Skip to main content
Erschienen in: BMC Musculoskeletal Disorders 1/2022

Open Access 01.12.2022 | Research

Assessment of the measurement methods in midshaft clavicle fracture

verfasst von: Guilherme Vieira Lima, Vitor La Banca, Joel Murachovsky, Luis Gustavo Prata Nascimento, Luiz Henrique Oliveira Almeida, Roberto Yukio Ikemoto

Erschienen in: BMC Musculoskeletal Disorders | Ausgabe 1/2022

Abstract

Background

Clavicle fractures account for approximately 5% of all fractures in adults and 75% of clavicle fractures occur in the midshaft. Shortening greater than two centimeters is an indicative of surgical treatment. Radiographic exams are often used to diagnose and evaluate clavicle fractures but computed tomography (CT) scan is currently considered the best method to assess these deformities and shortening.

Goal

1- To investigate whether different methods of performing the radiographic exam interfere on the measurement of the fractured clavicle length.
2- Compare the clavicle length measurements obtained by the different radiographic exam methods with the CT scan measurements, used as a reference.

Materials and methods

Twenty-five patients with acute (< 3 weeks) midshaft clavicle fracture were evaluated. Patients underwent six radiographic images: PA Thorax (standing and lying), AP Thorax (standing and lying) and at 10° cephalic tilt (standing and lying), and the computed tomography was used as reference.

Results

The mean length (cm) obtained were: 14,930 on CT scan, 14,860 on PA Thorax Standing, 14,955 on PA Thorax Lying, 14,896 on AP Thorax Standing, 14,960 AP Thorax Lying, 15,098 on 10° cephalic tilt Standing and 15,001 on 10° cephalic tilt Lying, (p > 0,05).

Conclusion

1- There is no significant statistical difference in the clavicle fracture length measurement among the variety of radiographic exam performances.
2- The method that comes closest to computed tomography results is the PA thorax incidence, with the patient in the lying position.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CT
Computed tomography
PA
Posterior anterior
AP
Anterior posterior

Background

Clavicle fractures account for approximately 5% of all fractures in adults [1] and 44% of all injuries around the shoulder girdle [2]. 75% of clavicle fractures occur in the midshaft [14] and non-surgical treatment of midshaft fractures has showed good results [1, 4, 5]. However, these results have been recently questioned by several authors who have shown worse outcomes in patients with clavicle fractures consolidated at a shortening of more than two centimeters [614]. They consider shortening greater than two centimeters an indicative of surgical treatment [1014].
A clavicle fracture diagnosis can be easily performed by physical exam. However, an assessment with image exams is required in order to specify deviations, shortenings and its precise location [15]. Due to the multiplanar nature of this bone, it is hard to determine the angle deviation and spatial arrangement of the fragments through a single radiographic analysis [1619]. Some authors suggest that four incidences lead to a better fracture evaluation, and computed tomography (CT) scan is currently considered the best method to assess these deformities [16, 18, 2025].
The patient’s position during radiographic affects the image obtained by this exam [16, 26, 27]. Radiographies performed while the patient is in an orthostatic position show different angle deviations from those performed in a supine position, due to the action of the gravitational force [26, 27]. Moreover, the distance between the study object and the x-ray capture surface has an impact on the image magnification [16]. In radiographies performed in PA view (where the incident beams direction goes from posterior to anterior), the distance between the clavicle and the film is different from the one got in AP view (where the incident beams direction goes from anterior to posterior). Thus, the different ways of performing the exam impact on the values obtained in radiographic measurements [16, 18]. Therefore, this study aims to investigate whether different methods of performing the radiographic exam interfere with the measurement of the fractured clavicle length, and to compare the clavicle length measurements obtained by each type of radiographic exam with the measurement got from CT scan. In this study, we will also assess which radiographic method shows the most reliable measurement for a fractured clavicle length in comparison with the measurement obtained from CT (used as a reference).

Materials and methods

Twenty-five patients with clavicle fracture were evaluated at our emergency service. Acute midshaft clavicle fractures that had progressed less than 3 weeks were included, showing with simple or comminuted traits, exhibiting deviations or not (2A1, 2A2, 2B1 and 2B2 types from Robinson). Patients attended were both sexes, ages ranging from 18 to 69 years old, who agreed to be part of this study (with informed consent). Proximal or distal third clavicle fractures, fractures that had progressed for more than 3 weeks, previous clavicle fractures and/or showing other fractures or associated shoulder girdle injuries were not included.
Age, sex, high, weight, trauma mechanism and affected side data were collected. Patients underwent six radiographic images: PA Thorax (standing and lying), AP Thorax (standing and lying) and at 10° cephalic tilt (standing and lying) [28]. All images were obtained in order to include both clavicles in their entirety (distal and proximal articulation). An image analysis program (Vue Motion, Carestream - Rochester, NY) was used to measure clavicle length by means of a technique described by Smekal et al. [16], and Lazaride et al. [25], connecting most medial to the most lateral point of the clavicle (Fig. 1).
The same length measurement method (connecting most medial to the most lateral point of the clavicle) was used in the 3D computed tomography obtained images as shown in Fig. 2. From the length measurement, the relative shortening for each patient was calculated, subtracting the fractured clavicle length value from the length of the integral clavicle.
Four of the 25 patients were excluded. Two presented contraindications to CT and two presented unsatisfactory tomographic images.
Dependent t-test was used for data with normal distribution and Wolcoxon test for those who didn’t show normal distribution. Significance level was 5%. The software used was version 11.0 Stata (STATACORP, LC).
The research ethics committee approved this study according to the Helsing protocol.

Results

Of the 21 patients, 15 were male and 6 were female. Mean age was 41.2 (18–69) years old, mean height was 1.73 (1.54–1.91) meters and the mean weight was 72.8 (46–110) kilograms. The mechanism trauma in 16 cases were a fall directly on the shoulder with the arm at the side and 5 were indirect trauma from a fall on an outstretched hand (Table 1).
Table 1
Sample information
Sample
Age
Gender (M-Male / F-Female)
Weight (Kilogram)
High (meters)
Affected Side
Trauma Mechanism
Frature
Type
1
34
M
100
1,82
Right
Direct
Simple
2
27
F
68
1,63
Right
Direct
Simple
3
35
M
86
1,78
Right
Direct
Complex
4
18
M
68
1,9
Left
Direct
Simple
5
22
F
56
1,62
Right
Direct
Complex
7
58
M
76
1,6
Left
Direct
Complex
8
53
M
53
1,81
Left
Direct
Complex
9
30
F
70
1,75
Right
Direct
Simple
10
35
M
83
1,84
Right
Direct
Simple
11
61
M
67
1,72
Left
Direct
Simple
12
61
M
66
1,79
Right
Direct
Simple
13
18
M
70
1,75
Right
Direct
Simple
14
57
M
86
1,76
Right
Direct
Simple
15
22
F
46
1,65
Left
Direct
Simple
16
25
M
89
1,74
Left
Direct
Complex
17
35
M
110
1,91
Left
Indirect
Simple
18
64
F
62
1,54
Left
Indirect
Complex
19
58
M
76
1,72
Right
Direct
Simple
20
26
M
75
1,76
Left
Indirect
Simple
21
69
M
62
1,63
Right
Indirect
Complex
22
58
M
60
1,64
Right
Indirect
Simple
Regarding the affected side, 12 patients had their fracture on the right side and 9 on the left. The dominant side was affected in 13 patients and the non-dominant in 8. According to Robinsons et al. [1] classification, 14 fractures were simple (2A1/2A2/2B1) and 7 were comminuted fractures (2B2).
There wasn’t any significant statistical difference in the clavicle fracture length measurement among the variety of radiographic exam performances when compared to CT (Table 2).
Table 2
Length Measurement of the Fractured Clavicle in Radiographic Exams and Tomography
Exam
Mean Length (cm)
Mean difference compared to CT (cm)
95% CI
p
Tomography
14,930 (14,378-15,481)
PA Thorax Standing
14,860 (14,252-15,4680)
0,698
(−0,134/0,274)
0,4848
PA Thorax Lying
14,955 (14,357 - 15,553)
−0,025
(− 0,197/0,147)
0,762
AP Thorax Standing
14,896 (14,351-15,441)
0,033
(−0,126/ 0,192)
0,6678
AP Thorax Lying
14,960 (14,385-15,535)
-0,03
(−0,196/0,136)
0,7096
10° cephalic tilt Standing
15,098 (14,513 - 15,682)
-0,168
(−0,400/0,063)
0,1456
10° cephalic tilt Lying
15,001 (14,422 - 15,580)
-0,071
(−0,235/0,092)
0,3742
The comparison between the obtained measurements with different patient positions (standing or lying) did not demonstrate any significant statistical difference (p = 0,376) (Table 3). Measurement values obtained by different X-ray incidences (AP or PA) were also similar (p = 0,732) (Table 4).
Table 3
Comparison between standing AP and lying AP
 
Mean measurement cm
95% CI
 
AP Thorax Lying
14,960 (14,385-15,535)
(14,385/15,535)
 
AP Thorax Standing
14,896 (14,351-15,441)
(14,351/15,441)
 
Difference
-0,063
(−0,209/0,082)
p = 0,3762
Table 4
Comparison between standing AP thorax and standing PA thorax
 
Mean measurement cm
95% CI
 
Standing PA Thorax
14,860 (14,252-15,468)
(14,252/15,4680)
 
Standing AP Thorax
14,896 (14,351-15,441)
(14,351/15,441)
 
Difference
0,036
(−0,183/0,256)
p = 0,732
In the shortening evaluation, significant differences weren’t observed between orthostatic standing and lying exams (p = 0,204), not even between AP and PA incidences (p = 0,531), considering the integral clavicle length as a parameter.

