Advertisement
No access
Perspective
Immunology

Pharmacologic Induction of CD8+ T Cell Memory: Better Living Through Chemistry

Drugs already in clinical use can enhance the generation of memory T cells, creating new prospects for T cell–based immunotherapies for infectious diseases and cancer.
Science Translational Medicine
16 Dec 2009
Vol 1, Issue 11
p. 11ps12

Abstract

The generation of a robust population of memory T cells is critical for effective vaccine and cell-based therapies to prevent and treat infectious diseases and cancer. A series of recent papers have established a new, cell-intrinsic approach in which small molecules target key metabolic and developmental pathways to enhance the formation and maintenance of highly functional CD8+ memory T cells. These findings raise the exciting new possibility of using small molecules, many of which are already approved for human use, for the pharmacologic induction of immunologic memory.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
Klenerman P., Hill A., T cells and viral persistence: Lessons from diverse infections. Nat. Immunol. 6, 873–879 (2005).
2
Klebanoff C. A., Gattinoni L., Restifo N. P., CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev. 211, 214–224 (2006).
3
Berzofsky J. A., Ahlers J. D., Belyakov I. M., Strategies for designing and optimizing new generation vaccines. Nat. Rev. Immunol. 1, 209–219 (2001).
4
Araki K., Turner A. P., Shaffer V. O., Gangappa S., Keller S. A., Bachmann M. F., Larsen C. P., Ahmed R., mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).
5
Pearce E. L., Walsh M. C., Cejas P. J., Harms G. M., Shen H., Wang L. S., Jones R. G., Choi Y., Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).
6
Gattinoni L., Zhong X. S., Palmer D. C., Ji Y., Hinrichs C. S., Yu Z., Wrzesinski C., Boni A., Cassard L., Garvin L. M., Paulos C. M., Muranski P., Restifo N. P., Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).
7
Sallusto F., Lenig D., Förster R., Lipp M., Lanzavecchia A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
8
Woodland D. L., Kohlmeier J. E., Migration, maintenance and recall of memory T cells in peripheral tissues. Nat. Rev. Immunol. 9, 153–161 (2009).
9
Wherry E. J., Teichgräber V., Becker T. C., Masopust D., Kaech S. M., Antia R., von Andrian U. H., Ahmed R., Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).
10
Klebanoff C. A., Gattinoni L., Torabi-Parizi P., Kerstann K., Cardones A. R., Finkelstein S. E., Palmer D. C., Antony P. A., Hwang S. T., Rosenberg S. A., Waldmann T. A., Restifo N. P., Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl. Acad. Sci. U.S.A. 102, 9571–9576 (2005).
11
Zhang Y., Joe G., Hexner E., Zhu J., Emerson S. G., Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat. Med. 11, 1299–1305 (2005).
12
Turtle C. J., Swanson H. M., Fujii N., Estey E. H., Riddell S. R., A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy. Immunity 31, 834–844 (2009).
13
Ahmed R., Bevan M. J., Reiner S. L., Fearon D. T., The precursors of memory: Models and controversies. Nat. Rev. Immunol. 9, 662–668 (2009).
14
Joshi N. S., Cui W., Chandele A., Lee H. K., Urso D. R., Hagman J., Gapin L., Kaech S. M., Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).
15
Kaech S. M., Tan J. T., Wherry E. J., Konieczny B. T., Surh C. D., Ahmed R., Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).
16
Pearce E. L., Mullen A. C., Martins G. A., Krawczyk C. M., Hutchins A. S., Zediak V. P., Banica M., DiCioccio C. B., Gross D. A., Mao C. A., Shen H., Cereb N., Yang S. Y., Lindsten T., Rossant J., Hunter C. A., Reiner S. L., Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003).
17
Cannarile M. A., Lind N. A., Rivera R., Sheridan A. D., Camfield K. A., Wu B. B., Cheung K. P., Ding Z., Goldrath A. W., Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat. Immunol. 7, 1317–1325 (2006).
18
Rutishauser R. L., Martins G. A., Kalachikov S., Chandele A., Parish I. A., Meffre E., Jacob J., Calame K., Kaech S. M., Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).
19
Ichii H., Sakamoto A., Hatano M., Okada S., Toyama H., Taki S., Arima M., Kuroda Y., Tokuhisa T., Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat. Immunol. 3, 558–563 (2002).
20
Manders P. M., Hunter P. J., Telaranta A. I., Carr J. M., Marshall J. L., Carrasco M., Murakami Y., Palmowski M. J., Cerundolo V., Kaech S. M., Ahmed R., Fearon D. T., BCL6b mediates the enhanced magnitude of the secondary response of memory CD8+ T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 102, 7418–7425 (2005).
21
Heffner M., Fearon D. T., Loss of T cell receptor-induced Bmi-1 in the KLRG1(+) senescent CD8(+) T lymphocyte. Proc. Natl. Acad. Sci. U.S.A. 104, 13414–13419 (2007).
22
Curtis R., Geesaman B. J., DiStefano P. S., Ageing and metabolism: drug discovery opportunities. Nat. Rev. Drug Discov. 4, 569–580 (2005).
23
Jones R. G., Thompson C. B., Revving the engine: Signal transduction fuels T cell activation. Immunity 27, 173–178 (2007).
24
Thomson A. W., Turnquist H. R., Raimondi G., Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 9, 324–337 (2009).
25
Sinclair L. V., Finlay D., Feijoo C., Cornish G. H., Gray A., Ager A., Okkenhaug K., Hagenbeek T. J., Spits H., Cantrell D. A., Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat. Immunol. 9, 513–521 (2008).
26
Kerdiles Y. M., Beisner D. R., Tinoco R., Dejean A. S., Castrillon D. H., DePinho R. A., Hedrick S. M., Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).
27
Hedrick S. M., The cunning little vixen: Foxo and the cycle of life and death.Nat. Immunol.10, 1057–1063 (2009).
28
Inoki K., Ouyang H., Zhu T., Lindvall C., Wang Y., Zhang X., Yang Q., Bennett C., Harada Y., Stankunas K., Wang C. Y., He X., MacDougald O. A., You M., Williams B. O., Guan K. L., TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).
29
Reya T., Clevers H., Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).
30
Fleming H. E., Janzen V., Lo Celso C., Guo J., Leahy K. M., Kronenberg H. M., Scadden D. T., Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).
31
Castilho R. M., Squarize C. H., Chodosh L. A., Williams B. O., Gutkind J. S., mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5, 279–289 (2009).
32
Huang J., Zhang Y., Bersenev A., O'Brien W. T., Tong W., Emerson S. G., Klein P. S., Pivotal role for glycogen synthase kinase–3 in hematopoietic stem cell homeostasis in mice. J. Clin. Invest. 119, 3519–3529 (2009).
33
Yu Q., Sharma A., Oh S. Y., Moon H. G., Hossain M. Z., Salay T. M., Leeds K. E., Du H., Wu B., Waterman M. L., Zhu Z., Sen J. M., T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nat. Immunol. 10, 992–999 (2009).
34
Schubert C., Boosting our best shot. Nat. Med. 15, 984–988 (2009).
35
Gattinoni L., Klebanoff C. A., Palmer D. C., Wrzesinski C., Kerstann K., Yu Z., Finkelstein S. E., Theoret M. R., Rosenberg S. A., Restifo N. P., Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).
36
Gattinoni L., Powell D. J., Rosenberg S. A., Restifo N. P., Adoptive immunotherapy for cancer: Building on success. Nat. Rev. Immunol. 6, 383–393 (2006).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Translational Medicine
Volume 1 | Issue 11
December 2009

Permissions

Request permissions for this article.

Acknowledgments

This work was supported by the Intramural Research Program of the U.S. National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Authors

Affiliations

Luca Gattinoni*, [email protected]
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Christopher A. Klebanoff*
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Nicholas P. Restifo [email protected]
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Notes

*
These authors contributed equally to this work.
Corresponding authors. E-mail: [email protected] (L.G.); [email protected] (N.P.R.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1121565
    Crossref
  2. Engineering the lymph node environment promotes antigen-specific efficacy in type 1 diabetes and islet transplantation, Nature Communications, 14, 1, (2023).https://doi.org/10.1038/s41467-023-36225-5
    Crossref
  3. Enhanced Chimeric Antigen Receptor T Cell Therapy through Co-Application of Synergistic Combination Partners, Biomedicines, 10, 2, (307), (2022).https://doi.org/10.3390/biomedicines10020307
    Crossref
  4. Editorial: Metabolic Intervention Based on Functional Biomaterial Strategy to Potentiate Cancer Immunotherapy, Volume I, Frontiers in Pharmacology, 13, (2022).https://doi.org/10.3389/fphar.2022.925673
    Crossref
  5. Lomitapide, a cholesterol-lowering drug, is an anticancer agent that induces autophagic cell death via inhibiting mTOR, Cell Death & Disease, 13, 7, (2022).https://doi.org/10.1038/s41419-022-05039-6
    Crossref
  6. Accelerating clinical-scale production of BCMA CAR T cells with defined maturation stages, Molecular Therapy - Methods & Clinical Development, 24, (181-198), (2022).https://doi.org/10.1016/j.omtm.2021.12.005
    Crossref
  7. Acute Conditioning of Antigen-Expanded CD8+ T Cells via the GSK3β-mTORC Axis Differentially Dictates Their Immediate and Distal Responses after Antigen Rechallenge, Cancers, 12, 12, (3766), (2020).https://doi.org/10.3390/cancers12123766
    Crossref
  8. Engineering Solutions for Mitigation of Chimeric Antigen Receptor T-Cell Dysfunction, Cancers, 12, 8, (2326), (2020).https://doi.org/10.3390/cancers12082326
    Crossref
  9. CD8-positive memory T cells in tumor-draining lymph nodes of patients with breast cancer, BMC Cancer, 20, 1, (2020).https://doi.org/10.1186/s12885-020-6714-x
    Crossref
  10. A rationally-engineered IL-2 improves the antitumor effect of anti-CD20 therapy, OncoImmunology, 9, 1, (2020).https://doi.org/10.1080/2162402X.2020.1770565
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase access to this article

Download and print this article within 24 hours for your personal scholarly, research, and educational use.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media