Skip to main content
Erschienen in: BMC Pediatrics 1/2022

Open Access 01.12.2022 | Research

A review of infant growth and psychomotor developmental outcomes after intrauterine exposure to preeclampsia

verfasst von: Priya Vakil, Amanda Henry, Maria E. Craig, Megan L. Gow

Erschienen in: BMC Pediatrics | Ausgabe 1/2022

Abstract

Preeclampsia is a hypertensive disorder of pregnancy with serious health implications for mother and their offspring. The uteroplacental vascular insufficiency caused by preeclampsia is associated with epigenetic and pathological changes in the mother and fetus. However, the impact of preeclampsia in infancy (birth to 2 years), a time of rapid development influenced by pre- and postnatal factors that can predict future health outcomes, remains inconclusive. This narrative review of 23 epidemiological and basic science studies assessed the measurement and impact of preeclampsia exposure on infant growth and psychomotor developmental outcomes from birth to 2 years. Studies assessing infant growth report that preeclampsia-exposed infants have lower weight, length and BMI at 2 years than their normotensive controls, or that they instead experience accelerated weight gain to catch up in growth by 2 years, which may have long-term implications for their cardiometabolic health. In contrast, clear discrepancies remain as to whether preeclampsia exposure impairs infant motor and cognitive development, or instead has no impact. It is additionally unknown whether any impacts of preeclampsia are independent of confounders including shared genetic factors that predispose to both preeclampsia and childhood morbidity, perinatal factors including small for gestational age or preterm birth and their sequelae, and postnatal environmental factors such childhood nutrition. Further research is required to account for these variables in larger cohorts born at term, to help elucidate the independent pathophysiological impact of this clinically heterogenous and dangerous disease.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ASQ
Ages and Stages Questionnaire
BMI
Body Mass Index
BSID-II/III
Bayley Scales of Infant Development (2nd ed./3rd Edition)
CVD
Cardiovascular disease
DOHaD
Developmental Origins of Health and Disease
FGR
Fetal growth restriction
JBI
Joanna Briggs Institute
MDI
Mental developmental index
PDI
Psychomotor developmental index
SD
Standard deviation
SGA
Small for gestational age
VLBW
Very low birthweight
WHO
World Health Organisation

Introduction

Approximately 3–5% of women worldwide experience preeclampsia, a multisystem hypertensive disorder of pregnancy (Table 1) [13]. Preeclampsia represents a significant maternal health burden with complications including perinatal mortality and increased lifetime risks of cardiometabolic diseases such as hypertension, stroke, ischaemic heart disease and type 2 diabetes mellitus [2, 49].
Table 1
Hypertensive disorders of pregnancy: definitions and associated features
Hypertensive Disorder
Definition of hypertension
Associated Features
Chronic hypertension
Onset before pregnancy or before 20 weeks’ gestation:
 −  ≥ 140 mmHg SBP or
 −  ≥ 90 mmHg DBP
 − Mainly due to essential hypertension
 − 24-h ambulatory BP monitoring assists the exclusion of white-coat hypertension
 − Risk factor for preeclampsia, maternal CVD and FGR
Gestational hypertension
New onset at or after 20 weeks’ gestation:
 −  ≥ 140 mmHg SBP or
 −  ≥ 90 mmHg DBP
 − May be transient in nature, arising and settling in the 2nd-3rd trimester
 − 25% will progress to preeclampsia
 − Return to normal BP postpartum with no antenatal proteinuria or maternal end-organ dysfunction
 − Increased future risk of maternal CVD
Preeclampsia
New onset at or after 20 weeks’ gestation with end-organ dysfunction:
 −  ≥ 140 mm Hg SBP or
 −  ≥ 90 mm Hg DBP
New onset of ≥ 1:
 − Proteinuria
 − Acute Kidney Injury
 − Elevated liver transaminases
 − Neurological complications
 − Thrombocytopenia
 − Uteroplacental dysfunction
 − FGR
 − HELLP syndrome (haemolysis, elevated liver enzymes, thrombocytopaenia)
Eclampsia
New onset of antenatal, intrapartum or postpartum tonic–clonic, focal, or multifocal seizures without other causative conditions
Often preceded by:
 − Severe and persistent occipital or frontal headaches
 − Blurred vision
 − Photophobia
 − Altered mental status
Abbreviations: BP Blood pressure, CVD Cardiovascular disease, DBP Diastolic blood pressure, FGR Fetal growth restriction, mmHg millimetres of mercury, SBP Systolic blood pressure
In preeclampsia, pathological mechanisms such as uteroplacental vascular insufficiency create an unfavourable intrauterine environment [10, 11], which lead to many extensively studied fetal and neonatal complications [2, 7, 1015]. In children and adults, intrauterine preeclampsia exposure is associated with an increased risk of cardiovascular, metabolic, immune, respiratory, and neurodevelopmental morbidities [10, 1621]. One explanation is the Developmental Origins of Health and Disease (DOHaD) hypothesis, which suggests that the fetal adaptation to the adverse intrauterine environment increases future chronic disease risk [10]. Alternatively, others suggest that shared genetic or environmental risk factors predispose to future maternal and paediatric morbidity [16, 22].
There is some evidence for impaired growth and psychomotor neurodevelopment in infancy (birth to 2 years) after preeclampsia exposure [23, 24], but much of the existing data are limited by their minimal adjustment for perinatal confounders, the variable use of assessment tools for growth and development, and their specific study cohorts of preterm or very low birthweight (VLBW) infants (Table 1 and 2). Robust early detection of abnormal growth and development trajectories may aid the development of novel therapeutic interventions to improve childhood health outcomes for infants exposed to preeclampsia. We aimed to determine whether infants with intrauterine preeclampsia exposure, compared to infants born from normotensive pregnancies, have differing anthropometric growth outcomes and psychomotor developmental outcomes from birth to 2 years of age. Thus, we review the fetal, neonatal and long-term consequences of preeclampsia exposure, discuss differing ways to measure infant growth and developmental outcomes, and review studies of infant growth and psychomotor development associated with preeclampsia exposure.
Table 2
Studies assessing the impact of preeclampsia exposure on growth in infancy (birth – 2 years)
First Author (Year)
Study Type
Exposure (Number)
Outcomes Assessed
Main Findings at 2 Yearsa (PE versus NTP-exposed infants)
Adjusted Confounders
Comments
Szymonowicz (1987) [23]
Prospective case–control
PE (35) NTP (35)
Weight
PE lower
Nil
Cohort: preterm, VLBW infantsb
ROB: Low
Length
ND
Head circumference
Martikainen
(1989) [24]
Prospective cohort
PE (31 preterm, 40 term)
NTP (128 preterm, 175 term)
Weight
Length
Preterm: PE lower
Term: ND
Infant sex, GA
Also assessed other HDPs
Cohort stratified by hypertension exposure, prematurity and SGA status. Assessed 18-month outcomes
ROB: Low
Weight gain
Length gain
Term PE: greater catch up than preterm PE infants
Head circumference
Preterm: ND
Term: PE higher
Cheng (2004) [25]
Retrospective cohort
PE (28)
NTP (61)
Weight
ND
Nil
Cohort: very preterm (< 32 weeks), VLBW infantsb. Small sample size
ROB: Low
Length
Head circumference
Silveira (2007) [26]
Prospective cohort
PE (40)
NTP (46)
Weight,
Weight-for-age
PE lower, slower catch-up weight in VLBW PE than VLBW NTP
GA
Cohort: preterm, VLBW infantsb. Assessed 12, 18-month outcomes
ROB: Low
Length-for-age
ND
Head circumference
PE lower
Weight-for-length
Davis (2015) [18]
Prospective cohort
C-HTNc (89)
NTP (1434)
Weight
ND
Infant sex, GA, birthweight
Grouped PE and GH causing preterm birth into C-HTN
Assessed 12-month outcomes. Assessed growth and CVD risk to 20 years
ROB: Low
Length
BMI
Byberg (2017) [27]
Nested case–control
S-PEc (54)
M/M-PEc (164)
NTP (385)
Weight z-score
PE lower (all)
Infant sex, age
Maternal age, BMI, antenatal smoking, education
Considered severity of PE
Assessed growth to 13 years
No adjustment for GA or birthweight
ROB: Low
Length z-score gain
M/M-PE boys greater, S-PE boys and all girls lower
BMI
MM-PE girls greater, S-PE girls and all boys lower
Matić (2017) [28]
Retrospective cohort
GH/PE (261)
NTP (1212)
Weight
GH/PE lower
Nil
Grouped PE and GH
Cohort: 2–3 year old infants born very preterm (< 29 weeks)b. Powered for chronic lung disease and neurodevelopment
ROB: Low
Length
Head circumference
Gunnarsdottir (2018) [29]
Retrospective cohort
S-PEc + M/M-PEc (865)
NTP (22,898)
Length z-score
S-PE lower
Infant sex, GA, birthweight, SGA status, breastfeeding status
Maternal age, parity, height, BMI, diabetes, smoking, education, country of birth
Paternal smoking
Assessed 18-month outcomes. Assessed growth from birth to 5 years. No adjustment for paternal factors influencing length
ROB: Low
Length gain
All PE greater, especially S-PE than M/M-PE infants, partly associated with GA
Huang (2020) [30]
Prospective cohort
PE (24)
NTP (168)
BMI
PE greater
Infant sex, GA, birthweight
Maternal age, parity, gestational diabetes mellitus, education, marital status
Considered association of both gestational diabetes mellitus and PE on growth. Assessed 18, 24-month outcomes. Assessed growth to 6 years. Small sample size
ROB: Low
Gow (2021) [31]
Prospective cohort
PE (84)
NTP (298)
Weight
Weight z-score
PE lower
Infant sex, GA, NICU/SCN stay length, feeding status, labour onset, mode of delivery
Maternal age, weight, BMI, parity, ethnicity, smoking, education
Assessed 6-month outcomes
ROB: Low
Weight gain
PE greater
Weight z-score gain Rapid weight gain
Conditional weight gain
ND, any SGA greater than not SGA
Length
Length z-score
PE lower
ND
Length gain
Length z-score gain
PE greater
ND
BMI
ND
Jasper (2021) [32]
Retrospective cohort
PE (659)
NTP (1909)
Rate of weight z-score gain
ND
Infant birthweight, GA, head circumference, multiple birth, postnatal hospitalisation, year of birth, mode of delivery, perinatal complications
Maternal age, BMI, ethnicity, SES
Cohort: preterm infantsb
Many perinatal exposures assessed, including PE
ROB: Low
Abbreviations: BMI Body mass index, C-HTNc Complicated hypertension exposed, CVD Cardiovascular disease, FGR Fetal growth restriction, GA Gestational age at birth, GH Gestational hypertension, M/M-PEc Mild/moderate preeclampsia, ND No difference, NICU/SCN Neonatal intensive care unit/special care nursery, NTP Normotensive pregnancy, PE Preeclampsia, ROB Risk of bias, SGA Small for gestational age, S-PEc Severe preeclampsia, VLBW Very low birth weight
aAll results in the ‘Main Findings’ column are of infant growth outcomes at 2 years, unless specified in the ‘Comments’ column. Any study that continued reporting outcomes beyond 2 years is also specified
bPreterm birth was defined as birth < 37 weeks’ gestation. VLBW was defined as birthweight < 1500 g. SGA birth was defined as birthweight corrected for gestational age < 10th centile. Study-specific definitions of ‘very preterm’ are specified in the ‘Comments’ column
cMild/moderate PE and severe PE definitions differed between studies: Davis et al. (2015) [18] combined PE and gestational hypertension severe enough to result in preterm delivery into C-HTN; Byberg et al. (2017) [27] used criteria developed by the CLASP study based on blood pressure and proteinuria levels at GA 20 weeks [33, 34]; Gunnarsdottir et al. (2018) [29] used the WHO ICD-10 classifications [35]

Methods

We searched PubMed, Medline and Embase using search terms: preeclampsia AND (infant OR child) AND (growth OR weight OR length OR development OR neurodevelopment), Google Scholar with key words preeclampsia, hypertensive disorders of pregnancy, child, infant, growth, development, neurodevelopment, health, and the gray literature to identify cohort or case–control studies, published any date to 31st October, 2021, without language restriction or full-text restriction, that assessed infant growth or development after preeclampsia exposure.
Inclusion criteria were outcome data on infant growth (weight, length, BMI, weight for age, weight for length, growth trajectories and other anthropometric measures) and psychomotor neurodevelopment (gross and fine motor, expressive and receptive communication, social, personal and cognitive skills) from birth up to and including 2 years of age in infants with intrauterine preeclampsia exposure. Studies were also included if other hypertensive disorders of pregnancy such as gestational hypertension, were combined with preeclampsia or included as a separate exposure group in addition to preeclampsia exposure, or if preeclampsia exposure was stratified according to severity or timing of onset, for example, in the case that no normotensive group was compared. Studies were excluded if they only reported birth outcomes, did not include outcomes reported between birth to 2 years of age, but were included if they reported later outcomes in addition to this age range. Studies were also excluded if data were reported on other hypertensive disorders not including preeclampsia.
Eligible studies were critically appraised by two reviewers (PV and MLG) for methodological quality using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Cohort Studies and Case–Control Studies, with possible answers including “yes”, “no”, “unclear” or “not applicable” [36]. After discussion and agreeance between reviewers about cut-off values as suggested in the JBI Manual for Evidence Synthesis, the studies were categorised as either of low risk (≥ 70% “yes”), moderate risk (50–69% “yes”), or high risk (< 50% “yes”) of bias [36, 37].

Background

Intrauterine complications of preeclampsia and the DOHaD hypothesis

Barker et al. [3841] were the first to suggest that a chronic, non-communicable disease in adulthood- ischaemic heart disease, was associated with exposure to an intrauterine environment that inhibited fetal growth and nutrition. Barker’s hypothesis was extended by studies that controlled for confounders including gestational age at birth, genetic risk factors and postnatal environmental factors [19, 42]. They found independent associations between fetal growth restriction (FGR) and a wider range of chronic diseases, resulting in the DOHaD hypothesis.
Epigenetics refers to phenotype changes caused by alterations in gene expression rather than hereditary changes in the DNA sequence itself. Epigenetic changes occur in both developing and differentiated tissue through mechanisms including DNA methylation, histone modification and the action of micro- and noncoding-RNAs [4345]. These mechanisms can be influenced by the perinatal maternal, paternal and postnatal environment, and in line with the DOHaD hypothesis, may impact the offspring’s future health [45]. Although the pathogenesis of preeclampsia is incompletely understood, proposed mechanisms include immunological imbalances, pre-existing comorbidities including obesity and chronic hypertension, and epigenetic changes in the placenta and maternal circulation, which lead to defective placentation and incomplete trophoblast invasion into the myometrial spiral arteries in early pregnancy. Subsequent angiogenic imbalances, placental hypoperfusion and ischaemia, and systemic maternal inflammation and oxidative stress occur, with associated fetal endothelial dysfunction, hypoxia and malnutrition of varying severity [11, 43, 44]. It is hypothesised that the fetus undergoes ‘developmental programming’ as an adaptation to this adverse intrauterine environment, which may increase their future risk of morbidity [4345] (Fig. 1).
The DOHaD hypothesis suggests that greater intrauterine preeclampsia-exposure, irrespective of shared genetic or lifestyle factors, has a programming effect that impacts the child’s development of morbidities. For example, a large population-based cohort study (n = 758,524) [46] demonstrated a higher relative risk of long-term morbidity in offspring the longer the intrauterine preeclampsia-exposure. However, the investigators were unable to control for maternal body mass index (BMI), smoking, lifestyle factors or diet, all possible contributors to childhood morbidity. In sibling studies, children exposed to preeclampsia had increased vascular dysfunction [19] and higher risks of developing neurodevelopmental morbidities [47] than their unexposed sibling, supporting an intrauterine programming effect of preeclampsia.
Conversely, others suggest that shared genetic or environmental risk factors that predispose to future paediatric morbidity, or even preeclampsia itself such as maternal cardiometabolic disease, are responsible for the increased disease risk observed in exposed children [16, 22] (Fig. 1). This may also explain why late-onset preeclampsia with uteroplacental disease of differing severity, or gestational hypertension, which does not typically demonstrate the intrauterine complications of preeclampsia, are also associated with increased risks of childhood morbidity [3, 4850].
Figure 1: In the prenatal, perinatal, and postnatal periods, factors associated with preeclampsia such as genetic risk factors shared between parent and child, intrauterine changes, and external environmental influences including neonatal complications, parent health behaviours and the postnatal lifestyle, may contribute to altered childhood health outcomes. These factors can directly influence childhood growth and development, or may induce epigenetic reprogramming during fetal and neonatal development that can subsequently increase child future chronic disease risk. Created with BioRender.com

Perinatal and neonatal outcomes after preeclampsia exposure

Preeclampsia is associated with adverse fetal outcomes including FGR, placental abruption, stillbirth, and neonatal mortality [7, 51]. Approximately 12–33% of preeclampsia-exposed neonates are born small for gestational age (SGA, birthweight z-score corrected for sex and gestational age < 10th centile) [5255]. Delivery is the only definitive management of preeclampsia to prevent progression to end-organ damage [56]. Subsequently, many neonates are born premature, with associated sequelae including nursery admission, respiratory distress syndrome, bronchopulmonary dysplasia, and sepsis [7, 12, 57].
Clinically, preeclampsia is a heterogenous disorder with poorer perinatal outcomes generally associated with early-onset (< 34 weeks’ gestation) and preterm (34 – 36 + 6 weeks’ gestation) preeclampsia compared to that diagnosed at term (≥ 37 weeks). This may be due to the complications of preterm delivery, or longer fetal exposure to the adverse intrauterine environment, resulting from the greater uteroplacental dysfunction in early-onset (versus term) preeclampsia [13, 49, 50, 58]. Nonetheless, the intrauterine and perinatal complications of preeclampsia are associated with adverse paediatric outcomes [59].

Long-term paediatric outcomes after preeclampsia exposure

Preeclampsia exposure has been associated with increased long-term paediatric cardiometabolic risk, including increased blood pressure [16, 6064] and BMI [16, 17, 63], altered cardiac structure [65] and vascular function [19, 66], and increased stroke [67] and hypertension risk [21, 67]. While preeclampsia exposure has also been associated with increased risks of neurodevelopmental disorders including autism spectrum disorder [6871], attention deficit hyperactivity disorder [7274], epilepsy [75, 76], impaired motor development [77, 78], mild cognitive impairment or neurodevelopmental delay [7983], cerebral palsy [8486] and mood disorder symptoms [87], some studies suggest it has a neuroprotective effect [88]. Furthermore, preeclampsia is linked to immunological impairment in exposed offspring, including increased risk of asthma and other respiratory diseases [20, 75, 89, 90], atopy and allergic sensitisation [9092], and allergic rhinoconjunctivitis [92].
The strengths of these studies are that most had relatively large sample sizes and adjusted for putative genetic and lifestyle confounders, including maternal demographic variables like BMI, prior comorbidities and ethnicity, and neonatal factors including prematurity status, gestational age, SGA status, and special care nursery stay [7, 10, 59, 93]. However, heterogenous findings between studies could be explained by the nonstandard adjustment of these potential confounders, and further replication of results is needed for lesser studied morbidities such as stroke [67] and allergic rhinoconjunctivitis [92]. Furthermore, few studies adjusted for confounding lifestyle factors such as childhood nutrition [10] which influence cardiometabolic health, and despite adjustment for maternal CVD, the genetic inheritability of chronic morbidities like CVD are difficult to exclude. Furthermore, few studies considered preeclampsia severity or onset, which, given the clinically heterogeneity of preeclampsia, may significantly alter paediatric outcomes [93]. Hence, while the longer-term paediatric consequences of preeclampsia have been investigated, more targeted research is needed to validate and replicate current findings, and disentangle the impact of genetic and lifestyle factors from preeclampsia exposure itself.

Infant growth after preeclampsia exposure

Growth in infancy (birth – 2 years) is rapid, non-linear, and a key indicator of health and nutritional status. Infant growth is influenced by many factors including genetics, feeding patterns, nutrient composition, metabolic and hormonal signals, environmental influences and underlying pathological processes [9496]. Rapid growth in infancy can reflect underlying genetic, cardiovascular, metabolic, endocrine, or gastrointestinal morbidities including preeclampsia exposure, and is associated with increased future risks of obesity, metabolic syndrome, and CVD. Poor growth in infancy may indicate poor nutritional status, underlying genetic conditions or morbidity associated with FGR such as that experienced in preeclampsia, and is associated with later neurological, cardiovascular, renal, and respiratory morbidity [9498]. Elucidating the impact of preeclampsia on growth is hence of utmost clinical significance.

Assessment of infant body composition

Body composition assessments, including anthropometric measurements of weight, length, head, abdominal and mid-upper arm circumferences, and triceps and subscapular skinfold thicknesses act as clinical screening tools to monitor infant growth and risk of future morbidity [99]. Body proportion metrics derived from height and weight measures include weight-for-length and BMI. Weight-for-length is currently recommended by the World Health Organisation (WHO) and has been adopted internationally to assess body proportionality in infants aged ≤ 2 years [100102]. It considers the positive relationship between height and weight and is a useful indicator of nutritional status when infant age is unknown, however it is not adjusted for age-dependent variations and is a suboptimal indicator of adiposity [103105]. In contrast, BMI (weight in kilograms/ height in metres squared) has a higher correlation with fat mass, fat-free mass and percent body fat z-scores than weight-for-length. It is also adjustable for infant age, including gestational age, to assess infant growth over time [104106]. Although the ponderal index (weight in grams × 100/ length in centimetres cubed) has been considered a more appropriate measure of proportional growth in preterm infants in the past, BMI may have a stronger correlation with fat measures and is also a suitable measure of preterm infant body proportionality [107]. Considering BMI z-scores are currently recommended for assessing growth in children older than 2 years, measuring BMI in infancy may also provide a more consistent growth assessment in primary care settings [104106]. However, one large prospective cohort study found the choice of weight-for-length compared to BMI z-scores did not greatly affect the association with future cardiometabolic outcomes, suggesting either are suitable measures of infant growth [106].

Assessment of longitudinal infant growth

The WHO Child Growth Standards charts are validated standards to calculate an infant’s age- and sex-adjusted growth relative to the population mean [100, 101]. The Fenton Preterm Growth Charts, revised in 2013, are established standards developed to assess the size of preterm infants at birth [108]. However, they do not consider the postnatal physiological weight loss experienced by infants in the first days of life, and thus are unsuitable for assessing the longitudinal growth of preterm infants [109]. The INTERGROWTH-21(st) Preterm Postnatal Growth Standards [110] may be more accurate for preterm populations as they consider the differing postnatal growth patterns in the first 6 months that preterm neonates experience. They were developed from the postnatal growth of preterm infants born without morbidity from uncomplicated pregnancies across 8 countries, and have high concordance with the Fenton Preterm Growth Charts, identifying slightly greater numbers of SGA infants at birth. Importantly, these additional infants identified had higher incidences of morbidity than those identified by the Fenton Charts, supporting the use of the INTERGROWTH-21(st) Standards in preterm populations [111, 112]. However, they were developed from only 201 infants and require further international validation in larger, ethnically and socioeconomically diverse populations. As the postnatal growth of preterm infants converges with term infants by 6 months, the WHO standards are appropriate for all infants 6 months onwards [110].
Weight-for-age z-scores assess longitudinal infant growth, and BMI or weight-for-length z-scores assess proportionality change [101]. Rapid weight gain is defined as a > 0.67 gain in weight-for-age z-score, corresponding to crossing two centile lines on respective growth charts, and is associated with future CVD risk [113]. Infants who suffered FGR and were subsequently born SGA, a common complication of preeclampsia, often experience necessary rapid weight gain as a recovery response to intrauterine undernutrition [114]. This is referred to as ‘rapid catch-up growth’; an example of how infants born on weight extremes may experience natural regression to the mean postpartum [115], and also how infant weight may vary dynamically relative to weight-for-age growth curves [113]. Current interpretations of WHO weight-for-age curves assume children may normally not deviate from their initial weight standard deviation (SD) score [101], and thus weight-for-age changes can represent pathological growth trajectories in otherwise healthy children.
For infants 0–6 months, this limitation of weight-for-age z-scores may be overcome using conditional weight gain z-scores. This compares current infant weight with that predicted from their previous weight to derive a weight gain SD score, and references this to a conditional reference which considers the tendency of infants on the extremes of weight to experience non-pathological regression to the mean [31, 115117]. For infants 6–24 months, including those born premature or SGA, BMI or weight-for-length z-scores are alternative metrics to assess growth that may account for the limitations of weight-for-age z-scores [118].

Results: growth outcomes of infants exposed to preeclampsia

While is it well established that preeclampsia is associated with FGR and both premature and SGA birth, it is still unclear whether preeclampsia has an intrauterine programming effect impacting infant growth trajectories independent of these perinatal and other genetic and lifestyle confounders [15, 57, 119]. Furthermore, although all classifications of preeclampsia are considered clinically significant and potentially life-threatening for mother and child [50], early onset or more severe preeclampsia may reflect greater placental dysfunction that can impact fetal, neonatal and childhood growth differently to later onset, mild or moderate disease [49].
Our search identified 11 studies that assessed infant growth outcomes after preeclampsia exposure. All studies were assessed with the JBI tool to have a low risk of bias. (Table 2). Six of these reported that infants exposed to preeclampsia had lower weight and BMI throughout infancy, remaining smaller at multiple timepoints from birth to 2 years than infants of normotensive pregnancies [23, 24, 2628, 31]. Two cohort studies of preterm, VLBW (< 1500 g) infants, found those exposed to preeclampsia had significantly lower absolute weight, weight z-scores and weight-for-length z-scores throughout infancy [23, 26]. In preterm infants, two studies also report an association with preeclampsia and lower weight [24, 28], however the latter study grouped preeclampsia and gestational hypertension exposure and found no difference in weight in term infants compared to those born from normotensive pregnancies. While this suggests that the impact of preeclampsia may vary across the gestational spectrum, it may instead reflect the impact of early-onset or more severe preeclampsia that is often the cause of premature birth [49, 50]. This is supported by Byberg et al. (2017), who reported lower BMI z-scores from infancy in those exposed to more severe preeclampsia [27]. However, although these studies demonstrate associations between preeclampsia and poor infant growth, they did not adjust for the confounding influence of premature or VLBW birth, which are independently associated with infant growth restriction [15, 24, 57, 119]. This limits the isolation of the specific pathophysiological implications of preeclampsia exposure independent of these confounders.
In contrast, three studies have reported no difference in weight or BMI in infants exposed to preeclampsia or normotensive pregnancies in late infancy [24, 25, 120]. Davis et al. (2015) [18] reported preeclampsia and gestational-hypertension-exposed neonates were not significantly smaller in birthweight when adjusted for gestational age and had no differences in weight z-score or BMI at 12 months compared to infants of normotensive pregnancies. However, Martikainen et al. (1989) [24] reported that preeclampsia-exposed infants who were born significantly smaller at term, similarly had no difference in weight to normotensive infants by 18 months, suggesting they had an accelerated growth trajectory that enabled ‘catch up’ growth. This may suggest a relationship of preeclampsia exposure with accelerated growth independently, or in conjunction with SGA birth that, although associated with impaired infant growth in some infants, is a cause of rapid weight gain in others as a response to intrauterine undernutrition [114, 115]. Both Gow et al. (2021) [31] and Jasper et al. (2021) [32] investigated this relationship, and while they reported associations between preeclampsia exposure and weight gain throughout infancy, preeclampsia exposure was no longer a significant contributor to this catch-up growth after full adjustment for confounders like SGA status and maternal BMI. Overall, this suggests that the pathological mechanisms of preeclampsia may have no independent impact on infant weight gain. However clinically, preeclampsia and its associated comorbidities have been associated with increased growth trajectories and rapid weight gain, leading to greater BMIs in late infancy [30], greater weight and BMI from school age onwards in females especially [27], and a threefold risk of being hypertensive by age 20 [18].
Similar discrepancies regarding infant length and length gain are present. Although Martikainen et al. (1989) [24] and Matić et al. (2017) [28] reported that in preterm infants, those exposed to preeclampsia continued to have lower lengths in late infancy, this trend did not persist for term infants, potentially reflective of the impact of more severe or early-onset PE that these preterm infants may have experienced. Five other studies reported no difference in length or length z-scores in late infancy [18, 23, 25, 26, 31], reflecting either minimal differences in length at birth between groups, or for preeclampsia-exposed infants born small, the catch-up growth they experienced. Interestingly, while Gunnarsdottir et al. (2018) [29] reported no length differences in infants exposed to mild or moderate preeclampsia versus normotensive pregnancies, those with severe preeclampsia exposure had lower length z-scores at 18 months. This supports the notion that preeclampsia may encompass pathologically diverse diseases grouped by onset or severity that impact infant growth heterogeneously. In infants exposed to severe preeclampsia, Gunnarsdottir et al. (2018) [29] additionally reported greater absolute length gain, while Gow et al. (2021) [31] reported no difference in length z-score gains, and Byberg et al. (2017) [27] lower length z-score gains. The heterogenous findings of these studies may be partially mediated by gestational age and SGA status.
Head circumference differences between infants exposed to preeclampsia versus normotensive pregnancies have also been explored [2326, 28]. In preterm or VLBW infants, preeclampsia exposure seems to minimally contribute to differences in head circumference, or be associated with lower head circumferences throughout infancy [2326, 28]. When considering only those born at term, Martikainen et al. (1989) [24] demonstrated that preeclampsia exposure was associated with larger head circumferences. While potentially confounded by the influence of SGA status, this finding may suggest an independent impact of preeclampsia, and support the differences between severe, earlier-onset preeclampsia more common in preterm infants, versus the moderate or later onset disease positively associated with growth in term infants.
In general, there are many discrepancies between the studies assessing the impact of preeclampsia exposure on growth. Despite demonstrating low risks of methodological bias, these studies had limitations such as differing adjustment for confounders due to a lack of collected data, specific cohorts of premature or VLBW infants, or deliberate choice to consider the intermediate relationship of the confounder with preeclampsia and growth [27]. Furthermore, lack of adjustment for postnatal infant nutrition and other environmental influences may lead to an overestimation of the impact of preeclampsia exposure. Also, certain studies had smaller sample sizes [23, 25, 30], were designed to assess multiple perinatal comorbidities rather than preeclampsia specifically [18, 30, 32], or compared differing subgroups of preeclampsia severity [18, 27, 29]. As such, the impact of intrauterine preeclampsia exposure on growth in infancy, either independent of confounders like SGA or prematurity status in line with the DOHaD hypothesis, or in conjunction with inherited genetics that predispose to both preeclampsia and cardiometabolic disease, remain uncertain. Nevertheless, preeclampsia exposure remains a clinically significant risk factor that highlights opportunities to monitor infants into later childhood, and may indicate a need for early clinical intervention.

Infant development after preeclampsia exposure

Infant psychomotor development refers to the maturation of the brain and central nervous system in four main domains: gross and fine motor skills, speech and language, performance and cognition, and social and personal skills [121]. Despite being a dynamic process influenced by genetic, perinatal, and environmental factors, normal development generally occurs in an ordered and sequential pattern correlating to age-dependent developmental milestones [121, 122].

Assessment of infant development

Developmental assessment is a longitudinal process involving joint surveillance by both clinicians and parents [123]. Developmental screening tools assist the identification of potential developmental delay, defined in infants as > 2SDs below the mean on age-appropriate standardised testing [124]. The Ages and Stages Questionnaire (ASQ) [125], Parents Evaluation of Developmental Status [126] and Survey of Well-being of Young Children [127] are commonly used, parent-completed screening surveys that assess many domains including fine and gross motor, receptive and expressive communication, problem solving, and personal or social skills. These tools consider parental observation which may increase their sensitivity [123, 128130], however, they may not be suitable for infants younger than 4 months or those with special needs [125, 127, 129]. The Parent Report of Children’s Abilities-Revised [131, 132] is useful for screening preterm infants, while the parent-completed Child Development Inventory [133] can assist identification of children with special needs [129, 133]. Similarly, the child-administered Battelle Developmental Inventory Screening Tool, 2nd edition [134, 135] can be modified for special needs children to assess psychomotor development. The Denver Developmental Screening Test, 2nd edition [136] and the Brigance Screens [137] also assess infant psychomotor domains through direct elicitation and observation of the child, however are longer to administer (10–20 min) than parent-completed surveys [129, 137]. While these screening tools are generally simple, quick and cost effective to implement in a primary care setting, they are not diagnostic, so children identified at risk of developmental delay require specialist diagnostic developmental assessment [121, 123].
While no gold standard assessment tool exists, the Bayley Scales of Infant Development 2nd (BSID-II) [138] and 3rd (BSID-III) [139] editions are the most commonly used and validated psychometric assessments used in infancy for both clinical and research purposes [122, 123]. These assessments assist the identification, and for the BSID-III, quantification of developmental delay in infant psychomotor (PDI) and mental (MDI) developmental indices. While the BSID-II MDI score was additionally useful in determining cognitive function in preterm or low birthweight infants, the BSID-III may have reduced sensitivity in these populations [140], and both are long assessments which may provide more difficulty for clinician, parent and infant [122, 123, 140]. The Griffiths Mental Development Scale, 2nd Edition [141] is another assessment with concurrent validity to the BSID-II that may be more successful than the BSID-II at detecting motor delays in infancy, however it may not be as sensitive for detecting speech and language delay. It also has a subsequent scale from ages 2–8, which may be useful for longitudinal childhood developmental surveillance [122, 141]. Furthermore, assessment tools like the Mullen Scales of Early Learning [142] may be useful for assessing the cognitive development of infants without or with autism spectrum disorder or known developmental delay. While many developmental assessments measure similar domains and have concurrent validity, scores are often measured on differing scales and thus clinically, should not be interchanged between tools to prevent inaccurate approximation of infant ability [122, 143].

Results: developmental outcomes of infants exposed to preeclampsia

Although intrauterine preeclampsia exposure has been associated with impaired psychomotor development in older children, adolescents, and adults [83, 144], there are uncertainties regarding its effects on psychomotor development in infancy (birth – 2 years).
Our search identified 17 studies assessing infant psychomotor development after preeclampsia exposure. All studies were assessed with the JBI tool to have a low risk of bias. (Table 3). Most studies were conducted on specific populations of infants, such as those born preterm, of VLBW or SGA, comorbidities independently associated with poorer neurodevelopment [15, 145147]. For example, in cohorts of preterm infants, Spinillo et al. (1994) [148] reported lower BSID mental and psychomotor developmental index scores, and Johnson et al. (2015) [149] poorer cognitive outcomes, in 2 year old infants exposed to preeclampsia after adjustment for SGA status and other covariates. Similarly, Martikainen et al. (1989) demonstrated infants exposed to preeclampsia born preterm had poorer fine motor skills and visuo-auditory perception at 18 months than normotensive controls, while term infants had better motor skills, visuo-auditory perception and social abilities. This may reflect the impact of more severe or early-onset preeclampsia, which are associated with greater uteroplacental deficiencies and are often the cause of preterm birth [49, 150]. In contrast, other studies in preterm populations reported no difference in infant neurodevelopmental outcomes after preeclampsia exposure alone [151, 152] or after grouped preeclampsia and gestational hypertension exposure [28] after adjustment for confounders. Schlapbach et al. (2010) [152] further demonstrated that postnatal complications of preterm birth including mechanical ventilation, bronchopulmonary dysplasia and sepsis had greater associations with poor neurodevelopment than the pathophysiological changes of preeclampsia exposure itself [152].
Table 3
Studies assessing the impact of preeclampsia exposure on infant neurodevelopment in infancy (birth – 2 years)
First Author (Year)
Study Type
Exposure (Number)
Tool
Main Findings at 2 Yearsa (PE versus NTP-exposed infants)
Adjusted Confounders
Comments
Szymonowicz (1987) [23]
Case–control
PE (35)
NTP (35)
BSID
MDI: PE lower
PDI: ND
Nil
Cohort: preterm, VLBW infantsb
ROB: Low
Spinillo (1994) [148]
Case–control
PE (68)
NTP (184)
BSID
MDI: PE lower
PDI: PE lower
Maternal age, SES, education
Cohort: preterm infants, PE group had expectant management
ROB: Low
McCowan (2002) [153]
Prospective cohort
PE/GH (88)
NTP (131)
BSID-II
MDI: PE/GH higher
PDI: ND
ND between < 32 weeks and > 32 weeks
Infant sex, GA, hospital stay, breastfeeding status, perinatal complications
Maternal age, parity, ethnicity, smoking, education
Cohort: SGA infantsb
Grouped PE and GH
Assessed 18-month outcomes
ROB: Low
Cheng (2004) [25]
Retrospective cohort
PE (25)
NTP (54)
BSID-II
MDI: PE lower (mild delay from -1 to -2 SDs), ND (severe delay), ND between SGA PE and SGA NTP
PDI: ND
Infant sex, GA, birthweight, lack of prenatal steroid, PPROM, intraventricular haemorrhage
Maternal/paternal education, chronic lung disease
Cohort: VLBW, very preterm (< 32 weeks) infantsb. Small sample
ROB: Low
Silveria (2007) [26]
Prospective cohort
PE (40)
NTP (46)
BSID-II
MDI: ND
PDI: PE higher
Nil
Cohort: VLBW infantsb
Small sample. Assessed 12, 18-month outcomes
ROB: Low
Spinillo (2009) [154]
Prospective cohort
PE (185)
NTP (596)
BSID-II
MDI: PE higher (female higher than male), SGA lower than non-SGA
Infant sex, GA, proportion of expected birthweight, SGA status, antenatal steroids, placental abruption, praevia, PPROM, non-reassuring fetal heart rate, chorioamnionitis, caesarean section, year of birth, umbilical artery pH =  < 7.2
Maternal age, parity, education, SES, smoking
Cohort: preterm infantsb
ROB: Low
Schlapbach (2010) [152]
Case–control
PE (33)
NTP (33)
BSID-II
MDI: ND
PDI: ND
Infant GA, birthweight, 2-year body weight, bronchopulmonary dysplasia, mechanical ventilation
Cohort: very preterm (< 32 weeks) infantsb
Matić (2017) [28]
Retrospective cohort
PE/GH (261)
NTP (1212)
Griffiths MDS,
BSID-II
ND
Long-term functional disability: SGA status, earlier GA and male sex were significant
Infant sex, GA, birthweight, surfactant therapy
Maternal parity
Grouped PE and GH
Cohort: infants aged 2–3 years, born very preterm (< 29 weeks). Powered to assess chronic lung disease, not just neurodevelopment
ROB: Low
Degirmenci-oglu (2018) [155]
Retrospective cohort
PE (120)
NTP (251)
BSID-II
MDI: PE higher
PDI: ND
Overall neurodevelopmental index: ND
Infant GA, birthweight, asphyxia, sepsis, intraventricular haemorrhage, necrotising enterocolitis
Maternal hypothyroidism
Cohort: VLBW, very preterm (< 32 weeks) infants, but FGR infants were excludedb
Assessed 18- 24-month outcomes
ROB: Low
Martikainen
(1989) [24]
Prospective cohort
GH (14 preterm, 60 term)
PE (31 preterm, 40 term)
NTP (128 preterm, 175 term)
Denver
Term: PE/GH higher motor performance, visuo-auditory perception, and social abilities
Preterm: PE lower fine motor and visuo-auditory perception, SGA lower than non-SGA
Infant sex, GA
Also assessed other HDPs. Cohort stratified by hypertension exposure, prematurity and SGA statusb. Assessed 18-month outcomes
ROB: Low
Gray (1998) [151]
Prospective cohort
GH (14)
PE (79)
NTP (107)
Griffiths-II,
NSMDA
ND
Nil
Cohort: very preterm (24–32 weeks) infantsb
ROB: Low
Johnson (2015) [149]
Prospective cohort
Preterm (638)
Term (765)
PARCA-R
Preterm: PE was independent risk factor for cognitive impairment, preterm lower than term
Infant sex, SGA status
Maternal ethnicity, SES
Cohort: late preterm infants (32–36 weeks)b
Assessed other perinatal variables, including PE
ROB: Low
Wade (2016) [156]
Prospective cohort
HDP (23)
NTP (478)
Many tools- see study
Social cognition: HDP lower
Infant age, sex, GA, birthweight
Maternal age, gestational diabetes mellitus, thyroid problems, SES, smoking status
Grouped PE with other HDPs. Small sample
Assessed 18-month outcomes
ROB: Low
Warshafsky (2016) [80]
Prospective cohort
Mild PE (34)
Severe PE (46)
NTP (103)
ASQ
Severe PE was protective, higher GA reduced risk and FGR increased risk in both groups
Infant sex, GA, SGA status breastfeeding status, MgSO4 usage
Maternal age, parity, ethnicity, smoking, SES, education
Cohort: FGR infants below 5th centile
Removed the mild PE subgroup due to poor numbers. Assessed 12, 24-month outcomes
ROB: Low
Bharadwaj (2018) [157]
Case–control
PE (56)
NTP (61)
DASII
Motor and mental development quotients: PE lower, maternal total antioxidant status was an independent motor development quotient predictor (PE group)
Infant GA, early onset sepsis, respiratory distress syndrome, necrotising enterocolitis
Maternal total antioxidant status, Maternal and cord/baby protein carbonyl levels
No adjustment for SGA or prematurity status
Assessed 12-month outcomes
ROB: Low
Chen (2020) [158]
Prospective cohort
GH (233)
PE (41)
NTP (3669)
GDS
Social Behaviour Development Quotient: GH lower
Neurodevelopmental delay: ND
Infant sex, GA, birthweight, mode of delivery, asphyxia neonatorum
Maternal age, smoking, drinking, education, folic acid supplementation
Also studied chronic hypertension
Assessed 6-month outcomes
ROB: Low
Maher (2020) [159]
Prospective cohort
PE (709)
NTP (10,425)
ASQ
ASQ failure: ND, ND between preterm vs term
Infant sex, SGA, prematurity
Maternal age, ethnicity, BMI, gestational diabetes mellitus, education, SES
PE status determined by maternal recall. Assessed 9-month outcomes
ROB: Low
Abbreviations: ASQ Ages and Stages Questionnaire [125], BSID-II Bayley Scales of Infant Development (2nd edition) [138], C-HTN Complicated hypertension, DASII Developmental Assessment Scale for Indian Infants [160], Denver The Denver Developmental Screening Test [161], FGR Fetal growth restriction, GA gestational age at birth, GDS Gesell Developmental Schedules [162, 163], GH Gestational hypertension, HDP Hypertensive disorder of pregnancy, HTN, Hypertension, MDI Mean developmental index (BSID), MDS Griffiths Mental Development Scale [141], ND No difference, NSMDA Neurosensory Motor Developmental Assessment [164], NTP Normotensive pregnancy, PARCA-R Parent Report of Children’s Abilities- Revised [132], PDI Psychomotor development index (BSID), PE Preeclampsia, PRROM Preterm premature rupture of the membranes, ROB Risk of bias, SES Socioeconomic status, SGA Small for gestational age, VLBW Very low birth weight
aAll results in the ‘Main Findings’ column are of infant developmental outcomes at 2 years, unless specified in the ‘Comments’ column
bPreterm birth was defined as birth < 37 weeks’ gestation. VLBW was defined as birthweight < 1500 g. SGA birth was defined as birthweight corrected for gestational age < 10th centile. Study-specific definitions of ‘very preterm’ are specified in the ‘Comments’ column
When considering infant populations born not only preterm, but also of VLBW or SGA, studies assessing the impact of preeclampsia have reported similarly discrepant findings. Two small studies in VLBW, preterm infants, found those exposed to preeclampsia had lower BSID-II MDI scores at 2 years but no difference in PDI scores, suggesting preeclampsia exposure itself may contribute to poor mental development [23, 25]. However, Cheng et al. (2004) [25] found these differences were only associated with mild neurodevelopmental delay (-1 to -2 SDs from the mean) rather than severe delay (> -2 SDs), and found no differences when controlling for SGA status. In FGR infants, Warshafsky et al. (2016) [80] demonstrated that those exposed to severe preeclampsia were more likely to have failed at least one ASQ category at 12 and 24 months, especially the gross motor category, than those exposed to mild preeclampsia or normotensive pregnancies. This may reflect the clinical variability of mild versus severe disease. Similar to Martikainen et al. (1989) [24] however, they also reported that lower gestational age significantly contributed to the impact of severe preeclampsia, and FGR increased the risk in all groups, suggesting the impacts of preeclampsia on infant neurodevelopment may not be independent of these intermediary morbidities.
Alternatively, studies in these VLBW, SGA or preterm cohorts have suggested preeclampsia exposure may be neuroprotective and associated with a reduced risk of neurodevelopmental delay in one or more subcategories [26, 80, 153155]. Two large cohort studies in preterm cohorts found preeclampsia-exposed infants had higher BSID-II MDI scores at 2 years [154, 155]. Although Spinillo (2009) [154] reported preeclampsia overall was associated with reduced risk of neurodisability, this finding may be explained by their normotensive preterm group being predominantly exposed to spontaneous birth or preterm premature rupture of the membranes, which carry increased risks of infection or inflammation that may be greater associated with abnormal neurodevelopment than preeclampsia exposure itself [154]. Furthermore, Spinillo (2009) [154] reported that although preeclampsia exerted a protective effect overall, the impaired neurodevelopment associated with male sex was higher for preeclampsia-exposed infants than their normotensive counterparts, suggesting a greater vulnerability of male infants to the pathophysiological changes of preeclampsia. Furthermore, McCowan et al. (2002) [153] and Silveira et al. (2007) [26] in SGA or VLBW cohorts, reported that preeclampsia-exposed infants had higher MDI and PDI scores respectively at 18 months. Although suggestive of a neuroprotective effect of preeclampsia, McCowan et al. (2002) [153] grouped preeclampsia and gestational hypertension exposure, and the other causes of SGA birth that normotensive controls were exposed to may mediate this finding, as they may be more strongly associated with neurodevelopmental delay than preeclampsia itself, similar to the complications of preterm birth, [153].
Few studies assessing infant neurodevelopment after preeclampsia exposure have been conducted in mixed cohorts including infants born at term or of an appropriate birthweight. As previously described, Martikainen et al. (1989) [24] found term preeclampsia-exposed infants had greater motor performance, visuo-auditory skills and social abilities at 18 months than both term normotensive, or preterm preeclampsia-exposed infants. In contrast, Wade (2016) [156] reported infants exposed to preeclampsia and other hypertensive pregnancy disorders had poorer social cognition at 18 months after full adjustment for confounders, however their study was retrospective in design, and limited by a small sample of preeclampsia-exposed infants. Similarly, Bharadwaj et al. (2018) [157] using a comparably validated foreign language tool to the BSID-II, reported preeclampsia exposure was independently associated with poorer motor and cognitive development at 1 year. They additionally reported that a lower maternal antioxidant status was an independent predictor of poorer motor development in the preeclampsia-exposed group, suggesting the intrauterine maternal oxidative stress present in preeclampsia may potentially contribute to impaired infant neurodevelopment. However, in larger cohorts, Chen et al. (2020) [158] and Maher (2020) [159] reported no difference in psychomotor developmental outcomes after full adjustment for perinatal confounders.
As such, while preeclampsia may not be associated with neuroprotective impacts in infancy, it remains inconclusive as to whether its underlying pathophysiological mechanisms negatively impact infant neurodevelopment independent of common perinatal confounders. Subsequently, further prospective studies with larger sample sizes, that include term infants born at an appropriate birthweight, and that use validated psychometric assessment tools such as the BSID-II, are indicated to disentangle the relationships of these variables. While these pathophysiological relationships remain unclear, clinically, preterm and SGA birth are common complications experienced by preeclampsia-exposed infants, and hence exposed infants may be at greater risk of neurodevelopmental impairment overall [7, 10, 57]. Although not the focus of this review, preeclampsia exposure may be additionally associated with other neurosensory disabilities including cerebral palsy [85, 165], blindness, deafness and intellectual disabilities [81, 165], which are often studied concurrently to psychomotor development and can assist in providing a greater understanding of the impact of preeclampsia on infant neurodevelopment as a whole.

Limitations

The reviewed literature contains several limitations. Each study varied slightly in their definitions of preeclampsia, with most defining preeclampsia as new onset hypertension > 20 weeks gestation with varying degrees of proteinuria [18, 2427, 29, 30, 32, 80, 148, 153155, 158, 159], some using a broader definition of preeclampsia encompassing features of maternal end-organ dysfunction or uteroplacental insufficiency [23, 31, 151, 152, 157], one combining gestational hypertension and preeclampsia [28], and others poorly defining preeclampsia or relying on maternal report of preeclampsia during pregnancy [149, 156, 159]. Studies used a variety of local and international growth standards, including the WHO Growth Standards, to calculate z-scores for infant anthropometric measures which may not be appropriate for calculating the longitudinal growth outcomes of preterm populations. While studies were assessed as containing a low risk of bias based on methodological quality, the JBI tools do not consider sample size, and the aforementioned variances in study design, exposure definitions, growth assessments and control of confounders allow no definitive conclusions to be drawn, and we acknowledge that as a review article, our interpretation of the literature is subject to bias. However, our review aims to highlight trends in the literature and guide future study design rather than draw definitive conclusions regarding the impact of preeclampsia on child health.

Conclusions

Preeclampsia is a serious pregnancy complication with significant consequences for both maternal and paediatric health. It is well established that preeclampsia causes FGR, SGA and preterm birth, and is associated with increased risk of cardiometabolic, neurodevelopmental and immunological morbidity in later life. Preeclampsia-exposed infants born SGA either do not demonstrate catch-up, especially those exposed to more severe or early-onset preeclampsia, or alternatively may experience rapid weight gain and catch-up growth, however perinatal confounders such as maternal BMI and postnatal feeding may influence this association. While most data suggest preeclampsia exposure may not impair infant motor and cognitive development independent of the influence of preterm and SGA birth, further research is required in larger cohorts born at term, controlling for perinatal confounders, and using standardised and validated assessment measures appropriate for individual child health and demographic characteristics, including gestational age at birth, SGA status, language, and neuropsychological disabilities. These may elucidate how the underlying pathophysiological mechanisms of preeclampsia impact infant health outcomes, and highlight the opportunity for early monitoring of infant growth and development before school age and the onset of later childhood morbidity. These may also indicate the need for novel therapeutic intervention, or early lifestyle intervention such as improving infant feeding practices, to optimise the future cardiometabolic and neurodevelopmental health outcomes of exposed infants. 

Acknowledgements

The authors wish to thank the St. George Obstetric Medicine Research Group, UNSW Medicine School of Women and Children’s Health and Lynne Roberts PhD for their support of this review.

Declarations

Not applicable.
No individual data presented.

Competing interests

None.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Roberts CL, Ford JB, Algert CS, Antonsen S, Chalmers J, Cnattingius S, et al. Population-based trends in pregnancy hypertension and pre-eclampsia: an international comparative study. BMJ Open. 2011;1(1):e000101.PubMedPubMedCentralCrossRef Roberts CL, Ford JB, Algert CS, Antonsen S, Chalmers J, Cnattingius S, et al. Population-based trends in pregnancy hypertension and pre-eclampsia: an international comparative study. BMJ Open. 2011;1(1):e000101.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Gestational Hypertension and Preeclampsia. ACOG Practice Bulletin, Number 222. Obstet Gynecol. 2020;135(6):e237–60.CrossRef Gestational Hypertension and Preeclampsia. ACOG Practice Bulletin, Number 222. Obstet Gynecol. 2020;135(6):e237–60.CrossRef
3.
Zurück zum Zitat Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018;13:291–310.PubMedCrossRef Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018;13:291–310.PubMedCrossRef
4.
Zurück zum Zitat Brown MA, Roberts L, Hoffman A, Henry A, Mangos G, O’Sullivan A, et al. Recognizing Cardiovascular Risk After Preeclampsia: The P4 Study. J Am Heart Assoc. 2020;9(22):e018604.PubMedPubMedCentralCrossRef Brown MA, Roberts L, Hoffman A, Henry A, Mangos G, O’Sullivan A, et al. Recognizing Cardiovascular Risk After Preeclampsia: The P4 Study. J Am Heart Assoc. 2020;9(22):e018604.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2):e003497.PubMedCrossRef Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2):e003497.PubMedCrossRef
6.
Zurück zum Zitat Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. The Lancet. 2016;387(10022):999–1011.CrossRef Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. The Lancet. 2016;387(10022):999–1011.CrossRef
7.
Zurück zum Zitat Bokslag A, van Weissenbruch M, Mol BW, de Groot CJM. Preeclampsia; short and long-term consequences for mother and neonate. Early Human Dev. 2016;102:47–50.CrossRef Bokslag A, van Weissenbruch M, Mol BW, de Groot CJM. Preeclampsia; short and long-term consequences for mother and neonate. Early Human Dev. 2016;102:47–50.CrossRef
8.
Zurück zum Zitat Hermes W, Franx A, van Pampus MG, Bloemenkamp KW, Bots ML, van der Post JA, et al. Cardiovascular risk factors in women who had hypertensive disorders late in pregnancy: a cohort study. Am J Obstet Gynecol. 2013;208(6):474.e1-8.CrossRef Hermes W, Franx A, van Pampus MG, Bloemenkamp KW, Bots ML, van der Post JA, et al. Cardiovascular risk factors in women who had hypertensive disorders late in pregnancy: a cohort study. Am J Obstet Gynecol. 2013;208(6):474.e1-8.CrossRef
9.
Zurück zum Zitat Stuart JJ, Tanz LJ, Missmer SA, Rimm EB, Spiegelman D, James-Todd TM, et al. Hypertensive Disorders of Pregnancy and Maternal Cardiovascular Disease Risk Factor Development: An Observational Cohort Study. Ann Intern Med. 2018;169(4):224–32.PubMedPubMedCentralCrossRef Stuart JJ, Tanz LJ, Missmer SA, Rimm EB, Spiegelman D, James-Todd TM, et al. Hypertensive Disorders of Pregnancy and Maternal Cardiovascular Disease Risk Factor Development: An Observational Cohort Study. Ann Intern Med. 2018;169(4):224–32.PubMedPubMedCentralCrossRef
10.
11.
Zurück zum Zitat Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275–89.PubMedPubMedCentralCrossRef Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275–89.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Nomura Y, John RM, Janssen AB, Davey C, Finik J, Buthmann J, et al. Neurodevelopmental consequences in offspring of mothers with preeclampsia during pregnancy: underlying biological mechanism via imprinting genes. Arch Gynecol Obstet. 2017;295(6):1319–29.PubMedPubMedCentralCrossRef Nomura Y, John RM, Janssen AB, Davey C, Finik J, Buthmann J, et al. Neurodevelopmental consequences in offspring of mothers with preeclampsia during pregnancy: underlying biological mechanism via imprinting genes. Arch Gynecol Obstet. 2017;295(6):1319–29.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Pettit F, Mangos G, Davis G, Henry A, Brown MA. Pre-eclampsia causes adverse maternal outcomes across the gestational spectrum. Pregnancy Hypertens. 2015;5(2):198–204.PubMedCrossRef Pettit F, Mangos G, Davis G, Henry A, Brown MA. Pre-eclampsia causes adverse maternal outcomes across the gestational spectrum. Pregnancy Hypertens. 2015;5(2):198–204.PubMedCrossRef
14.
Zurück zum Zitat Harmon QE, Huang L, Umbach DM, Klungsøyr K, Engel SM, Magnus P, et al. Risk of fetal death with preeclampsia. Obstet Gynecol. 2015;125(3):628–35.PubMedPubMedCentralCrossRef Harmon QE, Huang L, Umbach DM, Klungsøyr K, Engel SM, Magnus P, et al. Risk of fetal death with preeclampsia. Obstet Gynecol. 2015;125(3):628–35.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat von Beckerath A-K, Kollmann M, Rotky-Fast C, Karpf E, Lang U, Klaritsch P. Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction. Am J Obstet Gynecol. 2013;208(2):130.e1-e6.CrossRef von Beckerath A-K, Kollmann M, Rotky-Fast C, Karpf E, Lang U, Klaritsch P. Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction. Am J Obstet Gynecol. 2013;208(2):130.e1-e6.CrossRef
16.
Zurück zum Zitat Alsnes IV, Vatten LJ, Fraser A, Bjørngaard JH, Rich-Edwards J, Romundstad PR, et al. Hypertension in Pregnancy and Offspring Cardiovascular Risk in Young Adulthood: Prospective and Sibling Studies in the HUNT Study (Nord-Trøndelag Health Study) in Norway. Hypertens. 2017;69(4):591–8.CrossRef Alsnes IV, Vatten LJ, Fraser A, Bjørngaard JH, Rich-Edwards J, Romundstad PR, et al. Hypertension in Pregnancy and Offspring Cardiovascular Risk in Young Adulthood: Prospective and Sibling Studies in the HUNT Study (Nord-Trøndelag Health Study) in Norway. Hypertens. 2017;69(4):591–8.CrossRef
17.
Zurück zum Zitat Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61.PubMedCrossRef Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61.PubMedCrossRef
18.
Zurück zum Zitat Davis EF, Lewandowski AJ, Aye C, Williamson W, Boardman H, Huang RC, et al. Clinical cardiovascular risk during young adulthood in offspring of hypertensive pregnancies: insights from a 20-year prospective follow-up birth cohort. BMJ Open. 2015;5(6):e008136.PubMedPubMedCentralCrossRef Davis EF, Lewandowski AJ, Aye C, Williamson W, Boardman H, Huang RC, et al. Clinical cardiovascular risk during young adulthood in offspring of hypertensive pregnancies: insights from a 20-year prospective follow-up birth cohort. BMJ Open. 2015;5(6):e008136.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Jayet PY, Rimoldi SF, Stuber T, Salmòn CS, Hutter D, Rexhaj E, et al. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation. 2010;122(5):488–94.PubMedCrossRef Jayet PY, Rimoldi SF, Stuber T, Salmòn CS, Hutter D, Rexhaj E, et al. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation. 2010;122(5):488–94.PubMedCrossRef
20.
Zurück zum Zitat Nahum Sacks K, Friger M, Shoham-Vardi I, Sergienko R, Landau D, Sheiner E. In utero exposure to pre-eclampsia as an independent risk factor for long-term respiratory disease. Pediatr Pulmonol. 2020;55(3):723–8.PubMedCrossRef Nahum Sacks K, Friger M, Shoham-Vardi I, Sergienko R, Landau D, Sheiner E. In utero exposure to pre-eclampsia as an independent risk factor for long-term respiratory disease. Pediatr Pulmonol. 2020;55(3):723–8.PubMedCrossRef
21.
Zurück zum Zitat Nahum Sacks K, Friger M, Shoham-Vardi I, Spiegel E, Sergienko R, Landau D, et al. Prenatal exposure to preeclampsia as an independent risk factor for long-term cardiovascular morbidity of the offspring. Pregnancy Hypertens. 2018;13:181–6.PubMedCrossRef Nahum Sacks K, Friger M, Shoham-Vardi I, Spiegel E, Sergienko R, Landau D, et al. Prenatal exposure to preeclampsia as an independent risk factor for long-term cardiovascular morbidity of the offspring. Pregnancy Hypertens. 2018;13:181–6.PubMedCrossRef
22.
Zurück zum Zitat Wu CS, Nohr EA, Bech BH, Vestergaard M, Catov JM, Olsen J. Diseases in children born to mothers with preeclampsia: a population-based sibling cohort study. Am J Obstet Gynecol. 2011;204(2):157.e1-e5.CrossRef Wu CS, Nohr EA, Bech BH, Vestergaard M, Catov JM, Olsen J. Diseases in children born to mothers with preeclampsia: a population-based sibling cohort study. Am J Obstet Gynecol. 2011;204(2):157.e1-e5.CrossRef
24.
Zurück zum Zitat Martikainen A. Growth and development at the age of 1.5 years in children with maternal hypertension. J Perinat Med. 1989;17(4):259–69.PubMedCrossRef Martikainen A. Growth and development at the age of 1.5 years in children with maternal hypertension. J Perinat Med. 1989;17(4):259–69.PubMedCrossRef
25.
Zurück zum Zitat Cheng S-W, Chou H-C, Tsou K-I, Fang L-J, Tsao P-N. Delivery before 32 weeks of gestation for maternal pre-eclampsia: neonatal outcome and 2-year developmental outcome. Early Human Dev. 2004;76(1):39–46.CrossRef Cheng S-W, Chou H-C, Tsou K-I, Fang L-J, Tsao P-N. Delivery before 32 weeks of gestation for maternal pre-eclampsia: neonatal outcome and 2-year developmental outcome. Early Human Dev. 2004;76(1):39–46.CrossRef
26.
Zurück zum Zitat Silveira RC, Procianoy RS, Koch MS, Benjamin ACW, Schlindwein CF. Growth and neurodevelopment outcome of very low birth weight infants delivered by preeclamptic mothers. Acta Paediatr. 2007;96(12):1738–42.PubMedCrossRef Silveira RC, Procianoy RS, Koch MS, Benjamin ACW, Schlindwein CF. Growth and neurodevelopment outcome of very low birth weight infants delivered by preeclamptic mothers. Acta Paediatr. 2007;96(12):1738–42.PubMedCrossRef
27.
Zurück zum Zitat Byberg KK, Øymar K, Eide GE, Forman MR, Júlíusson PB. Exposure to preeclampsia in utero affects growth from birth to late childhood dependent on child’s sex and severity of exposure: Follow-up of a nested case-control study. PLoS One. 2017;12(5):e0176627.PubMedPubMedCentralCrossRef Byberg KK, Øymar K, Eide GE, Forman MR, Júlíusson PB. Exposure to preeclampsia in utero affects growth from birth to late childhood dependent on child’s sex and severity of exposure: Follow-up of a nested case-control study. PLoS One. 2017;12(5):e0176627.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Matić M, Inati V, Abdel-Latif ME, Kent AL. Maternal hypertensive disorders are associated with increased use of respiratory support but not chronic lung disease or poorer neurodevelopmental outcomes in preterm neonates at <29 weeks of gestation. J Paediatr Child Health. 2017;53(4):391–8.PubMedCrossRef Matić M, Inati V, Abdel-Latif ME, Kent AL. Maternal hypertensive disorders are associated with increased use of respiratory support but not chronic lung disease or poorer neurodevelopmental outcomes in preterm neonates at <29 weeks of gestation. J Paediatr Child Health. 2017;53(4):391–8.PubMedCrossRef
29.
Zurück zum Zitat Gunnarsdottir J, Cnattingius S, Lundgren M, Selling K, Högberg U, Wikström A-K. Prenatal exposure to preeclampsia is associated with accelerated height gain in early childhood. PLoS One. 2018;13(2):e0192514.PubMedPubMedCentralCrossRef Gunnarsdottir J, Cnattingius S, Lundgren M, Selling K, Högberg U, Wikström A-K. Prenatal exposure to preeclampsia is associated with accelerated height gain in early childhood. PLoS One. 2018;13(2):e0192514.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Huang Y, Zhang W, Go K, Tsuchiya KJ, Hu J, Skupski DW, et al. Altered growth trajectory in children born to mothers with gestational diabetes mellitus and preeclampsia. Arch Gynecol Obstet. 2020;301(1):151–9.PubMedPubMedCentralCrossRef Huang Y, Zhang W, Go K, Tsuchiya KJ, Hu J, Skupski DW, et al. Altered growth trajectory in children born to mothers with gestational diabetes mellitus and preeclampsia. Arch Gynecol Obstet. 2020;301(1):151–9.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Gow ML, Roberts L, Henry A, Davis G, Mangos G, Pettit F, et al. Growth from birth to 6-months of infants with and without intrauterine preeclampsia exposure. J Dev Orig Health Dis. 2021;132(2):151–5.CrossRef Gow ML, Roberts L, Henry A, Davis G, Mangos G, Pettit F, et al. Growth from birth to 6-months of infants with and without intrauterine preeclampsia exposure. J Dev Orig Health Dis. 2021;132(2):151–5.CrossRef
32.
Zurück zum Zitat Jasper EA, Cho H, Breheny PJ, Bao W, Dagle JM, Ryckman KK. Perinatal determinants of growth trajectories in children born preterm. PLoS ONE. 2021;16(1):e0245387.PubMedPubMedCentralCrossRef Jasper EA, Cho H, Breheny PJ, Bao W, Dagle JM, Ryckman KK. Perinatal determinants of growth trajectories in children born preterm. PLoS ONE. 2021;16(1):e0245387.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat CLASP (Collaborative Low-dose Aspirin Study in Pregnancy) Collaborative Group. CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. The Lancet. 1994;343(8898):619–29.CrossRef CLASP (Collaborative Low-dose Aspirin Study in Pregnancy) Collaborative Group. CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. The Lancet. 1994;343(8898):619–29.CrossRef
34.
Zurück zum Zitat Alsnes IV, Janszky I, Forman MR, Vatten LJ, Økland I. A population-based study of associations between preeclampsia and later cardiovascular risk factors. AJOG. 2014;211(6):657.e1-.e7.CrossRef Alsnes IV, Janszky I, Forman MR, Vatten LJ, Økland I. A population-based study of associations between preeclampsia and later cardiovascular risk factors. AJOG. 2014;211(6):657.e1-.e7.CrossRef
35.
Zurück zum Zitat World Health Organisation. International statistical classification of diseases and related health problems. Geneva: World Health Organization; 2015. World Health Organisation. International statistical classification of diseases and related health problems. Geneva: World Health Organization; 2015.
36.
Zurück zum Zitat Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetc R, et al. Chapter 7: Systematic Reviews of Etiology and Risk. In: Aromataris E, Munn Z (Editors). JBI: JBI Manual for Evidence Synthesis; 2020. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetc R, et al. Chapter 7: Systematic Reviews of Etiology and Risk. In: Aromataris E, Munn Z (Editors). JBI: JBI Manual for Evidence Synthesis; 2020.
37.
Zurück zum Zitat Melo G, Dutra KL, Rodrigues Filho R, Ortega AOL, Porporatti AL, Dick B, et al. Association between psychotropic medications and presence of sleep bruxism: A systematic review. J Oral Rehabil. 2018;45(7):545–54.PubMedCrossRef Melo G, Dutra KL, Rodrigues Filho R, Ortega AOL, Porporatti AL, Dick B, et al. Association between psychotropic medications and presence of sleep bruxism: A systematic review. J Oral Rehabil. 2018;45(7):545–54.PubMedCrossRef
38.
Zurück zum Zitat Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. The Lancet. 1986;1(8489):1077–81.CrossRef Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. The Lancet. 1986;1(8489):1077–81.CrossRef
39.
Zurück zum Zitat Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. The Lancet. 1989;2(8663):577–80.CrossRef Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. The Lancet. 1989;2(8663):577–80.CrossRef
40.
Zurück zum Zitat Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. The Lancet. 1993;341(8850):938–41.CrossRef Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. The Lancet. 1993;341(8850):938–41.CrossRef
41.
Zurück zum Zitat Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7.PubMedCrossRef Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7.PubMedCrossRef
42.
Zurück zum Zitat Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009;27(5):358–68.PubMedPubMedCentralCrossRef Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009;27(5):358–68.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci. 2019;20(11):2837.PubMedCentralCrossRef Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci. 2019;20(11):2837.PubMedCentralCrossRef
44.
Zurück zum Zitat Kamrani A, Alipourfard I, Ahmadi-Khiavi H, Yousefi M, Rostamzadeh D, Izadi M, et al. The role of epigenetic changes in preeclampsia. BioFactors. 2019;45(5):712–24.PubMedCrossRef Kamrani A, Alipourfard I, Ahmadi-Khiavi H, Yousefi M, Rostamzadeh D, Izadi M, et al. The role of epigenetic changes in preeclampsia. BioFactors. 2019;45(5):712–24.PubMedCrossRef
45.
Zurück zum Zitat Safi-Stibler S, Gabory A. Epigenetics and the Developmental Origins of Health and Disease: Parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin Cell Dev Biol. 2020;97:172–80.PubMedCrossRef Safi-Stibler S, Gabory A. Epigenetics and the Developmental Origins of Health and Disease: Parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin Cell Dev Biol. 2020;97:172–80.PubMedCrossRef
46.
Zurück zum Zitat Hollegaard B, Lykke JA, Boomsma JJ. Time from pre-eclampsia diagnosis to delivery affects future health prospects of children. Evol Med Public Health. 2017;2017(1):53–66.PubMedPubMedCentralCrossRef Hollegaard B, Lykke JA, Boomsma JJ. Time from pre-eclampsia diagnosis to delivery affects future health prospects of children. Evol Med Public Health. 2017;2017(1):53–66.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Wang H, László KD, Gissler M, Li F, Zhang J, Yu Y, et al. Maternal hypertensive disorders and neurodevelopmental disorders in offspring: a population-based cohort in two Nordic countries. Eur J Epidemiol. 2021;36(5):519–30.PubMedPubMedCentralCrossRef Wang H, László KD, Gissler M, Li F, Zhang J, Yu Y, et al. Maternal hypertensive disorders and neurodevelopmental disorders in offspring: a population-based cohort in two Nordic countries. Eur J Epidemiol. 2021;36(5):519–30.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Staff AC, Redman CWG. The Differences Between Early- and Late-Onset Pre-eclampsia. In: Saito S, editor. Preeclampsia. Comprehensive Gynecology and Obstetrics. Singapore: Springe; 2018. Staff AC, Redman CWG. The Differences Between Early- and Late-Onset Pre-eclampsia. In: Saito S, editor. Preeclampsia. Comprehensive Gynecology and Obstetrics. Singapore: Springe; 2018.
50.
Zurück zum Zitat Tranquilli AL, Brown MA, Zeeman GG, Dekker G, Sibai BM. The definition of severe and early-onset preeclampsia. Statements from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Pregnancy Hypertens. 2013;3(1):44–7.PubMedCrossRef Tranquilli AL, Brown MA, Zeeman GG, Dekker G, Sibai BM. The definition of severe and early-onset preeclampsia. Statements from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Pregnancy Hypertens. 2013;3(1):44–7.PubMedCrossRef
51.
Zurück zum Zitat Lausman A, Kingdom J. Intrauterine growth restriction: screening, diagnosis, and management. J Obstet Gynaecol Can. 2013;35(8):741–8.PubMedCrossRef Lausman A, Kingdom J. Intrauterine growth restriction: screening, diagnosis, and management. J Obstet Gynaecol Can. 2013;35(8):741–8.PubMedCrossRef
52.
Zurück zum Zitat de Onis M, Habicht JP. Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr. 1996;64(4):650–8.PubMedCrossRef de Onis M, Habicht JP. Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr. 1996;64(4):650–8.PubMedCrossRef
53.
Zurück zum Zitat Report of a WHO Expert Committee. Physical status: the use and interpretation of anthropometry. World Health Organ Tech Rep Series. 1995;854:1–452. Report of a WHO Expert Committee. Physical status: the use and interpretation of anthropometry. World Health Organ Tech Rep Series. 1995;854:1–452.
54.
Zurück zum Zitat Habli M, Levine RJ, Qian C, Sibai B. Neonatal outcomes in pregnancies with preeclampsia or gestational hypertension and in normotensive pregnancies that delivered at 35, 36, or 37 weeks of gestation. Am J Obstet Gynecol. 2007;197(4):406.e1-.e7.CrossRef Habli M, Levine RJ, Qian C, Sibai B. Neonatal outcomes in pregnancies with preeclampsia or gestational hypertension and in normotensive pregnancies that delivered at 35, 36, or 37 weeks of gestation. Am J Obstet Gynecol. 2007;197(4):406.e1-.e7.CrossRef
55.
Zurück zum Zitat Langenveld J, Ravelli AC, van Kaam AH, van der Ham DP, van Pampus MG, Porath M, et al. Neonatal outcome of pregnancies complicated by hypertensive disorders between 34 and 37 weeks of gestation: a 7 year retrospective analysis of a national registry. Am J Obstet Gynecol. 2011;205(6):540.e1-7.CrossRef Langenveld J, Ravelli AC, van Kaam AH, van der Ham DP, van Pampus MG, Porath M, et al. Neonatal outcome of pregnancies complicated by hypertensive disorders between 34 and 37 weeks of gestation: a 7 year retrospective analysis of a national registry. Am J Obstet Gynecol. 2011;205(6):540.e1-7.CrossRef
56.
Zurück zum Zitat Lowe SA, Bowyer L, Lust K, McMahon LP, Morton M, North RA, et al. SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obstet Gynaecol. 2015;55(5):e1-29.PubMedCrossRef Lowe SA, Bowyer L, Lust K, McMahon LP, Morton M, North RA, et al. SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obstet Gynaecol. 2015;55(5):e1-29.PubMedCrossRef
57.
Zurück zum Zitat Gruslin A, Lemyre B. Pre-eclampsia: Fetal assessment and neonatal outcomes. Best Pract Res Clin Obstet Gynaecol. 2011;25(4):491–507.PubMedCrossRef Gruslin A, Lemyre B. Pre-eclampsia: Fetal assessment and neonatal outcomes. Best Pract Res Clin Obstet Gynaecol. 2011;25(4):491–507.PubMedCrossRef
58.
Zurück zum Zitat Rasmussen S, Irgens LM. Fetal growth and body proportion in preeclampsia. Obstet Gynecol. 2003;101(3):575–83.PubMed Rasmussen S, Irgens LM. Fetal growth and body proportion in preeclampsia. Obstet Gynecol. 2003;101(3):575–83.PubMed
59.
Zurück zum Zitat Pinheiro TV, Brunetto S, Ramos JG, Bernardi JR, Goldani MZ. Hypertensive disorders during pregnancy and health outcomes in the offspring: a systematic review. J Dev Orig Health Dis. 2016;7(4):391–407.PubMedCrossRef Pinheiro TV, Brunetto S, Ramos JG, Bernardi JR, Goldani MZ. Hypertensive disorders during pregnancy and health outcomes in the offspring: a systematic review. J Dev Orig Health Dis. 2016;7(4):391–407.PubMedCrossRef
60.
Zurück zum Zitat Staley JR, Bradley J, Silverwood RJ, Howe LD, Tilling K, Lawlor DA, et al. Associations of blood pressure in pregnancy with offspring blood pressure trajectories during childhood and adolescence: findings from a prospective study. J Am Heart Assoc. 2015;4(5):e001422.PubMedPubMedCentralCrossRef Staley JR, Bradley J, Silverwood RJ, Howe LD, Tilling K, Lawlor DA, et al. Associations of blood pressure in pregnancy with offspring blood pressure trajectories during childhood and adolescence: findings from a prospective study. J Am Heart Assoc. 2015;4(5):e001422.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Miliku K, Bergen NE, Bakker H, Hofman A, Steegers EAP, Gaillard R, et al. Associations of Maternal and Paternal Blood Pressure Patterns and Hypertensive Disorders during Pregnancy with Childhood Blood Pressure. J Am Heart Assoc. 2016;5(10):e003884.PubMedPubMedCentralCrossRef Miliku K, Bergen NE, Bakker H, Hofman A, Steegers EAP, Gaillard R, et al. Associations of Maternal and Paternal Blood Pressure Patterns and Hypertensive Disorders during Pregnancy with Childhood Blood Pressure. J Am Heart Assoc. 2016;5(10):e003884.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Miettola S, Hartikainen AL, Vääräsmäki M, Bloigu A, Ruokonen A, Järvelin MR, et al. Offspring’s blood pressure and metabolic phenotype after exposure to gestational hypertension in utero. Eur J Epidemiol. 2013;28(1):87–98.PubMedCrossRef Miettola S, Hartikainen AL, Vääräsmäki M, Bloigu A, Ruokonen A, Järvelin MR, et al. Offspring’s blood pressure and metabolic phenotype after exposure to gestational hypertension in utero. Eur J Epidemiol. 2013;28(1):87–98.PubMedCrossRef
63.
Zurück zum Zitat Fraser A, Nelson SM, Macdonald-Wallis C, Sattar N, Lawlor DA. Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring. Hypertension. 2013;62(3):614–20.PubMedCrossRef Fraser A, Nelson SM, Macdonald-Wallis C, Sattar N, Lawlor DA. Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring. Hypertension. 2013;62(3):614–20.PubMedCrossRef
64.
Zurück zum Zitat Lawlor DA, Macdonald-Wallis C, Fraser A, Nelson SM, Hingorani A, Davey Smith G, et al. Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J. 2012;33(3):335–45.PubMedCrossRef Lawlor DA, Macdonald-Wallis C, Fraser A, Nelson SM, Hingorani A, Davey Smith G, et al. Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J. 2012;33(3):335–45.PubMedCrossRef
65.
Zurück zum Zitat Timpka S, Macdonald-Wallis C, Hughes AD, Chaturvedi N, Franks PW, Lawlor DA, et al. Hypertensive Disorders of Pregnancy and Offspring Cardiac Structure and Function in Adolescence. J Am Heart Assoc. 2016;5(11):e003906.PubMedPubMedCentralCrossRef Timpka S, Macdonald-Wallis C, Hughes AD, Chaturvedi N, Franks PW, Lawlor DA, et al. Hypertensive Disorders of Pregnancy and Offspring Cardiac Structure and Function in Adolescence. J Am Heart Assoc. 2016;5(11):e003906.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Lazdam M, Pitcher A, de la Horra A, Kylintireas I, Mannie Z, Diesch J, et al. Hypertension in offspring of pregnancies complicated by pre-eclampsia: unerdlying vascular mechanisms? Hypertension. 2010;56:159–65.PubMedCrossRef Lazdam M, Pitcher A, de la Horra A, Kylintireas I, Mannie Z, Diesch J, et al. Hypertension in offspring of pregnancies complicated by pre-eclampsia: unerdlying vascular mechanisms? Hypertension. 2010;56:159–65.PubMedCrossRef
67.
Zurück zum Zitat Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40(4):1176–80.PubMedCrossRef Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40(4):1176–80.PubMedCrossRef
68.
Zurück zum Zitat Walker CK, Krakowiak P, Baker A, Hansen RL, Ozonoff S, Hertz-Picciotto I. Preeclampsia, Placental Insufficiency, and Autism Spectrum Disorder or Developmental Delay. JAMA Pediatr. 2015;169(2):154–62.PubMedPubMedCentralCrossRef Walker CK, Krakowiak P, Baker A, Hansen RL, Ozonoff S, Hertz-Picciotto I. Preeclampsia, Placental Insufficiency, and Autism Spectrum Disorder or Developmental Delay. JAMA Pediatr. 2015;169(2):154–62.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Mann JR, McDermott S, Bao H, Hardin J, Gregg A. Pre-eclampsia, birth weight, and autism spectrum disorders. J Autism Dev Disord. 2010;40(5):548–54.PubMedCrossRef Mann JR, McDermott S, Bao H, Hardin J, Gregg A. Pre-eclampsia, birth weight, and autism spectrum disorders. J Autism Dev Disord. 2010;40(5):548–54.PubMedCrossRef
70.
Zurück zum Zitat Burstyn I, Sithole F, Zwaigenbaum L. Autism spectrum disorders, maternal characteristics and obstetric complications among singletons born in Alberta, Canada. Chronic Dis Can. 2010;30(4):125–34.PubMedCrossRef Burstyn I, Sithole F, Zwaigenbaum L. Autism spectrum disorders, maternal characteristics and obstetric complications among singletons born in Alberta, Canada. Chronic Dis Can. 2010;30(4):125–34.PubMedCrossRef
71.
Zurück zum Zitat Maher GM, O’Keeffe GW, Dalman C, Kearney PM, McCarthy FP, Kenny LC, et al. Association between preeclampsia and autism spectrum disorder: a population-based study. J Child Psychol Psychiatry. 2020;61(2):131–9.PubMedCrossRef Maher GM, O’Keeffe GW, Dalman C, Kearney PM, McCarthy FP, Kenny LC, et al. Association between preeclampsia and autism spectrum disorder: a population-based study. J Child Psychol Psychiatry. 2020;61(2):131–9.PubMedCrossRef
72.
Zurück zum Zitat Silva D, Colvin L, Hagemann E, Bower C. Environmental risk factors by gender associated with attention-deficit/hyperactivity disorder. Pediatrics. 2014;133(1):e14-22.PubMedCrossRef Silva D, Colvin L, Hagemann E, Bower C. Environmental risk factors by gender associated with attention-deficit/hyperactivity disorder. Pediatrics. 2014;133(1):e14-22.PubMedCrossRef
73.
Zurück zum Zitat Getahun D, Rhoads GG, Demissie K, Lu SE, Quinn VP, Fassett MJ, et al. In utero exposure to ischemic-hypoxic conditions and attention-deficit/hyperactivity disorder. Pediatrics. 2013;131(1):e53-61.PubMedCrossRef Getahun D, Rhoads GG, Demissie K, Lu SE, Quinn VP, Fassett MJ, et al. In utero exposure to ischemic-hypoxic conditions and attention-deficit/hyperactivity disorder. Pediatrics. 2013;131(1):e53-61.PubMedCrossRef
74.
Zurück zum Zitat Maher GM, Dalman C, O’Keeffe GW, Kearney PM, McCarthy FP, Kenny LC, et al. Association between preeclampsia and attention-deficit hyperactivity disorder: a population-based and sibling-matched cohort study. Acta Psychiatr Scand. 2020;142(4):275–83.PubMedCrossRef Maher GM, Dalman C, O’Keeffe GW, Kearney PM, McCarthy FP, Kenny LC, et al. Association between preeclampsia and attention-deficit hyperactivity disorder: a population-based and sibling-matched cohort study. Acta Psychiatr Scand. 2020;142(4):275–83.PubMedCrossRef
75.
Zurück zum Zitat Wu CS, Nohr EA, Bech BH, Vestergaard M, Catov JM, Olsen J. Health of children born to mothers who had preeclampsia: a population-based cohort study. Am J Obstet Gynecol. 2009;201(3):269.e1-e.10.CrossRef Wu CS, Nohr EA, Bech BH, Vestergaard M, Catov JM, Olsen J. Health of children born to mothers who had preeclampsia: a population-based cohort study. Am J Obstet Gynecol. 2009;201(3):269.e1-e.10.CrossRef
76.
Zurück zum Zitat Mann JR, McDermott S. Maternal pre-eclampsia is associated with childhood epilepsy in South Carolina children insured by Medicaid. Epilepsy Behav. 2011;20(3):506–11.PubMedCrossRef Mann JR, McDermott S. Maternal pre-eclampsia is associated with childhood epilepsy in South Carolina children insured by Medicaid. Epilepsy Behav. 2011;20(3):506–11.PubMedCrossRef
77.
Zurück zum Zitat van Wassenaer AG, Westera J, van Schie PEM, Houtzager BA, Cranendonk A, de Groot L, et al. Outcome at 4.5 years of children born after expectant management of early-onset hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2011;204(6):510.e1-e9.CrossRef van Wassenaer AG, Westera J, van Schie PEM, Houtzager BA, Cranendonk A, de Groot L, et al. Outcome at 4.5 years of children born after expectant management of early-onset hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2011;204(6):510.e1-e9.CrossRef
78.
Zurück zum Zitat Grace T, Bulsara M, Pennell C, Hands B. Maternal hypertensive diseases negatively affect offspring motor development. Pregnancy Hypertens. 2014;4(3):209–14.PubMedCrossRef Grace T, Bulsara M, Pennell C, Hands B. Maternal hypertensive diseases negatively affect offspring motor development. Pregnancy Hypertens. 2014;4(3):209–14.PubMedCrossRef
79.
Zurück zum Zitat Rätsep MT, Hickman AF, Maser B, Pudwell J, Smith GN, Brien D, et al. Impact of preeclampsia on cognitive function in the offspring. Behav Brain Res. 2016;302:175–81.PubMedCrossRef Rätsep MT, Hickman AF, Maser B, Pudwell J, Smith GN, Brien D, et al. Impact of preeclampsia on cognitive function in the offspring. Behav Brain Res. 2016;302:175–81.PubMedCrossRef
80.
Zurück zum Zitat Warshafsky C, Pudwell J, Walker M, Wen S-W, Smith GN. Prospective assessment of neurodevelopment in children following a pregnancy complicated by severe pre-eclampsia. BMJ Open. 2016;6(7):e010884.PubMedPubMedCentralCrossRef Warshafsky C, Pudwell J, Walker M, Wen S-W, Smith GN. Prospective assessment of neurodevelopment in children following a pregnancy complicated by severe pre-eclampsia. BMJ Open. 2016;6(7):e010884.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Griffith MI, Mann JR, McDermott S. The risk of intellectual disability in children born to mothers with preeclampsia or eclampsia with partial mediation by low birth weight. Pregnancy Hypertension. 2011;30(1):108–15.CrossRef Griffith MI, Mann JR, McDermott S. The risk of intellectual disability in children born to mothers with preeclampsia or eclampsia with partial mediation by low birth weight. Pregnancy Hypertension. 2011;30(1):108–15.CrossRef
82.
Zurück zum Zitat Ehrenstein V, Rothman KJ, Pedersen L, Hatch EE, Sørensen HT. Pregnancy-associated hypertensive disorders and adult cognitive function among Danish conscripts. Am J Epidemiol. 2009;170(8):1025–31.PubMedCrossRef Ehrenstein V, Rothman KJ, Pedersen L, Hatch EE, Sørensen HT. Pregnancy-associated hypertensive disorders and adult cognitive function among Danish conscripts. Am J Epidemiol. 2009;170(8):1025–31.PubMedCrossRef
83.
Zurück zum Zitat Tuovinen S, Eriksson JG, Kajantie E, Räikkönen K. Maternal hypertensive pregnancy disorders and cognitive functioning of the offspring: a systematic review. J Am Soc Hypertens. 2014;8(11):832-47.e1.PubMedCrossRef Tuovinen S, Eriksson JG, Kajantie E, Räikkönen K. Maternal hypertensive pregnancy disorders and cognitive functioning of the offspring: a systematic review. J Am Soc Hypertens. 2014;8(11):832-47.e1.PubMedCrossRef
84.
Zurück zum Zitat Trønnes H, Wilcox AJ, Lie RT, Markestad T, Moster D. Risk of cerebral palsy in relation to pregnancy disorders and preterm birth: a national cohort study. Dev Med Child Neurol. 2014;56(8):779–85.PubMedPubMedCentralCrossRef Trønnes H, Wilcox AJ, Lie RT, Markestad T, Moster D. Risk of cerebral palsy in relation to pregnancy disorders and preterm birth: a national cohort study. Dev Med Child Neurol. 2014;56(8):779–85.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Strand KM, Heimstad R, Iversen AC, Austgulen R, Lydersen S, Andersen GL, et al. Mediators of the association between pre-eclampsia and cerebral palsy: population based cohort study. BMJ. 2013;347:f4089.PubMedPubMedCentralCrossRef Strand KM, Heimstad R, Iversen AC, Austgulen R, Lydersen S, Andersen GL, et al. Mediators of the association between pre-eclampsia and cerebral palsy: population based cohort study. BMJ. 2013;347:f4089.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Mor O, Stavsky M, Yitshak-Sade M, Mastrolia SA, Beer-Weisel R, Rafaeli-Yehudai T, et al. Early onset preeclampsia and cerebral palsy: a double hit model? Am J Obstet Gynecol. 2016;214(1):105.e1-9.CrossRef Mor O, Stavsky M, Yitshak-Sade M, Mastrolia SA, Beer-Weisel R, Rafaeli-Yehudai T, et al. Early onset preeclampsia and cerebral palsy: a double hit model? Am J Obstet Gynecol. 2016;214(1):105.e1-9.CrossRef
87.
Zurück zum Zitat Tuovinen S, Aalto-Viljakainen T, Eriksson JG, Kajantie E, Lahti J, Pesonen AK, et al. Maternal hypertensive disorders during pregnancy: adaptive functioning and psychiatric and psychological problems of the older offspring. Br J Obstet Gynaecol. 2014;121(12):1482–91.CrossRef Tuovinen S, Aalto-Viljakainen T, Eriksson JG, Kajantie E, Lahti J, Pesonen AK, et al. Maternal hypertensive disorders during pregnancy: adaptive functioning and psychiatric and psychological problems of the older offspring. Br J Obstet Gynaecol. 2014;121(12):1482–91.CrossRef
88.
Zurück zum Zitat Tuovinen S, Räikkönen K, Pesonen A-K, Lahti M, Heinonen K, Wahlbeck K, et al. Hypertensive disorders in pregnancy and risk of severe mental disorders in the offspring in adulthood: The Helsinki Birth Cohort Study. J Psychiatr Res. 2012;46(3):303–10.PubMedCrossRef Tuovinen S, Räikkönen K, Pesonen A-K, Lahti M, Heinonen K, Wahlbeck K, et al. Hypertensive disorders in pregnancy and risk of severe mental disorders in the offspring in adulthood: The Helsinki Birth Cohort Study. J Psychiatr Res. 2012;46(3):303–10.PubMedCrossRef
89.
Zurück zum Zitat Liu X, Olsen J, Agerbo E, Yuan W, Wu CS, Li J. Maternal preeclampsia and childhood asthma in the offspring. Pediatr Allergy Immunol. 2015;26(2):181–5.PubMedCrossRef Liu X, Olsen J, Agerbo E, Yuan W, Wu CS, Li J. Maternal preeclampsia and childhood asthma in the offspring. Pediatr Allergy Immunol. 2015;26(2):181–5.PubMedCrossRef
90.
Zurück zum Zitat Stokholm J, Sevelsted A, Anderson UD, Bisgaard H. Preeclampsia Associates with Asthma, Allergy, and Eczema in Childhood. Am J Respir Crit Care Med. 2017;195(5):614–21.PubMedCrossRef Stokholm J, Sevelsted A, Anderson UD, Bisgaard H. Preeclampsia Associates with Asthma, Allergy, and Eczema in Childhood. Am J Respir Crit Care Med. 2017;195(5):614–21.PubMedCrossRef
91.
Zurück zum Zitat Keski-Nisula L, Heinonen S, Remes S, Pekkanen J. Pre-eclampsia, placental abruption and increased risk of atopic sensitization in male adolescent offspring. Am J Reprod Immunol. 2009;62(5):293–300.PubMedCrossRef Keski-Nisula L, Heinonen S, Remes S, Pekkanen J. Pre-eclampsia, placental abruption and increased risk of atopic sensitization in male adolescent offspring. Am J Reprod Immunol. 2009;62(5):293–300.PubMedCrossRef
92.
Zurück zum Zitat Byberg KK, Ogland B, Eide GE, Oymar K. Birth after preeclamptic pregnancies: association with allergic sensitization and allergic rhinoconjunctivitis in late childhood; a historically matched cohort study. BMC Pediatr. 2014;14:101.PubMedPubMedCentralCrossRef Byberg KK, Ogland B, Eide GE, Oymar K. Birth after preeclamptic pregnancies: association with allergic sensitization and allergic rhinoconjunctivitis in late childhood; a historically matched cohort study. BMC Pediatr. 2014;14:101.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Goffin SM, Derraik JGB, Groom KM, Cutfield WS. Maternal pre-eclampsia and long-term offspring health: Is there a shadow cast? Pregnancy Hypertension. 2018;12:11–5.PubMedCrossRef Goffin SM, Derraik JGB, Groom KM, Cutfield WS. Maternal pre-eclampsia and long-term offspring health: Is there a shadow cast? Pregnancy Hypertension. 2018;12:11–5.PubMedCrossRef
95.
Zurück zum Zitat Rodríguez-Cano AM, Mier-Cabrera J, Muñoz-Manrique C, Cardona-Pérez A, Villalobos-Alcázar G, Perichart-Perera O. Anthropometric and clinical correlates of fat mass in healthy term infants at 6 months of age. BMC Pediatr. 2019;19(1):60.PubMedPubMedCentralCrossRef Rodríguez-Cano AM, Mier-Cabrera J, Muñoz-Manrique C, Cardona-Pérez A, Villalobos-Alcázar G, Perichart-Perera O. Anthropometric and clinical correlates of fat mass in healthy term infants at 6 months of age. BMC Pediatr. 2019;19(1):60.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Barstow C, Rerucha C. Evaluation of Short and Tall Stature in Children. Am Fam Physician. 2015;92(1):43–50.PubMed Barstow C, Rerucha C. Evaluation of Short and Tall Stature in Children. Am Fam Physician. 2015;92(1):43–50.PubMed
97.
Zurück zum Zitat Wang G, Johnson S, Gong Y, Polk S, Divall S, Radovick S, et al. Weight Gain in Infancy and Overweight or Obesity in Childhood across the Gestational Spectrum: a Prospective Birth Cohort Study. Sci Rep. 2016;6(1):29867.PubMedPubMedCentralCrossRef Wang G, Johnson S, Gong Y, Polk S, Divall S, Radovick S, et al. Weight Gain in Infancy and Overweight or Obesity in Childhood across the Gestational Spectrum: a Prospective Birth Cohort Study. Sci Rep. 2016;6(1):29867.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Singhal A. Long-Term Adverse Effects of Early Growth Acceleration or Catch-Up Growth. Ann Nutr Metab. 2017;70(3):236–40.PubMedCrossRef Singhal A. Long-Term Adverse Effects of Early Growth Acceleration or Catch-Up Growth. Ann Nutr Metab. 2017;70(3):236–40.PubMedCrossRef
99.
Zurück zum Zitat Nash A, Corey M, Sherwood K, Secker D, Saab J, O’Connor DL. Growth Assessment in Infants and Toddlers Using Three Different Reference Charts. J Pediatr Gastroenterol Nutr. 2005;40(3):283–8.PubMedCrossRef Nash A, Corey M, Sherwood K, Secker D, Saab J, O’Connor DL. Growth Assessment in Infants and Toddlers Using Three Different Reference Charts. J Pediatr Gastroenterol Nutr. 2005;40(3):283–8.PubMedCrossRef
100.
Zurück zum Zitat World Health Organisation: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. 217. Geneva: World Health Organisation; 2006. World Health Organisation: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. 217. Geneva: World Health Organisation; 2006.
101.
Zurück zum Zitat World Health Organisation: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. 336. Geneva: World Health Organisation; 2006. World Health Organisation: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. 336. Geneva: World Health Organisation; 2006.
102.
Zurück zum Zitat de Onis M, Onyango A, Borghi E, Siyam A, Blössner M, Lutter C. Worldwide implementation of the WHO Child Growth Standards. Public Health Nutr. 2012;15(9):1603–10.PubMedCrossRef de Onis M, Onyango A, Borghi E, Siyam A, Blössner M, Lutter C. Worldwide implementation of the WHO Child Growth Standards. Public Health Nutr. 2012;15(9):1603–10.PubMedCrossRef
103.
Zurück zum Zitat Woo JG, Daniels SR. Assessment of Body Mass Index in Infancy: It Is Time to Revise Our Guidelines. J Pediatr. 2019;204:10–1.PubMedCrossRef Woo JG, Daniels SR. Assessment of Body Mass Index in Infancy: It Is Time to Revise Our Guidelines. J Pediatr. 2019;204:10–1.PubMedCrossRef
104.
Zurück zum Zitat Roy SM, Fields DA, Mitchell JA, Hawkes CP, Kelly A, Wu GD, et al. Body Mass Index Is a Better Indicator of Body Composition than Weight-for-Length at Age 1 Month. J Pediatr. 2019;204:77-83.e1.PubMedCrossRef Roy SM, Fields DA, Mitchell JA, Hawkes CP, Kelly A, Wu GD, et al. Body Mass Index Is a Better Indicator of Body Composition than Weight-for-Length at Age 1 Month. J Pediatr. 2019;204:77-83.e1.PubMedCrossRef
105.
Zurück zum Zitat Roy SM, Spivack JG, Faith MS, Chesi A, Mitchell JA, Kelly A, et al. Infant BMI or Weight-for-Length and Obesity Risk in Early Childhood. Pediatrics. 2016;137(5):e20153492.PubMedPubMedCentralCrossRef Roy SM, Spivack JG, Faith MS, Chesi A, Mitchell JA, Kelly A, et al. Infant BMI or Weight-for-Length and Obesity Risk in Early Childhood. Pediatrics. 2016;137(5):e20153492.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Aris IM, Rifas-Shiman SL, Li L-J, Yang S, Belfort MB, Thompson J, et al. Association of Weight for Length vs Body Mass Index During the First 2 Years of Life With Cardiometabolic Risk in Early Adolescence. JAMA Network Open. 2018;1(5):e182460-e.CrossRef Aris IM, Rifas-Shiman SL, Li L-J, Yang S, Belfort MB, Thompson J, et al. Association of Weight for Length vs Body Mass Index During the First 2 Years of Life With Cardiometabolic Risk in Early Adolescence. JAMA Network Open. 2018;1(5):e182460-e.CrossRef
107.
Zurück zum Zitat Ferguson AN, Grabich SC, Olsen IE, Cantrell R, Clark RH, Ballew WN, et al. BMI Is a Better Body Proportionality Measure than the Ponderal Index and Weight-for-Length for Preterm Infants. Neonatology. 2018;113(2):108–16.PubMedCrossRef Ferguson AN, Grabich SC, Olsen IE, Cantrell R, Clark RH, Ballew WN, et al. BMI Is a Better Body Proportionality Measure than the Ponderal Index and Weight-for-Length for Preterm Infants. Neonatology. 2018;113(2):108–16.PubMedCrossRef
108.
109.
Zurück zum Zitat González-García L, García-López E, Fernández-Colomer B, Mantecón-Fernández L, Lareu-Vidal S, Suárez-Rodríguez M, et al. Extrauterine Growth Restriction in Very Low Birth Weight Infants: Concordance Between Fenton 2013 and INTERGROWTH-21(st) Growth Charts. Front Pediatr. 2021;9:690788.PubMedPubMedCentralCrossRef González-García L, García-López E, Fernández-Colomer B, Mantecón-Fernández L, Lareu-Vidal S, Suárez-Rodríguez M, et al. Extrauterine Growth Restriction in Very Low Birth Weight Infants: Concordance Between Fenton 2013 and INTERGROWTH-21(st) Growth Charts. Front Pediatr. 2021;9:690788.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Villar J, Giuliani F, Bhutta ZA, Bertino E, Ohuma EO, Ismail LC, et al. Postnatal growth standards for preterm infants: the Preterm Postnatal Follow-up Study of the INTERGROWTH-21(st) Project. Lancet Global Health. 2015;3(11):e681–91.PubMedCrossRef Villar J, Giuliani F, Bhutta ZA, Bertino E, Ohuma EO, Ismail LC, et al. Postnatal growth standards for preterm infants: the Preterm Postnatal Follow-up Study of the INTERGROWTH-21(st) Project. Lancet Global Health. 2015;3(11):e681–91.PubMedCrossRef
111.
Zurück zum Zitat Kim YJ, Shin SH, Cho H, Shin SH, Kim SH, Song IG, et al. Extrauterine growth restriction in extremely preterm infants based on the Intergrowth-21st Project Preterm Postnatal Follow-up Study growth charts and the Fenton growth charts. Eur J Pediatr. 2021;180(3):817–24.PubMedCrossRef Kim YJ, Shin SH, Cho H, Shin SH, Kim SH, Song IG, et al. Extrauterine growth restriction in extremely preterm infants based on the Intergrowth-21st Project Preterm Postnatal Follow-up Study growth charts and the Fenton growth charts. Eur J Pediatr. 2021;180(3):817–24.PubMedCrossRef
112.
Zurück zum Zitat Tuzun F, Yucesoy E, Baysal B, Kumral A, Duman N, Ozkan H. Comparison of INTERGROWTH-21 and Fenton growth standards to assess size at birth and extrauterine growth in very preterm infants. J Matern Fetal Neonatal Med. 2018;31(17):2252–7.PubMedCrossRef Tuzun F, Yucesoy E, Baysal B, Kumral A, Duman N, Ozkan H. Comparison of INTERGROWTH-21 and Fenton growth standards to assess size at birth and extrauterine growth in very preterm infants. J Matern Fetal Neonatal Med. 2018;31(17):2252–7.PubMedCrossRef
113.
Zurück zum Zitat Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320(7240):967–71.PubMedPubMedCentralCrossRef Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320(7240):967–71.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Cole TJ. Presenting information on growth distance and conditional velocity in one chart: practical issues of chart design. Stat Med. 1998;17(23):2697–707.PubMedCrossRef Cole TJ. Presenting information on growth distance and conditional velocity in one chart: practical issues of chart design. Stat Med. 1998;17(23):2697–707.PubMedCrossRef
117.
Zurück zum Zitat Griffiths LJ, Smeeth L, Hawkins SS, Cole TJ, Dezateux C. Effects of infant feeding practice on weight gain from birth to 3 years. Arch Dis Child. 2009;94(8):577–82.PubMedCrossRef Griffiths LJ, Smeeth L, Hawkins SS, Cole TJ, Dezateux C. Effects of infant feeding practice on weight gain from birth to 3 years. Arch Dis Child. 2009;94(8):577–82.PubMedCrossRef
118.
Zurück zum Zitat Woo JG. Infant Growth and Long-term Cardiometabolic Health: a Review of Recent Findings. Current Nutrition Reports. 2019;8(1):29–41.PubMedCrossRef Woo JG. Infant Growth and Long-term Cardiometabolic Health: a Review of Recent Findings. Current Nutrition Reports. 2019;8(1):29–41.PubMedCrossRef
119.
Zurück zum Zitat Bocca-Tjeertes IFA, Reijneveld SA, Kerstjens JM, de Winter AF, Bos AF. Growth in Small-for-Gestational-Age Preterm-Born Children from 0 to 4 Years: The Role of both Prematurity and SGA Status. Neonatology. 2013;103(4):293–9.PubMedCrossRef Bocca-Tjeertes IFA, Reijneveld SA, Kerstjens JM, de Winter AF, Bos AF. Growth in Small-for-Gestational-Age Preterm-Born Children from 0 to 4 Years: The Role of both Prematurity and SGA Status. Neonatology. 2013;103(4):293–9.PubMedCrossRef
120.
Zurück zum Zitat Davis GK, Roberts L, Mangos G, Henry A, Pettit F, O’Sullivan A, et al. Postpartum physiology, psychology and paediatric follow up study (P4 Study) - Study protocol. Pregnancy Hypertension. 2016;6(4):374–9.PubMedCrossRef Davis GK, Roberts L, Mangos G, Henry A, Pettit F, O’Sullivan A, et al. Postpartum physiology, psychology and paediatric follow up study (P4 Study) - Study protocol. Pregnancy Hypertension. 2016;6(4):374–9.PubMedCrossRef
121.
122.
Zurück zum Zitat Cirelli I, Bickle Graz M, Tolsa J-F. Comparison of Griffiths-II and Bayley-II tests for the developmental assessment of high-risk infants. Infant Behav Dev. 2015;41:17–25.PubMedCrossRef Cirelli I, Bickle Graz M, Tolsa J-F. Comparison of Griffiths-II and Bayley-II tests for the developmental assessment of high-risk infants. Infant Behav Dev. 2015;41:17–25.PubMedCrossRef
123.
Zurück zum Zitat Stein MT, Lukasik MK. Chapter 79 - DEVELOPMENTAL SCREENING AND ASSESSMENT: INFANTS, TODDLERS, AND PRESCHOOLERS. In: Carey WB, Crocker AC, Coleman WL, Elias ER, Feldman HM, editors. Developmental-Behavioral Pediatrics. 4th ed. Philadelphia: W.B. Saunders; 2009. p. 785–96.CrossRef Stein MT, Lukasik MK. Chapter 79 - DEVELOPMENTAL SCREENING AND ASSESSMENT: INFANTS, TODDLERS, AND PRESCHOOLERS. In: Carey WB, Crocker AC, Coleman WL, Elias ER, Feldman HM, editors. Developmental-Behavioral Pediatrics. 4th ed. Philadelphia: W.B. Saunders; 2009. p. 785–96.CrossRef
124.
Zurück zum Zitat Choo YY, Agarwal P, How CH, Yeleswarapu SP. Developmental delay: identification and management at primary care level. Singapore Med J. 2019;60(3):119–23.PubMedPubMedCentralCrossRef Choo YY, Agarwal P, How CH, Yeleswarapu SP. Developmental delay: identification and management at primary care level. Singapore Med J. 2019;60(3):119–23.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Squires J, Bricker D, Potter L. Revision of a parent-completed development screening tool: Ages and Stages Questionnaires. J Pediatr Psychol. 1997;22(3):313–28.PubMedCrossRef Squires J, Bricker D, Potter L. Revision of a parent-completed development screening tool: Ages and Stages Questionnaires. J Pediatr Psychol. 1997;22(3):313–28.PubMedCrossRef
126.
Zurück zum Zitat Glascoe FP. Collaborating with parents: Using Parents' Evaluation of Developmental Status to detect and address developmental and behavioral problems. Nashville, TN, US: Ellsworth & Vandermeer Press; 1998. Glascoe FP. Collaborating with parents: Using Parents' Evaluation of Developmental Status to detect and address developmental and behavioral problems. Nashville, TN, US: Ellsworth & Vandermeer Press; 1998.
128.
Zurück zum Zitat Sheldrick RC, Marakovitz S, Garfinkel D, Carter AS, Perrin EC. Comparative Accuracy of Developmental Screening Questionnaires. JAMA Pediatr. 2020;174(4):366–74.PubMedPubMedCentralCrossRef Sheldrick RC, Marakovitz S, Garfinkel D, Carter AS, Perrin EC. Comparative Accuracy of Developmental Screening Questionnaires. JAMA Pediatr. 2020;174(4):366–74.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat National Child Health and Wellbeing subcommittee of the Australian Population Health Development Principal Committee of the Australian Health Ministers’ Conference (AHMC). Appendix 3: Tools to assist in health surveillance and monitoring. In: National Framework for Universal Child and Family Health Services, Australian Government Department of Health; 2011. National Child Health and Wellbeing subcommittee of the Australian Population Health Development Principal Committee of the Australian Health Ministers’ Conference (AHMC). Appendix 3: Tools to assist in health surveillance and monitoring. In: National Framework for Universal Child and Family Health Services, Australian Government Department of Health; 2011.
130.
Zurück zum Zitat Moodie S, Daneri P, Goldhagen S, Halle T, Green K, LaMonte L. Early childhood developmental screening: A compendium of measures for children ages birth to five. Washington, DC: Office of Planning, Research and Evaluation, Administration for Children and Families; 2014. Report No.: (OPRE Report 2014 11). Moodie S, Daneri P, Goldhagen S, Halle T, Green K, LaMonte L. Early childhood developmental screening: A compendium of measures for children ages birth to five. Washington, DC: Office of Planning, Research and Evaluation, Administration for Children and Families; 2014. Report No.: (OPRE Report 2014­ 11).
131.
Zurück zum Zitat Martin AJ, Darlow BA, Salt A, Hague W, Sebastian L, McNeill N, et al. Performance of the Parent Report of Children’s Abilities-Revised (PARCA-R) versus the Bayley Scales of Infant Development III. Arch Dis Child. 2013;98(12):955.PubMedCrossRef Martin AJ, Darlow BA, Salt A, Hague W, Sebastian L, McNeill N, et al. Performance of the Parent Report of Children’s Abilities-Revised (PARCA-R) versus the Bayley Scales of Infant Development III. Arch Dis Child. 2013;98(12):955.PubMedCrossRef
132.
Zurück zum Zitat Johnson S, Bountziouka V, Brocklehurst P, Linsell L, Marlow N, Wolke D, et al. Standardisation of the Parent Report of Children’s Abilities-Revised (PARCA-R): a norm-referenced assessment of cognitive and language development at age 2 years. Lancet Child Adolesc Health. 2019;3(10):705–12.PubMedCrossRef Johnson S, Bountziouka V, Brocklehurst P, Linsell L, Marlow N, Wolke D, et al. Standardisation of the Parent Report of Children’s Abilities-Revised (PARCA-R): a norm-referenced assessment of cognitive and language development at age 2 years. Lancet Child Adolesc Health. 2019;3(10):705–12.PubMedCrossRef
133.
Zurück zum Zitat Ireton H, Glascoe FP. Assessing children’s development using parents’ reports. Clin Pediatr (Phila). 1995;34(5):248–55.CrossRef Ireton H, Glascoe FP. Assessing children’s development using parents’ reports. Clin Pediatr (Phila). 1995;34(5):248–55.CrossRef
134.
Zurück zum Zitat Cunha A, Berkovits M, Albuquerque K. Developmental Assessment With Young Children: A Systematic Review of Battelle Studies. Infants Young Child. 2018;31(1):69–90.CrossRef Cunha A, Berkovits M, Albuquerque K. Developmental Assessment With Young Children: A Systematic Review of Battelle Studies. Infants Young Child. 2018;31(1):69–90.CrossRef
135.
Zurück zum Zitat Hilton-Mounger A. Battelle Developmental Inventory: 2nd Edition. In: Goldstein S, Naglieri JA, editors. Encyclopedia of Child Behavior and Development. Boston, MA: Springer, US; 2011. p. 210–2.CrossRef Hilton-Mounger A. Battelle Developmental Inventory: 2nd Edition. In: Goldstein S, Naglieri JA, editors. Encyclopedia of Child Behavior and Development. Boston, MA: Springer, US; 2011. p. 210–2.CrossRef
136.
Zurück zum Zitat Frankenburg WK, Dodds J, Archer P, Shapiro H, Bresnick B. The Denver II: a major revision and restandardization of the Denver Developmental Screening Test. Pediatrics. 1992;89(1):91–7.PubMedCrossRef Frankenburg WK, Dodds J, Archer P, Shapiro H, Bresnick B. The Denver II: a major revision and restandardization of the Denver Developmental Screening Test. Pediatrics. 1992;89(1):91–7.PubMedCrossRef
137.
Zurück zum Zitat Glascoe FP. The Brigance Infant and Toddler Screen: Standardization and Validation. J Dev Behav Pediatr. 2002;23(3):145–50.PubMedCrossRef Glascoe FP. The Brigance Infant and Toddler Screen: Standardization and Validation. J Dev Behav Pediatr. 2002;23(3):145–50.PubMedCrossRef
138.
Zurück zum Zitat Bayley N. Bayley Scales of Infant Development. 2nd ed. 1993. Bayley N. Bayley Scales of Infant Development. 2nd ed. 1993.
139.
Zurück zum Zitat Bayley N. Bayley Scales of Infant Development 3rd Edition (Bayley-III). San Antonio, TX: Harcourt; 2006. Bayley N. Bayley Scales of Infant Development 3rd Edition (Bayley-III). San Antonio, TX: Harcourt; 2006.
140.
Zurück zum Zitat Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW, Group tVIC. Underestimation of Developmental Delay by the New Bayley-III Scale. Arch Pediatr Adolesc Med. 2010;164(4):352–6.PubMedCrossRef Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW, Group tVIC. Underestimation of Developmental Delay by the New Bayley-III Scale. Arch Pediatr Adolesc Med. 2010;164(4):352–6.PubMedCrossRef
141.
Zurück zum Zitat Luiz DM, Faragher B, Barnard A, Knoesen N, Kotras N, Burns LE, et al. Griffiths Mental Development Scales – Extended Revised. Analysis manual. Association for Research in Infant and Child Development (ARICD). Oxford: Hogrefe – The Tests Agency Ltd; 2006. Luiz DM, Faragher B, Barnard A, Knoesen N, Kotras N, Burns LE, et al. Griffiths Mental Development Scales – Extended Revised. Analysis manual. Association for Research in Infant and Child Development (ARICD). Oxford: Hogrefe – The Tests Agency Ltd; 2006.
142.
Zurück zum Zitat Mullen EM, American Guidance S. Mullen Scales of Early Learning. Circle Pines, Minnesota: AGS; 1995. Mullen EM, American Guidance S. Mullen Scales of Early Learning. Circle Pines, Minnesota: AGS; 1995.
143.
Zurück zum Zitat Farmer C, Golden C, Thurm A. Concurrent validity of the differential ability scales, second edition with the Mullen Scales of Early Learning in young children with and without neurodevelopmental disorders. Child Neuropsychol. 2016;22(5):556–69.PubMedCrossRef Farmer C, Golden C, Thurm A. Concurrent validity of the differential ability scales, second edition with the Mullen Scales of Early Learning in young children with and without neurodevelopmental disorders. Child Neuropsychol. 2016;22(5):556–69.PubMedCrossRef
144.
Zurück zum Zitat Heikura U, Hartikainen A-L, Nordström T, Pouta A, Taanila A, Järvelin M-R. Maternal Hypertensive Disorders during Pregnancy and Mild Cognitive Limitations in the Offspring. Paediatr Perinat Epidemiol. 2013;27(2):188–98.PubMedCrossRef Heikura U, Hartikainen A-L, Nordström T, Pouta A, Taanila A, Järvelin M-R. Maternal Hypertensive Disorders during Pregnancy and Mild Cognitive Limitations in the Offspring. Paediatr Perinat Epidemiol. 2013;27(2):188–98.PubMedCrossRef
145.
Zurück zum Zitat Jelliffe-Pawlowski LL, Hansen RL. Neurodevelopmental Outcome at 8 Months and 4 Years among Infants Born Full-Term Small-for-Gestational-Age. J Perinatol. 2004;24(8):505–14.PubMedCrossRef Jelliffe-Pawlowski LL, Hansen RL. Neurodevelopmental Outcome at 8 Months and 4 Years among Infants Born Full-Term Small-for-Gestational-Age. J Perinatol. 2004;24(8):505–14.PubMedCrossRef
146.
Zurück zum Zitat Thomaidis L, Zantopoulos GZ, Fouzas S, Mantagou L, Bakoula C, Konstantopoulos A. Predictors of severity and outcome of global developmental delay without definitive etiologic yield: a prospective observational study. BMC Pediatr. 2014;14:40.PubMedPubMedCentralCrossRef Thomaidis L, Zantopoulos GZ, Fouzas S, Mantagou L, Bakoula C, Konstantopoulos A. Predictors of severity and outcome of global developmental delay without definitive etiologic yield: a prospective observational study. BMC Pediatr. 2014;14:40.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Love ER, Crum J, Bhattacharya S. Independent effects of pregnancy induced hypertension on childhood development: a retrospective cohort study. Eur J Obstet Gynecol Reprod Biol. 2012;165(2):219–24.PubMedCrossRef Love ER, Crum J, Bhattacharya S. Independent effects of pregnancy induced hypertension on childhood development: a retrospective cohort study. Eur J Obstet Gynecol Reprod Biol. 2012;165(2):219–24.PubMedCrossRef
148.
Zurück zum Zitat Spinillo A, Iasci A, Capuzzo E, Egbe TO, Colonna L, Fazzi E. Two-year infant neurodevelopmental outcome after expectant management and indicated preterm delivery in hypertensive pregnancies. Acta Obstet Gynecol Scand. 1994;73(8):625–9.PubMedCrossRef Spinillo A, Iasci A, Capuzzo E, Egbe TO, Colonna L, Fazzi E. Two-year infant neurodevelopmental outcome after expectant management and indicated preterm delivery in hypertensive pregnancies. Acta Obstet Gynecol Scand. 1994;73(8):625–9.PubMedCrossRef
149.
Zurück zum Zitat Johnson S, Evans TA, Draper ES, Field DJ, Manktelow BN, Marlow N, et al. Neurodevelopmental outcomes following late and moderate prematurity: a population-based cohort study. Arch Dis Child Fetal Neonatal Ed. 2015;100(4):F301–8.PubMedCrossRef Johnson S, Evans TA, Draper ES, Field DJ, Manktelow BN, Marlow N, et al. Neurodevelopmental outcomes following late and moderate prematurity: a population-based cohort study. Arch Dis Child Fetal Neonatal Ed. 2015;100(4):F301–8.PubMedCrossRef
150.
Zurück zum Zitat Li XL, Guo PL, Xue Y, Gou WL, Tong M, Chen Q. An analysis of the differences between early and late preeclampsia with severe hypertension. Pregnancy Hypertens. 2016;6(1):47–52.PubMedCrossRef Li XL, Guo PL, Xue Y, Gou WL, Tong M, Chen Q. An analysis of the differences between early and late preeclampsia with severe hypertension. Pregnancy Hypertens. 2016;6(1):47–52.PubMedCrossRef
151.
Zurück zum Zitat Gray PH, O’Callaghan MJ, Mohay HA, Burns YR, King JF. Maternal hypertension and neurodevelopmental outcome in very preterm infants. Arch Dis Child Fetal Neonatal Ed. 1998;79(2):F88–93.PubMedPubMedCentralCrossRef Gray PH, O’Callaghan MJ, Mohay HA, Burns YR, King JF. Maternal hypertension and neurodevelopmental outcome in very preterm infants. Arch Dis Child Fetal Neonatal Ed. 1998;79(2):F88–93.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Schlapbach LJ, Ersch J, Adams M, Bernet V, Bucher HU, Latal B. Impact of chorioamnionitis and preeclampsia on neurodevelopmental outcome in preterm infants below 32 weeks gestational age. Acta Paediatr. 2010;99(10):1504–9.PubMedCrossRef Schlapbach LJ, Ersch J, Adams M, Bernet V, Bucher HU, Latal B. Impact of chorioamnionitis and preeclampsia on neurodevelopmental outcome in preterm infants below 32 weeks gestational age. Acta Paediatr. 2010;99(10):1504–9.PubMedCrossRef
153.
Zurück zum Zitat McCowan LME, Pryor J, Harding JE. Perinatal predictors of neurodevelopmental outcome in small-for-gestational-age children at 18 months of age. Am J Obstet Gynecol. 2002;186(5):1069–75.PubMedCrossRef McCowan LME, Pryor J, Harding JE. Perinatal predictors of neurodevelopmental outcome in small-for-gestational-age children at 18 months of age. Am J Obstet Gynecol. 2002;186(5):1069–75.PubMedCrossRef
154.
Zurück zum Zitat Spinillo A, Montanari L, Gardella B, Roccio M, Stronati M, Fazzi E. Infant sex, obstetric risk factors, and 2-year neurodevelopmental outcome among preterm infants. Dev Med Child Neurol. 2009;51(7):518–25.PubMedCrossRef Spinillo A, Montanari L, Gardella B, Roccio M, Stronati M, Fazzi E. Infant sex, obstetric risk factors, and 2-year neurodevelopmental outcome among preterm infants. Dev Med Child Neurol. 2009;51(7):518–25.PubMedCrossRef
155.
Zurück zum Zitat Degirmencioglu H, Say B, Ustunyurt Z, Oguz SS. Influence of Maternal Preeclampsia on Neurodevelopmental Outcomes of Preterm Infants. Gynecol Obstetric Reprod Med. 2018;24(2):99–103.CrossRef Degirmencioglu H, Say B, Ustunyurt Z, Oguz SS. Influence of Maternal Preeclampsia on Neurodevelopmental Outcomes of Preterm Infants. Gynecol Obstetric Reprod Med. 2018;24(2):99–103.CrossRef
156.
Zurück zum Zitat Wade M, Jenkins JM. Pregnancy hypertension and the risk for neuropsychological difficulties across early development: A brief report. Child Neuropsychol. 2016;22(2):247–54.PubMedCrossRef Wade M, Jenkins JM. Pregnancy hypertension and the risk for neuropsychological difficulties across early development: A brief report. Child Neuropsychol. 2016;22(2):247–54.PubMedCrossRef
157.
Zurück zum Zitat Bharadwaj SK, Vishnu Bhat B, Vickneswaran V, Adhisivam B, Bobby Z, Habeebullah S. Oxidative Stress, Antioxidant Status and Neurodevelopmental Outcome in Neonates Born to Pre-eclamptic Mothers. Indian J Pediatr. 2018;85(5):351–7.PubMedCrossRef Bharadwaj SK, Vishnu Bhat B, Vickneswaran V, Adhisivam B, Bobby Z, Habeebullah S. Oxidative Stress, Antioxidant Status and Neurodevelopmental Outcome in Neonates Born to Pre-eclamptic Mothers. Indian J Pediatr. 2018;85(5):351–7.PubMedCrossRef
158.
Zurück zum Zitat Chen Z, Li R, Liu H, Duan J, Yao C, Yang R, et al. Impact of maternal hypertensive disorders on offspring’s neurodevelopment: a longitudinal prospective cohort study in China. Pediatr Res. 2020;88(4):668–75.PubMedCrossRef Chen Z, Li R, Liu H, Duan J, Yao C, Yang R, et al. Impact of maternal hypertensive disorders on offspring’s neurodevelopment: a longitudinal prospective cohort study in China. Pediatr Res. 2020;88(4):668–75.PubMedCrossRef
159.
Zurück zum Zitat Maher GM, O’Keeffe GW, O’Keeffe LM, Matvienko-Sikar K, Dalman C, Kearney PM, et al. The Association Between Preeclampsia and Childhood Development and Behavioural Outcomes. Matern Child Health J. 2020;24(6):727–38.PubMedCrossRef Maher GM, O’Keeffe GW, O’Keeffe LM, Matvienko-Sikar K, Dalman C, Kearney PM, et al. The Association Between Preeclampsia and Childhood Development and Behavioural Outcomes. Matern Child Health J. 2020;24(6):727–38.PubMedCrossRef
160.
Zurück zum Zitat Phatak P. Manual on Developmental Assessment Scales for Indian Infants (DASII) – Revised Baroda Norms. Pune: Anand Agencies; 1997: 5. Phatak P. Manual on Developmental Assessment Scales for Indian Infants (DASII) – Revised Baroda Norms. Pune: Anand Agencies; 1997: 5.
161.
Zurück zum Zitat Frankenburg WK, Dodds JB, Fandal AW, Kazuk E, Cohrs M. The Denver Developmental Screening Test: Reference manual. Denver: University of Colorado Medical Center; 1975. Frankenburg WK, Dodds JB, Fandal AW, Kazuk E, Cohrs M. The Denver Developmental Screening Test: Reference manual. Denver: University of Colorado Medical Center; 1975.
162.
Zurück zum Zitat Gesell A, Amatruda CS. Developmental Diagnosis: Normal and Abnormal Child Development Clinical Methods and Practical Applications. JAMA. 1942;118(3):259. Gesell A, Amatruda CS. Developmental Diagnosis: Normal and Abnormal Child Development Clinical Methods and Practical Applications. JAMA. 1942;118(3):259.
163.
Zurück zum Zitat Beijing Mental Development Cooperative Group. Gesell Developmental Diagnosis Scale. Beijing: Beijing Mental Development Cooperative Group; 1985. Beijing Mental Development Cooperative Group. Gesell Developmental Diagnosis Scale. Beijing: Beijing Mental Development Cooperative Group; 1985.
164.
Zurück zum Zitat Burns YR, Ensbey RM, Norrie MA. The Neuro-sensory Motor Developmental Assessment part 1: development and administration of the test. Aust J Physiother. 1989;35(3):141–9.PubMedCrossRef Burns YR, Ensbey RM, Norrie MA. The Neuro-sensory Motor Developmental Assessment part 1: development and administration of the test. Aust J Physiother. 1989;35(3):141–9.PubMedCrossRef
165.
Zurück zum Zitat Nahum Sacks K, Friger M, Shoham-Vardi I, Sergienko R, Spiegel E, Landau D, et al. Long-term neuropsychiatric morbidity in children exposed prenatally to preeclampsia. Early Human Dev. 2019;130:96–100.CrossRef Nahum Sacks K, Friger M, Shoham-Vardi I, Sergienko R, Spiegel E, Landau D, et al. Long-term neuropsychiatric morbidity in children exposed prenatally to preeclampsia. Early Human Dev. 2019;130:96–100.CrossRef
Metadaten
Titel
A review of infant growth and psychomotor developmental outcomes after intrauterine exposure to preeclampsia
verfasst von
Priya Vakil
Amanda Henry
Maria E. Craig
Megan L. Gow
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2022
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-022-03542-5

Weitere Artikel der Ausgabe 1/2022

BMC Pediatrics 1/2022 Zur Ausgabe

Kinder mit anhaltender Sinusitis profitieren häufig von Antibiotika

30.04.2024 Rhinitis und Sinusitis Nachrichten

Persistieren Sinusitisbeschwerden bei Kindern länger als zehn Tage, ist eine Antibiotikatherapie häufig gut wirksam: Ein Therapieversagen ist damit zu über 40% seltener zu beobachten als unter Placebo.

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.