Skip to main content

Differentiation of Mouse Embryonic Stem Cells in Self-Assembling Peptide Scaffolds

  • Protocol
  • First Online:
Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 690))

Abstract

Here, we describe the capacity of mouse embryonic stem cells (mESCs) to differentiate into osteoblast-like cells in a three-dimensional (3D) self-assembling peptide scaffold, a synthetic nanofiber biomaterial with future applications in regenerative medicine. We have previously demonstrated that classical tissue cultures (two-dimensional) as well as 3D-systems promoted differentiation of mESCs into cells with an osteoblast-like phenotype expressing osteopontin (OPN) and collagen type I (Col I), as well as high alkaline phosphatase (Alk Phos) activity and calcium phosphate mineralization. Interestingly, in 3D self-assembling peptide scaffold cultures, the frequency of appearance of embryonic stem-cell-like colonies was substantially enhanced, suggesting that this particular 3D microenvironment promoted the generation of a stem-cell-like niche that allows the maintenance of a small pool of undifferentiated cells. We propose that the 3D system provides a unique microenvironment permissive to promote differentiation of mESCs into osteoblast-like cells while maintaining its regenerative capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  2. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  3. Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., et al. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690.

    Article  PubMed  CAS  Google Scholar 

  4. Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., et al. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687.

    Article  PubMed  CAS  Google Scholar 

  5. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.

    Article  PubMed  CAS  Google Scholar 

  6. Wobus, A. M. (2001) Potential of embryonic stem cells. Mol. Aspects Med. 22, 149–164.

    Article  PubMed  CAS  Google Scholar 

  7. Brustle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., et al. (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., and McKay, R. D. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679.

    Article  PubMed  CAS  Google Scholar 

  9. Wichterle, H., Lieberam, I., Porter, J. A., and Jessell, T. M. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397.

    Article  PubMed  CAS  Google Scholar 

  10. Drab, M., Haller, H., Bychkov, R., Erdmann, B., Lindschau, C., Haase, H., et al. (1997) From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J. 11, 905–915.

    PubMed  CAS  Google Scholar 

  11. Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., et al. (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96.

    Article  PubMed  CAS  Google Scholar 

  12. Schmitt, R. M., Bruyns, E., and Snodgrass, H. R. (1991) Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev. 5, 728–740.

    Article  PubMed  CAS  Google Scholar 

  13. Wiles, M. V. and Keller, G. (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259–267.

    PubMed  CAS  Google Scholar 

  14. Dani, C., Smith, A. G., Dessolin, S., Leroy, P., Staccini, L., Villageois, P., et al. (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell. Sci. 110, 1279–1285.

    PubMed  CAS  Google Scholar 

  15. Kramer, J., Hegert, C., Guan, K., Wobus, A. M., Muller, P. K., and Rohwedel, J. (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech. Dev. 92, 193–205.

    Article  PubMed  CAS  Google Scholar 

  16. zur Nieden, N. I., Kempka, G., and Ahr, H. J. (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71, 18–27.

    Article  PubMed  CAS  Google Scholar 

  17. Wu, L. N., Genge, B. R., Dunkelberger, D. G., LeGeros, R. Z., Concannon, B., and Wuthier, R. E. (1997) Physicochemical characterization of the nucleational core of matrix vesicles. J. Biol. Chem. 272, 4404–4411.

    Article  PubMed  CAS  Google Scholar 

  18. Armant, D. R. (2005) Blastocysts don’t go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev. Biol. 280, 260–280.

    Article  PubMed  CAS  Google Scholar 

  19. Imai, S., Kaksonen, M., Raulo, E., Kinnunen, T., Fages, C., Meng, X., et al. (1998) Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth-associated molecule (HB-GAM). J. Cell. Biol. 143, 1113–1128.

    Article  PubMed  CAS  Google Scholar 

  20. Maroto, M., Dale, J. K., Dequeant, M. L., Petit, A. C., and Pourquie, O. (2005) Synchronised cycling gene oscillations in presomitic mesoderm cells require cell–cell contact. Int. J. Dev. Biol. 49, 309–315.

