Skip to main content
Erschienen in: Cardiovascular Toxicology 6/2022

27.03.2022 | Arterial Occlusive Disease

Exosomes Derived from Mesenchymal Stem Cells Ameliorate the Progression of Atherosclerosis in ApoE−/− Mice via FENDRR

verfasst von: Nan Zhang, Yuxin Luo, Huaping Zhang, Feng Zhang, Xiang Gao, Jiawei Shao

Erschienen in: Cardiovascular Toxicology | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Exosomes (EXO) are extracellular vesicles with lipid bilayer membrane structure containing noncoding RNA, DNA, and other molecules which mediate biological functions. The importance of EXO derived from mesenchymal stem cells (MSCs) has been underlined in cardiovascular diseases. However, the functional role of long non-coding RNA (lncRNA) released by MSCs-EXO on atherosclerosis (AS) was unknown. We aimed to investigate the effects of lncRNA fetal-lethal non-coding developmental regulatory RNA (FENDRR) released from MSC-derived EXO on AS. The accumulation of oxidized low-density lipoprotein (oxLDL) caused AS in mice and damage to human vascular endothelial cells (HUV-EC-C). MSC-EXO restored HUV-EC-C activity and alleviated arterial injury. LncRNA microarrays revealed that FENDRR was delivered to cells and tissues by MSC-EXO. FENDRR bound to microRNA (miR)-28 to regulate TEA domain transcription factor 1 (TEAD1) expression. Moreover, FENDRR knockdown exacerbated cell injury and arterial injury in mice. miR-28 inhibitor reversed the effects of FENDRR silencing and reduced atherosclerotic plaque formation. While loss of TEAD1 mitigated the effect of miR-28 inhibitor and accentuated HUV-EC-C injury in vitro and AS symptoms in vivo. Our results demonstrated that MSC-EXO secreted FENDRR to treat AS. FENDRR competed with TEAD1 to bind to miR-28, thereby reducing HUV-EC-C injury and atherosclerotic plaque formation.
Literatur
3.
Zurück zum Zitat Xu, S., Ilyas, I., Little, P. J., Li, H., Kamato, D., Zheng, X., Luo, S., Li, Z., Liu, P., Han, J., Harding, I. C., Ebong, E. E., Cameron, S. J., Stewart, A. G., & Weng, J. (2021). Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacological Review, 73(3), 924–967. https://doi.org/10.1124/pharmrev.120.000096CrossRef Xu, S., Ilyas, I., Little, P. J., Li, H., Kamato, D., Zheng, X., Luo, S., Li, Z., Liu, P., Han, J., Harding, I. C., Ebong, E. E., Cameron, S. J., Stewart, A. G., & Weng, J. (2021). Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacological Review, 73(3), 924–967. https://​doi.​org/​10.​1124/​pharmrev.​120.​000096CrossRef
6.
Zurück zum Zitat Li, J., Xue, H., Li, T., Chu, X., Xin, D., Xiong, Y., Qiu, W., Gao, X., Qian, M., Xu, J., Wang, Z., & Li, G. (2019). Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochemical and Biophysical Research Communications, 510(4), 565–572. https://doi.org/10.1016/j.bbrc.2019.02.005CrossRefPubMed Li, J., Xue, H., Li, T., Chu, X., Xin, D., Xiong, Y., Qiu, W., Gao, X., Qian, M., Xu, J., Wang, Z., & Li, G. (2019). Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochemical and Biophysical Research Communications, 510(4), 565–572. https://​doi.​org/​10.​1016/​j.​bbrc.​2019.​02.​005CrossRefPubMed
10.
Zurück zum Zitat Wang, G., Yang, Y., Ma, H., Shi, L., Jia, W., Hao, X., & Liu, W. (2021). LncRNA FENDRR Inhibits ox-LDL induced mitochondrial energy metabolism disorder in aortic endothelial cells via miR-18a-5p/PGC-1alpha signaling pathway. Frontiers in Endocrinology (Lausanne), 12, 622665. https://doi.org/10.3389/fendo.2021.622665CrossRef Wang, G., Yang, Y., Ma, H., Shi, L., Jia, W., Hao, X., & Liu, W. (2021). LncRNA FENDRR Inhibits ox-LDL induced mitochondrial energy metabolism disorder in aortic endothelial cells via miR-18a-5p/PGC-1alpha signaling pathway. Frontiers in Endocrinology (Lausanne), 12, 622665. https://​doi.​org/​10.​3389/​fendo.​2021.​622665CrossRef
26.
Zurück zum Zitat Liu, J., Wen, T., Dong, K., He, X., Zhou, H., Shen, J., Fu, Z., Hu, G., Ma, W., Li, J., Wang, W., Wang, L., Akerberg, B. N., Xu, J., Osman, I., Zheng, Z., Wang, W., Du, Q., Pu, W. T., … Zhou, J. (2021). TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes. Cell Death and Differentiation, 28(7), 2045–2059. https://doi.org/10.1038/s41418-020-00732-5CrossRefPubMed Liu, J., Wen, T., Dong, K., He, X., Zhou, H., Shen, J., Fu, Z., Hu, G., Ma, W., Li, J., Wang, W., Wang, L., Akerberg, B. N., Xu, J., Osman, I., Zheng, Z., Wang, W., Du, Q., Pu, W. T., … Zhou, J. (2021). TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes. Cell Death and Differentiation, 28(7), 2045–2059. https://​doi.​org/​10.​1038/​s41418-020-00732-5CrossRefPubMed
Metadaten
Titel
Exosomes Derived from Mesenchymal Stem Cells Ameliorate the Progression of Atherosclerosis in ApoE−/− Mice via FENDRR
verfasst von
Nan Zhang
Yuxin Luo
Huaping Zhang
Feng Zhang
Xiang Gao
Jiawei Shao
Publikationsdatum
27.03.2022
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 6/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09736-8

Weitere Artikel der Ausgabe 6/2022

Cardiovascular Toxicology 6/2022 Zur Ausgabe