Knie > Patella

Arthropedia – Grundlagenwissen und Fallbeispiele

17.01.2024 | Arthropedia | Online-Artikel

Diagnostik des Patellofemoralgelenks

Bildgebung des Patellofemoralgelenks

Jannik Frings, Felix Zimmermann, Maximilian Hinz, Gerd Seitlinger & Michael C. Liebensteiner

Literatur
  1. Ammann N, Schiapparelli FF, Moser LB et al (2019) Good correlation between bone tracer uptake in SPECT/CT and intraoperative findings of chondral lesions graded with the ICRS scoring. J Orthop Res 37:522–528
  2. Askenberger M, Arendt EA, Ekström W et al (2016) Medial patellofemoral ligament injuries in children with first-time lateral patellar dislocations: a magnetic resonance imaging and arthroscopic study. Am J Sports Med 44:152–158
  3. Biedert RM, Albrecht S (2006) The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc 14:707–712
  4. Blackburne JS, Peel TE (1977) A new method of measuring patellar height. J Bone Joint Surgery Br Vol 59:241–242
  5. Breda SJ, De Vos RJ, Poot DHJ et al (2021) Association between T(2)(*) relaxation times derived from ultrashort echo time MRI and symptoms during exercise therapy for patellar tendinopathy: a large prospective study. J Magn Reson Imaging 54:1596–1605
  6. Burke CJ, Kaplan D, Block T et al (2018) Clinical utility of continuous radial magnetic resonance imaging acquisition at 3 T in real-time patellofemoral kinematic assessment: a feasibility study. Arthroscopy 34:726–733
  7. Carrillon Y, Abidi H, Dejour D et al (2000) Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology 216:582–585
  8. Caton J, Deschamps G, Chambat P et al (1982) Patella infera. Apropos of 128 cases. Revue De Chir Orthop Et Reparatrice De L’appareil Moteur 68:317–325
  9. Dejour D, Le Coultre B (2007) Osteotomies in patello-femoral instabilities. Sports Med Arthrosc Rev 15:39–46
  10. Dickschas J, Ferner F, Lutter C et al (2018) Patellofemoral dysbalance and genua valga: outcome after femoral varisation osteotomies. Arch Orthop Trauma Surg 138:19–25
  11. Dickschas J, Tassika A, Lutter C et al (2017) Torsional osteotomies of the tibia in patellofemoral dysbalance. Arch Orthop Trauma Surg 137:179–185
  12. Dietrich TJ, Betz M, Pfirrmann CW et al (2014) End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc 22:214–218
  13. Ehmann YJ, Zuche L, Schmitt A et al (2022) Excellent clinical and radiological outcomes after both open flake refixation and autologous chondrocyte implantation following acute patella dislocation and concomitant flake fractures. Knee Surg Sports Traumatol Arthrosc 30:3334–3342
  14. Folinais D, Thelen P, Delin C et al (2013) Measuring femoral and rotational alignment: EOS system versus computed tomography. Orthop Traumatol Surg Res 99:509–516
  15. Frings J, Dust T, Krause M et al (2022) Dynamic mediolateral patellar translation is a sex- and size-independent parameter of adult proximal patellar tracking using dynamic 3 tesla magnetic resonance imaging. Arthroscopy 38:1571–1580
  16. Frings J, Dust T, Krause M et al (2020) Objective assessment of patellar maltracking with 3 T dynamic magnetic resonance imaging: feasibility of a robust and reliable measuring technique. Sci Rep 10:16770
  17. Frings J, Dust T, Meyer J et al (2022) The influence of surgical realignment procedures on dynamic patellar tracking: a dynamic magnetic resonance imaging-controlled feasibility study. Diagnostics (Basel) 12:
  18. Frings J, Krause M, Akoto R et al (2019) Clinical results after combined distal femoral osteotomy in patients with patellar maltracking and recurrent dislocations. J Knee Surg 32:924–933