    Article  PubMed  CAS  Google Scholar 

  21. Stains, J. P. and Civitelli, R. (2005) Cell-to-cell interactions in bone. Biochem. Biophys. Res. Commun. 328, 721–727.

    Article  PubMed  CAS  Google Scholar 

  22. Geiger, B., Bershadsky, A., Pankov, R., and Yamada, K. M. (2001) Transmembrane crosstalk between the extracellular matrix–­cytoskeleton crosstalk. Nat. Rev. Mol. Cell. Biol. 2, 793–805.

    Article  PubMed  CAS  Google Scholar 

  23. Ferrera, D., Poggi, S., Biassoni, C., Dickson, G. R., Astigiano, S., Barbieri, O., et al. (2002) Three-dimensional cultures of normal human osteoblasts: proliferation and differentiation potential in vitro and upon ectopic implantation in nude mice. Bone 30, 718–725.

    Article  PubMed  CAS  Google Scholar 

  24. Kale, S., Biermann, S., Edwards, C., Tarnowski, C., Morris, M., and Long, M. W. (2000) Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat. Biotechnol. 18, 954–958.

    Article  PubMed  CAS  Google Scholar 

  25. Genove, E., Shen, C., Zhang, S., and Semino, C. E. (2005) The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 26, 3341–3351.

    Article  PubMed  CAS  Google Scholar 

  26. Semino, C. E., Kasahara, J., Hayashi, Y., and Zhang, S. (2004) Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng. 10, 643–655.

    Article  PubMed  CAS  Google Scholar 

  27. Semino, C. E., Merok, J. R., Crane, G. G., Panagiotakos, G., and Zhang, S. (2003) Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71, 262–270.

    Article  PubMed  CAS  Google Scholar 

  28. Viswanathan, S., Benatar, T., Mileikovsky, M., Lauffenburger, D. A., Nagy, A., and Zandstra, P. W. (2003) Supplementation-dependent differences in the rates of embryonic stem cell self-renewal, differentiation, and apoptosis. Biotechnol. Bioeng. 84, 505–517.

    Article  PubMed  CAS  Google Scholar 

  29. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R. (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394.

    Article  PubMed  CAS  Google Scholar 

  30. McGee-Russell, S. M. (1958) Histochemical methods for calcium. J. Histochem. Cytochem. 6, 22–42.

    Article  PubMed  CAS  Google Scholar 

  31. Garreta, E., Gasset, D., Semino, C., and Borros, S. (2007) Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. Biomol. Eng. 24, 75–80.

    Article  PubMed  CAS  Google Scholar 

  32. Garreta, E., Genove, E., Borros, S., and Semino, C. E. (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng. 12, 2215–2227.

    Article  PubMed  CAS  Google Scholar 

  33. Davis, L. A. and zur Nieden, N. I. (2008) Mesodermal fate decisions of a stem cell: the Wnt switch. Cell. Mol. Life Sci. 65, 2658–2674.

    Article  PubMed  CAS  Google Scholar 

  34. zur Nieden, N. I., Price, F. D., Davis, L. A., Everitt, R., and Rancourt, D. E. (2007) Gene array analysis on mixed ES cell populations: a biphasic role for beta-catenin in osteogenesis. Mol. Endocrinol. 21, 674–685.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, E. and Frenkel, B. (2005) Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3β-dependent and -independent manner. J. Biol. Chem. 280, 2388–2394.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

NMB acknowledges financial support from DURSI (Generalitat de Catalunya) and the European Social Foundation (2006FI 00447). CES was supported by the Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Germany, Award 1098 SF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marí-Buyé, N., Semino, C.E. (2011). Differentiation of Mouse Embryonic Stem Cells in Self-Assembling Peptide Scaffolds. In: Nieden, N. (eds) Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. Methods in Molecular Biology, vol 690. Humana Press. https://doi.org/10.1007/978-1-60761-962-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-962-8_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-961-1

  • Online ISBN: 978-1-60761-962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics