 1990. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Applic. 11, 1, 134--172. Google ScholarGoogle Scholar
  54. Liu, J. W. H. 1992. The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev. 34, 1, 82--109. Google ScholarGoogle Scholar
  55. Matstoms, P. 1994. Sparse QR factorization in MATLAB. ACM Trans. Math. Softw. 20, 1, 136--159. Google ScholarGoogle Scholar
  56. Ng, E. G. and Raghavan, P. 1999. Performance of greedy ordering heuristics for sparse Cholesky factorization. SIAM J. Matrix Anal. Applic. 20, 4, 902--914. Google ScholarGoogle Scholar
  57. Rothberg, E. and Eisenstat, S. C. 1998. Node selection strategies for bottom-up sparse matrix orderings. SIAM J. Matrix Anal. Applic. 19, 3, 682--695. Google ScholarGoogle Scholar
  58. Whaley, R. C., Petitet, A., and Dongarra, J. J. 2001. Automated emperical optimization of software and the ATLAS project. Parallel Computing 27, 1-2, 3--35.Google ScholarGoogle Scholar
  59. Yannakakis, M. 1981. Computing the minimum fill-in is NP-Complete. SIAM J. Alg. Disc. Meth. 2, 77--79.Google ScholarGoogle Scholar

Index Terms

  1. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader