Knie > Bänder

Arthropedia – Grundlagenwissen und Fallbeispiele

14.12.2022 | Arthropedia | Online-Artikel

Revisionen nach VKB-Ersatzplastik: VKB-Transplantatversagen

Versagensursachen nach VKB-Ersatzplastik

(Tobias Drenck, Hamburg)

Literatur

Biologisch

  1. Cruz AI, Jr., Beck JJ, Ellington MD, Mayer SW, Pennock AT, Stinson ZS, et al. (2020) Failure Rates of Autograft and Allograft ACL Reconstruction in Patients 19 Years of Age and Younger: A Systematic Review and Meta-Analysis. JB JS Open Access 5
  2. Figueroa D, Figueroa F, Calvo R, Vaisman A, Ahumada X, Arellano S (2015) Platelet-rich plasma use in anterior cruciate ligament surgery: systematic review of the literature. Arthroscopy 31:981-988
  3. Karim A, Pandit H, Murray J, Wandless F, Thomas NP (2006) Smoking and reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 88:1027-1031
  4. Kunze KN, Pakanati JJ, Vadhera AS, Polce EM, Williams BT, Parvaresh KC, et al. (2022) The Efficacy of Platelet-Rich Plasma for Ligament Injuries: A Systematic Review of Basic Science Literature With Protocol Quality Assessment. Orthop J Sports Med 10:23259671211066504
  5. Liu X, Zhu B, Li Y, Liu X, Guo S, Wang C, et al. (2021) The Role of Vascular Endothelial Growth Factor in Tendon Healing. Front Physiol 12:766080
  6. Lui P, Zhang P, Chan K, Qin L (2010) Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 5:59
  7. Magnussen RA, Trojani C, Granan LP, Neyret P, Colombet P, Engebretsen L, et al. (2015) Patient demographics and surgical characteristics in ACL revision: a comparison of French, Norwegian, and North American cohorts. Knee Surg Sports Traumatol Arthrosc 23:2339-2348
  8. Menetrey J, Duthon VB, Laumonier T, Fritschy D (2008) "Biological failure" of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc 16:224-231
  9. Murray MM, Fleming BC, Badger GJ, Team BT, Freiberger C, Henderson R, et al. (2020) Bridge-Enhanced Anterior Cruciate Ligament Repair Is Not Inferior to Autograft Anterior Cruciate Ligament Reconstruction at 2 Years: Results of a Prospective Randomized Clinical Trial. Am J Sports Med 48:1305-1315
  10. Murray MM, Spindler KP, Devin C, Snyder BS, Muller J, Takahashi M, et al. (2006) Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res 24:820-830
  11. Musahl V, Nazzal EM, Lucidi GA, Serrano R, Hughes JD, Margheritini F, et al. (2022) Current trends in the anterior cruciate ligament part 1: biology and biomechanics. Knee Surg Sports Traumatol Arthrosc 30:20-33
  12. Offerhaus C, Balke M, Hente J, Gehling M, Blendl S, Hoher J (2019) Vancomycin pre-soaking of the graft reduces postoperative infection rate without increasing risk of graft failure and arthrofibrosis in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:3014-3021
  13. Petersen W, Unterhauser F, Pufe T, Zantop T, Sudkamp NP, Weiler A (2003) The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Arch Orthop Trauma Surg 123:168-174
  14. Scheffler SU, Unterhauser FN, Weiler A (2008) Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:834-842
  15. Tong K, Wei J, Li Z, Wang H, Wen Y, Chen L (2022) Evaluation of the Efficacy of Vancomycin-Soaked Autograft to Eliminate Staphylococcus aureus Contamination After Anterior Cruciate Ligament Reconstruction: Based on an Infected Rat Model. Am J Sports Med;10.1177/036354652110681143635465211068114
  16. Won SH, Lee BI, Park SY, Min KD, Kim JB, Kwon SW, et al. (2020) Outcome Differences of Remnant- Preserving versus Non-Preserving Methods in Arthroscopic Anterior Cruciate Ligament Reconstruction: A Meta-analysis with Subgroup analysis. Knee Surg Relat Res 32:7
  17. Yoshikawa T, Tohyama H, Enomoto H, Matsumoto H, Toyama Y, Yasuda K (2006) Expression of vascular endothelial growth factor and angiogenesis in patellar tendon grafts in the early phase after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14:804-810
  18. Yue L, DeFroda SF, Sullivan K, Garcia D, Owens BD (2020) Mechanisms of Bone Tunnel Enlargement Following Anterior Cruciate Ligament Reconstruction. JBJS Rev 8:e0120

Biomechanisch

  1. Group M, (2010) Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med. 38(10): p. 1979-1986.
  2. Getgood AM et al. (2020) Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction: 2-year outcomes from the STABILITY study randomized clinical trial. Am J Sports Med. 48(2): p. 285-297.
  3. Alm L, et al. (2020) Preoperative medial knee instability is an underestimated risk factor for failure of revision ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 28(8): p. 2458-2467.
  4. Webb JM, et al. (2013) Posterior Tibial Slope and Further Anterior Cruciate Ligament Injuries in the Anterior Cruciate Ligament–Reconstructed Patient. Am J Sports Med. 41(12): p. 2800-2804.
  5. Wierer G, et al. (2021) The superficial medial collateral ligament is the major restraint to anteromedial instability of the knee. Knee Surg Sports Traumatol Arthrosc. 29(2): p. 405-416.
  6. Drenck T, et al. (2017) Kinematics of the posterolateral corner of the knee: A human cadaveric cutting study. Orthop J Sports Med. 5(4_suppl4): p. 2325967117S00136.
  7. Kittl C, et al. (2016) The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med. 44(2): p. 345-354.
  8. Monaco E, et al. (2018) The effect of sequential tearing of the anterior cruciate and anterolateral ligament on anterior translation and the pivot-shift phenomenon: a cadaveric study using navigation. Arthroscopy. 34(4): p. 1009-1014.
  9. Tanaka M, et al. (2012 What does it take to have a high-grade pivot shift? Knee Surg Sports Traumatol Arthrosc. 20(4): p. 737-742.
  10. Engebretsen L, et al. (1990) The effect of an iliotibial tenodesis on intraarticular graft forces and knee joint motion. Am J Sports Med. 18(2): p. 169-176.
  11. Kanamori A, et al. (2000) In-situ force in the medial and lateral structures of intact and ACL-deficient knees. J Orthop Sci. 5(6): p. 567-571.
  12. Mehl J, et al. (2020) Osseous valgus alignment and posteromedial ligament complex deficiency lead to increased ACL graft forces. Knee Surg Sports Traumatol Arthrosc. 28(4): p. 1119-1129.
  13. Mancini EJ, et al. (2017) Comparison of ACL Strain in the MCL-Deficient and MCL-Reconstructed Knee During Simulated Landing in a Cadaveric Model. Am J Sports Med. 45(5): p. 1090-1094.
  14. Krosshaug T, et al. (2016) The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med. 44(4): p. 874-883.
  15. Krosshaug T, et al. (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 35(3): p. 359-367.
  16. Kernozek TW, et al. (2005) Gender differences in frontal and sagittal plane biomechanics during drop landings. Med Sci Sports Exerc. 37(6): p. 1003-1012.
  17. Sanders TG, et al. (2000) Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics. 20(suppl_1): p. S135-S151.
  18. Herbst E, et al. (2015) The lateral femoral notch sign following ACL injury: frequency, morphology and relation to meniscal injury and sports activity. Knee Surg Sports Traumatol Arthrosc. 23(8): p. 2250-2258.
  19. Bates NA, et al. (2019) Multiplanar loading of the knee and its influence on anterior cruciate ligament and medial collateral ligament strain during simulated landings and noncontact tears. Am J Sports Med. 47(8): p. 1844-1853.
  20. Markolf KL, et al. (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 13(6): p. 930-935.
  21. Hewett TE, et al. (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 33(4): p. 492-501.
  22. Fanelli GC and RV Larson (2002) Practical management of posterolateral instability of the knee. Arthroscopy. 18(2): p. 1-8.
  23. Weiler A, et al. (2021) The Posterolateral Instability Score (PoLIS) of the knee joint: a guideline for standardized documentation, classification, and surgical decision-making. Knee Surg Sports Traumatol Arthrosc. 29(3): p. 889-899.
  24. Markolf KL, et al. (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg. 72(4): p. 557-567.
  25. LaPrade RF, et al. (1999) The effects of grade III posterolateral knee complex injuries on anterior cruciate ligament graft force. Am J Sports Med. 27(4): p. 469-475.
  26. Amis AA (2013) Biomechanics of high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 21(1): p. 197-205.
  27. Bergmann G, et al. (2001) Hip contact forces and gait patterns from routine activities. J Biomech. 34(7): p. 859-871.
  28. Andrews M, et al. (1996) Lower limb alignment and foot angle are related to stance phase knee adduction in normal subjects: a critical analysis of the reliability of gait analysis data. J Orthop Res. 14(2): p. 289-295.
  29. Jan van de Pol G, et al. (2008) Varus Alignment Leads to Increased Forces in the Anterior Cruciate Ligament. Am J Sports Med. 37(3): p. 481-487.
  30. Fleming BC, et al. (2001) The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech. 34(2): p. 163-170.
  31. Fukuda Y, et al. (2003) A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J Orthop Res. 21(6): p. 1107-1112.
  32. Barrios JA, et al. (2016) Three-dimensional hip and knee kinematics during walking, running, and single-limb drop landing in females with and without genu valgum. Clin Biomech. 31: p. 7-11.
  33. Bernhardson AS, et al. (2019) Tibial slope and its effect on force in anterior cruciate ligament grafts: anterior cruciate ligament force increases linearly as posterior tibial slope increases. Am J Sports Med. 47(2): p. 296-302.
  34. Giffin JR, et al. (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med. 32(2): p. 376-382.
  35. Liu-Barba D, Hull M, Howell S (2007) Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study.
  36. Feucht MJ, et al. (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. 21(1): p. 134-145.
  37. Boniello MR, et al. (2015) Impact of hamstring graft diameter on tendon strength: a biomechanical study. Arthroscopy. 31(6): p. 1084-1090.
  38. Westermann RW, Wolf BR, Elkins JM (2013) Effect of ACL reconstruction graft size on simulated Lachman testing: a finite element analysis. Iowa Orthop J. 33: p. 70-77.
  39. Bedi A, et al. (2011) Effect of tunnel position and graft size in single-bundle anterior cruciate ligament reconstruction: an evaluation of time-zero knee stability. Arthroscopy. 27(11): p. 1543-1551.
  40. Magnussen RA, et al. (2012) Graft Size and Patient Age Are Predictors of Early Revision After Anterior Cruciate Ligament Reconstruction With Hamstring Autograft. Arthroscopy. 28(4): p. 526-531.
  41. Mariscalco MW, et al. (2013) The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) Cohort Study. Arthroscopy. 29(12): p. 1948-53.

Operativ/Technisch

  1. Achtnich A, Ranuccio F, Willinger L, Pogorzelski J, Imhoff AB et al. (2018) High incidence of partially anatomic tunnel placement in primary single-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26:462-467.
  2. Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc 6 Suppl 1:S2-12.
  3. Apostolopoulos A, Nikolopoulos D, Polyzois I, Liarokapis S, Rossas C et al. (2012) Pretibial cyst formation after anterior cruciate ligament reconstruction with poly-L acid screw fixation: a case report presentation and review of the literature. J Surg Orthop Adv 21:151-156.
  4. Araujo PH, Asai S, Pinto M, Protta T, Middleton K et al. (2015) ACL Graft Position Affects in Situ Graft Force Following ACL Reconstruction. J Bone Joint Surg Am 97:1767-1773.
  5. Arneja S, McConkey MO, Mulpuri K, Chin P, Gilbart MK et al. (2009) Graft tensioning in anterior cruciate ligament reconstruction: a systematic review of randomized controlled trials. Arthroscopy 25:200-207.
  6. Arnold MP, Lie DT, Verdonschot N, de Graaf R, Amis AA et al. (2005) The remains of anterior cruciate ligament graft tension after cyclic knee motion. Am J Sports Med 33:536-542.
  7. Bach BR, Jr. (2003) Revision anterior cruciate ligament surgery. Arthroscopy 19 Suppl 1:14-29.
  8. Balazs GC, Brelin AM, Grimm PD, Dickens JF, Keblish DJ et al. (2016) Hybrid Tibia Fixation of Soft Tissue Grafts in Anterior Cruciate Ligament Reconstruction: A Systematic Review. Am J Sports Med 44:2724-2732.
  9. Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14-21; discussion 21-12.
  10. Bostman OM, Pihlajamaki HK (2000) Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthop Relat Res:216-227.
  11. Brand J, Jr., Weiler A, Caborn DN, Brown CH, Jr., Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761-774.
  12. Brand JC, Jr., Pienkowski D, Steenlage E, Hamilton D, Johnson DL et al. (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705-710.
  13. Butler JC, Branch TP, Hutton WC (1994) Optimal graft fixation--the effect of gap size and screw size on bone plug fixation in ACL reconstruction. Arthroscopy 10:524-529.
  14. Bylski-Austrow DI, Grood ES, Hefzy MS, Holden JP, Butler DL (1990) Anterior cruciate ligament replacements: a mechanical study of femoral attachment location, flexion angle at tensioning, and initial tension. J Orthop Res 8:522-531.
  15. Caborn DN, Urban WP, Jr., Johnson DL, Nyland J, Pienkowski D (1997) Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon-bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 13:229-232.
  16. Coleridge SD, Amis AA (2004) A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:391-397.
  17. Colvin A, Sharma C, Parides M, Glashow J (2011) What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction?: a meta-analysis. Clin Orthop Relat Res 469:1075-1081.
  18. Corsetti JR, Jackson DW (1996) Failure of anterior cruciate ligament reconstruction: the biologic basis. Clin Orthop Relat Res 10.1097/00003086-199604000-00006:42-49.
  19. Drogset JO, Grontvedt T, Tegnander A (2005) Endoscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws: a prospective randomized study of the clinical outcome. Am J Sports Med 33:1160-1165.
  20. Drogset JO, Straume LG, Bjorkmo I, Myhr G (2011) A prospective randomized study of ACL-reconstructions using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws. Knee Surg Sports Traumatol Arthrosc 19:753-759.
  21. Fink C, Benedetto KP, Hackl W, Hoser C, Freund MC et al. (2000) Bioabsorbable polyglyconate interference screw fixation in anterior cruciate ligament reconstruction: a prospective computed tomography-controlled study. Arthroscopy 16:491-498.
  22. Flanigan DC, Kanneganti P, Quinn DP, Litsky AS (2011) Comparison of ACL fixation devices using cadaveric grafts. J Knee Surg 24:175-180.
  23. Fu FH, Bennett CH, Lattermann C, Ma CB (1999) Current trends in anterior cruciate ligament reconstruction. Part 1: Biology and biomechanics of reconstruction. Am J Sports Med 27:821-830.
  24. Gonzalez-Lomas G, Cassilly RT, Remotti F, Levine WN (2011) Is the etiology of pretibial cyst formation after absorbable interference screw use related to a foreign body reaction? Clin Orthop Relat Res 469:1082-1088.
  25. Good L, Odensten M, Gillquist J (1994) Sagittal knee stability after anterior cruciate ligament reconstruction with a patellar tendon strip. A two-year follow-up study. Am J Sports Med 22:518-523.
  26. Group M, Wright RW, Huston LJ, Spindler KP, Dunn WR et al. (2010) Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 38:1979-1986.