  19. Frings J, Krause M, Akoto R et al (2018) Combined distal femoral osteotomy (DFO) in genu valgum leads to reliable patellar stabilization and an improvement in knee function. Knee Surg Sports Traumatol Arthrosc 26:3572–3581
  20. Frings J, Krause M, Wohlmuth P et al (2018) Influence of patient-related factors on clinical outcome of tibial tubercle transfer combined with medial patellofemoral ligament reconstruction. Knee 25:1157–1164
  21. Golman M, Wright ML, Wong TT et al (2020) Rethinking patellar tendinopathy and partial patellar tendon tears: a novel classification system. Am J Sports Med 48:359–369
  22. Harris JD, Brophy RH, Jia G et al (2012) Sensitivity of magnetic resonance imaging for detection of patellofemoral articular cartilage defects. Arthroscopy 28:1728–1737
  23. Heidenreich MJ, Camp CL, Dahm DL et al (2017) The contribution of the tibial tubercle to patellar instability: analysis of tibial tubercle-trochlear groove (TT-TG) and tibial tubercle-posterior cruciate ligament (TT-PCL) distances. Knee Surg Sports Traumatol Arthrosc 25:2347–2351
  24. Hernigou J, Chahidi E, Bouaboula M et al (2018) Knee size chart nomogram for evaluation of tibial tuberosity-trochlear groove distance in knees with or without history of patellofemoral instability. Int Orthop 42:2797–2806
  25. Hingelbaum S, Best R, Huth J et al (2014) The TT-TG Index: a new knee size adjusted measure method to determine the TT-TG distance. Knee Surg Sports Traumatol Arthrosc 22:2388–2395
  26. Hinz M, Cotic M, Diermeier T et al (2023) Derotational distal femoral osteotomy for patients with recurrent patellar instability and increased femoral antetorsion improves knee function and adequately treats both torsional and valgus malalignment. Knee Surg Sports Traumatol Arthrosc 31:3091–3097
  27. Insall J, Salvati E (1971) Patella position in the normal knee joint. Radiology 101:101–104
  28. Iwano T, Kurosawa H, Tokuyama H et al (1990) Roentgenographic and clinical findings of patellofemoral osteoarthrosis. With special reference to its relationship to femorotibial osteoarthrosis and etiologic factors. Clin Orthop Relat Res: 190–197
  29. Kaiser P, Attal R, Kammerer M et al (2016) Significant differences in femoral torsion values depending on the CT measurement technique. Arch Orthop Trauma Surg 136:1259–1264
  30. Kaiser P, Schmoelz W, Schoettle P et al (2017) Increased internal femoral torsion can be regarded as a risk factor for patellar instability—a biomechanical study. Clin Biomech (Bristol Avon) 47:103–109
  31. Keshmiri A, Schöttle P, Peter C (2020) Trochlear dysplasia relates to medial femoral condyle hypoplasia: an MRI-based study. Arch Orthop Trauma Surg 140:155–160
  32. Lazaro LE, Wellman DS, Pardee NC et al (2013) Effect of computerized tomography on classification and treatment plan for patellar fractures. J Orthop Trauma 27:336–344
  33. Loeb AE, Tanaka MJ (2018) The medial patellofemoral complex. Curr Rev Musculoskelet Med 11:201–208
  34. Lorenz A, Müller O, Kohler P et al (2012) The influence of asymmetric quadriceps loading on patellar tracking—an in vitro study. Knee 19:818–822
  35. Mehl J, Feucht MJ, Bode G et al (2016) Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects. Knee Surg Sports Traumatol Arthrosc 24:838–846
  36. Merican AM, Amis AA (2008) Anatomy of the lateral retinaculum of the knee. J Bone Joint Surg Br 90:527–534
  37. Mucha A, Dordevic M, Testa EA et al (2013) Assessment of the loading history of patients after high tibial osteotomy using SPECT/CT—a new diagnostic tool and algorithm. J Orthop Surg Res 8:46
  38. Muhamad AR, Freitas JM, Bomar JD et al (2012) CT and MRI lower extremity torsional profile studies: measurement reproducibility. J Child Orthop 6:391–396
  39. Murer AM, Hirschmann MT, Amsler F et al (2020) Bone SPECT/CT has excellent sensitivity and specificity for diagnosis of loosening and patellofemoral problems after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 28:1029–1035
  40. Nacey NC, Fox MG, Luce BN et al (2020) Assessing femoral trochlear morphologic features on cross-sectional imaging before trochleoplasty: dejour classification versus quantitative measurement. AJR Am J Roentgenol 215:458–464
  41. Nelitz M, Lippacher S, Reichel H et al (2014) Evaluation of trochlear dysplasia using MRI: correlation between the classification system of dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 22:120–127
  42. Nishida Y, Nishino T, Tanaka K et al (2021) An objective measure of patellar tendon thickness based on ultrasonography and MRI in university athletes. J Clin Med 10:
  43. Paley D, Pfeil J (2000) Principles of deformity correction around the knee. Orthopade 29:18–38
  44. Pandit S, Frampton C, Stoddart J et al (2011) Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop 35:1799–1803
  45. Pfirrmann CW, Zanetti M, Romero J et al (2000) Femoral trochlear dysplasia: MR findings. Radiology 216:858–864
  46. Sawatsky A, Bourne D, Horisberger M et al (2012) Changes in patellofemoral joint contact pressures caused by vastus medialis muscle weakness. Clin Biomech 27:595–601
  47. Schuttrumpf JP, Sturmer KM, Piatek S (2022) S2e guideline “patella fracture”. Chir (Heidelb) 93:1106
  48. Seitlinger G, Scheurecker G, Högler R et al (2014) The position of the tibia tubercle in 0°–90° flexion: comparing patients with patella dislocation to healthy volunteers. Knee Surg Sports Traumatol Arthrosc 22:2396–2400
  49. Strecker W, Keppler P, Gebhard F et al (1997) Length and torsion of the lower limb. J Bone Joint Surg Br 79:1019–1023
  50. Tscholl PM, Antoniadis A, Dietrich TJ et al (2016) The tibial-tubercle trochlear groove distance in patients with trochlear dysplasia: the influence of the proximally flat trochlea. Knee Surg Sports Traumatol Arthrosc 24:2741–2747
  51. Van Dyck P, Kenis C, Vanhoenacker FM et al (2014) Comparison of 1.5- and 3 T MR imaging for evaluating the articular cartilage of the knee. Knee Surg Sports Traumatol Arthrosc 22:1376–1384
  52. Van Haver A, De Roo K, De Beule M et al (2015) The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med 43:1354–1361
  53. Van Huyssteen AL, Hendrix MR, Barnett AJ et al (2006) Cartilage-bone mismatch in the dysplastic trochlea. An MRI study. J Bone Joint Surg Br 88:688–691
  54. Vivekanantha P, Kahlon H, Shahabinezhad A et al (2023) Tibial tubercle to trochlear groove distance versus tibial tubercle to posterior cruciate ligament distance for predicting patellar instability: a systematic review. Knee Surg Sports Traumatol Arthrosc 31:3243–3258
  55. Vollnberg B, Koehlitz T, Jung T et al (2012) Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol 22:2347–2356
  56. Waelti S, Fischer T, Griessinger J et al (2022) Ultra-low-dose computed tomography for torsion measurements of the lower extremities in children and adolescents. Insights Imaging 13:118
  57. Waidelich HA, Strecker W, Schneider E (1992) Computed tomographic torsion-angle and length measurement of the lower extremity. The methods, normal values and radiation load. Rofo 157:245–251
  58. Weinberg DS, Gilmore A, Guraya SS et al (2017) A cadaveric analysis of the optimal radiographic angle for evaluating trochlear depth. J Knee Surg 30:143–151
  59. Yue RA, Arendt EA, Tompkins MA (2017) Patellar height measurements on radiograph and magnetic resonance imaging in patellar instability and control patients. J Knee Surg

Das könnte Sie auch interessieren