  27. Hackl W, Benedetto KP, Hoser C, Kunzel KH, Fink C (2000) Is screw divergence in femoral bone-tendon-bone graft fixation avoidable in anterior cruciate ligament reconstruction using a single-incision technique? A radiographically controlled cadaver study. Arthroscopy 16:640-647.
  28. Han DL, Nyland J, Kendzior M, Nawab A, Caborn DN (2012) Intratunnel versus extratunnel fixation of hamstring autograft for anterior cruciate ligament reconstruction. Arthroscopy 28:1555-1566.
  29. Harilainen A, Sandelin J (2009) A prospective comparison of 3 hamstring ACL fixation devices--Rigidfix, BioScrew, and Intrafix--randomized into 4 groups with 2 years of follow-up. Am J Sports Med 37:699-706.
  30. Harvey A, Thomas NP, Amis AA (2005) Fixation of the graft in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 87:593-603.
  31. Harvey AR, Thomas NP, Amis AA (2003) The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee 10:97-102.
  32. Hoher J, Scheffler SU, Withrow JD, Livesay GA, Debski RE et al. (2000) Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. J Orthop Res 18:456-461.
  33. Hoogland T, Hillen B (1984) Intra-articular reconstruction of the anterior cruciate ligament. An experimental study of length changes in different ligament reconstructions. Clin Orthop Relat Res:197-202.
  34. Howell SM (1998) Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 6 Suppl 1:S49-55.
  35. Howell SM, Barad SJ (1995) Knee extension and its relationship to the slope of the intercondylar roof. Implications for positioning the tibial tunnel in anterior cruciate ligament reconstructions. Am J Sports Med 23:288-294.
  36. Howell SM, Clark JA, Farley TE (1992) Serial magnetic resonance study assessing the effects of impingement on the MR image of the patellar tendon graft. Arthroscopy 8:350-358.
  37. Howell SM, Taylor MA (1993) Failure of reconstruction of the anterior cruciate ligament due to impingement by the intercondylar roof. J Bone Joint Surg Am 75:1044-1055.
  38. Hulstyn M, Fadale PD, Abate J, Walsh WR (1993) Biomechanical evaluation of interference screw fixation in a bovine patellar bone-tendon-bone autograft complex for anterior cruciate ligament reconstruction. Arthroscopy 9:417-424.
  39. Jagodzinski M, Geiges B, von Falck C, Knobloch K, Haasper C et al. (2010) Biodegradable screw versus a press-fit bone plug fixation for hamstring anterior cruciate ligament reconstruction: a prospective randomized study. Am J Sports Med 38:501-508.
  40. Johnson LL, vanDyk GE (1996) Metal and biodegradable interference screws: comparison of failure strength. Arthroscopy 12:452-456.
  41. Jomha NM, Raso VJ, Leung P (1993) Effect of varying angles on the pullout strength of interference screw fixation. Arthroscopy 9:580-583.
  42. Kaeding C, Farr J, Kavanaugh T, Pedroza A (2005) A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy 21:147-151.
  43. Kamath GV, Redfern JC, Greis PE, Burks RT (2011) Revision anterior cruciate ligament reconstruction. Am J Sports Med 39:199-217.
  44. Kamelger FS, Onder U, Schmoelz W, Tecklenburg K, Arora R et al. (2009) Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants. Arthroscopy 25:767-776.
  45. Kayaalp ME, Collette R, Kruppa P, Flies A, Schaser KD et al. (2021) A Higher Initial Tensioning Force of an ACL Graft Results in a Higher Graft Force After Screw Fixation Irrespective of the Screw Diameter: A Biomechanical Study. Am J Sports Med 49:3825-3832.
  46. Kohn D, Rose C (1994) Primary stability of interference screw fixation. Influence of screw diameter and insertion torque. Am J Sports Med 22:334-338.
  47. Kruppa P, Flies A, Wulsten D, Collette R, Duda GN et al. (2020) Significant Loss of ACL Graft Force With Tibial-Sided Soft Tissue Interference Screw Fixation Over 24 Hours: A Biomechanical Study. Orthop J Sports Med 8:2325967120916437.
  48. Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H et al. (2008) Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part I: effect of initial tension. Am J Sports Med 36:1087-1093.
  49. Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H et al. (2008) Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part II: effect of knee flexion angle. Am J Sports Med 36:1094-1100.
  50. McGuire DA, Barber FA, Elrod BF, Paulos LE (1999) Bioabsorbable interference screws for graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 15:463-473.
  51. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A et al. (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 22:660-668.
  52. Musahl V, Plakseychuk A, VanScyoc A, Sasaki T, Debski RE et al. (2005) Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 33:712-718.
  53. Nicholas SJ, D'Amato MJ, Mullaney MJ, Tyler TF, Kolstad K et al. (2004) A prospectively randomized double-blind study on the effect of initial graft tension on knee stability after anterior cruciate ligament reconstruction. Am J Sports Med 32:1881-1886.
  54. Noh JH, Yang BG, Yi SR, Roh YH, Lee JS (2012) Hybrid tibial fixation for anterior cruciate ligament reconstruction with Achilles tendon allograft. Arthroscopy 28:1540-1546.
  55. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344-352.
  56. Parkar AP, Adriaensen M, Vindfeld S, Solheim E (2017) The Anatomic Centers of the Femoral and Tibial Insertions of the Anterior Cruciate Ligament: A Systematic Review of Imaging and Cadaveric Studies Reporting Normal Center Locations. Am J Sports Med 45:2180-2188.
  57. Pauzenberger L, Syre S, Schurz M (2013) "Ligamentization" in hamstring tendon grafts after anterior cruciate ligament reconstruction: a systematic review of the literature and a glimpse into the future. Arthroscopy 29:1712-1721.
  58. Pierz K, Baltz M, Fulkerson J (1995) The effect of Kurosaka screw divergence on the holding strength of bone-tendon-bone grafts. Am J Sports Med 23:332-335.
  59. Ristanis S, Giakas G, Papageorgiou CD, Moraiti T, Stergiou N et al. (2003) The effects of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending stairs. Knee Surg Sports Traumatol Arthrosc 11:360-365.
  60. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog.
  61. J Bone Joint Surg Am 75:1795-1803. Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34:1790-1800.
  62. Rork PE (2000) "Bungee cord" effect in hamstring tendon ACL reconstruction. Orthopedics 23:184.
  63. Samitier G, Marcano AI, Alentorn-Geli E, Cugat R, Farmer KW et al. (2015) Failure of Anterior Cruciate Ligament Reconstruction. Arch Bone Jt Surg 3:220-240.
  64. Shapiro JD, Jackson DW, Aberman HM, Lee TQ, Simon TM (1995) Comparison of pullout strength for seven- and nine-millimeter diameter interference screw size as used in anterior cruciate ligament reconstruction. Arthroscopy 11:596-599.
  65. Shen C, Jiang SD, Jiang LS, Dai LY (2010) Bioabsorbable versus metallic interference screw fixation in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials. Arthroscopy 26:705-713.
  66. Shen HC, Chang JH, Lee CH, Shen PH, Yeh TT et al. (2010) Biomechanical comparison of Cross-pin and Endobutton-CL femoral fixation of a flexor tendon graft for anterior cruciate ligament reconstruction--a porcine femur-graft-tibia complex study. J Surg Res 161:282-287.
  67. Peirs A, Simon D, Lapner P (2010) Evaluation of a new femoral fixation device in a simulated anterior cruciate ligament reconstruction. Arthroscopy 26:351-357.
  68. Staubli HU, Rauschning W (1994) Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc 2:138-146.
  69. Weiler A, Hoffmann RF, Bail HJ, Rehm O, Sudkamp NP (2002) Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:124-135.
  70. Weiler A, Hoffmann RF, Siepe CJ, Kolbeck SF, Sudkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28:356-359.
  71. Weiler A, Peine R, Pashmineh-Azar A, Abel C, Sudkamp NP et al. (2002) Tendon healing in a bone tunnel. Part I: Biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:113-123.
  72. Whitehead TS (2013) Failure of anterior cruciate ligament reconstruction. Clin Sports Med 32:177-204.
  73. Willinger L, Athwal KK, Williams A, Amis AA (2021) An Anterior Cruciate Ligament In Vitro Rupture Model Based on Clinical Imaging. Am J Sports Med 49:2387-2395.
  74. Wolfson TS, Mannino B, Owens BD, Waterman BR, Alaia MJ (2021) Tunnel Management in Revision Anterior Cruciate Ligament Reconstruction: Current Concepts. Am J Sports Med 10.1177/03635465211045705:3635465211045705.
  75. Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C et al. (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon . A cadaveric study comparing anterior tibial and rotational loads.
  76. J Bone Joint Surg Am 84:907-914. Yoshiya S, Andrish JT, Manley MT, Bauer TW (1987) Graft tension in anterior cruciate ligament reconstruction. An in vivo study in dogs.
  77. Am J Sports Med 15:464-470. Zantop T, Diermann N, Schumacher T, Schanz S, Fu FH et al. (2008) Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am J Sports Med 36:678-685.
  78. Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ et al. (2006) Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-d,l-lactide, and poly-d,l-lactide-tricalcium phosphate screws. Arthroscopy 22:1204-1210.