Discussion

Clavicle shortening is considered one of the main parameters to make a surgical referral, however, there is no consensus on the exact value of this measure. Lazarides et al. [25] considered bad prognosis for the conservative treatment fractures with shortenings greater than 1,4 cm in women and 1,8 cm in men. Hill et al. [9], consider shortening values greater than 2,0 cm to indicate surgery and they don’t mention gender differences in their study. Postattine et al. [29] consider shortening as the fracture overlap percentage, being referred to surgery those who present a percentage of overlap greater than 13 to 15% of the total length. And De Giorgis et al. [30] parameter is a shortening percentage of 9,7% in comparison to the integral clavicle length.
Regarding the variation of the clavicle length among individuals, Daruwalla et al. [20] showed, through integral clavicles tomographic measurement, that there is a variation of 129.4 mm to 161.2 mm in that bone’s size, and King et al. [21] found a length variation of 121.5 to 183.3 mm. In our study, we observed a variation from 132 mm to 169 mm and, therefore, using an absolute but not relative percentage shortening value may cause different effects according to the clavicle size.
As well as Lazarides et al. [25], we measured the clavicle shortening from the contra lateral clavicle length measure, as a parameter of normal length. Some authors measure the shortening from the edges of the fractured fragments in a straight-line projection [1618, 31]. That methodology may not be precise due to the “S” shape [11, 15] characteristic of that bone and to the comminution of many clavicle fractures, associated with images overlap of a simple radiography [23].
There is no consensus over X-ray tilt. We found, in our literature search, a wide angular variation in the incidence of these rays. Studies show exams performed at the following angles: 0°, 10° cephalic, 15° caudal, 20° caudal, 20° cephalic, 30° cephalic, 45° cephalic and 45° caudal [128, 3133], in neither of which there is an explanation for this great angular variation. In our study, we standardized inclinations to 0° (due to its vast use by most authors) and 10° cephalic (for being the incidence that better evaluates the limits of the acromioclavicular articulation for a precise assessment of that bone’s lateral boundary).
Currently, CT exam is considered the gold standard method [16, 18, 2025]. It allows a detailed assessment of the bone fragments, as well as a three-dimensional assessment through one simple exam. Omid et al. [24] show the superiority of a CT over a simple radiography in the evaluation of the fractured clavicle shortening. However, one of the main questions regarding the comparative radiography and tomography studies is in relation to the positioning of the patient. When lying down, the gravitational force vector relative to the patient is different from a standing position, and that could affect the measurement of the fractured clavicle length. Onizuka et al. [26] made a similar assessment of the gravitational impact, comparing only AP X-rays of the fractured clavicle with a 15° tilt performed with a patient standing and then lying. The authors obtained a significant difference in the angular measurement and vertical deviation, however, as we did in our study, they observed no change in length and shortening.
In this study, we searched for the radiographic incidence that presents the most reliable length measurements of the fractured clavicle in comparison with the measurements obtained in CT. Lying PA incidence was the one that showed values closest to the tomographic exam. Other studies make similar assessments [16, 18, 24], however, none of the studies in our survey included the AP and PA incidences in patients standing and then lying. Different from the results obtained by Smekel et al. [16], our study did not show a significant statistical difference between AP and PA incidences. Despite the lying PA exam being the most reliable CT to the clavicle length measurements, it was also the one in which patients complained of much pain during the exam. As there is no statistically significant difference between the exams, we do not recommend this incidence performance in order to avoid unnecessary discomfort to the patients.
We also did not assess the relation between fracture time and shortening pattern. In our evaluation, we included patients whose fractures had progressed less than 3 weeks, and according to Onizuka et al. [26], it is in this interval most deviations occur. After 21 days, the presence of fibrous scar tissue stabilizes the fracture and prevents the displacement of fragments even when the patient changes position.
The main limitation of our study was the sample size, nevertheless the statistic showed that there is no difference between the described methods but futures studies with a larger number are necessary. Other limitations were: heterogeneous distribution between male and female individuals, we did not consider spinal and postural disorders, nor the biotype of individuals that can affect the clavicle positioning during a radiography exam. Despite the radiographic technique being standardized in relation to the patient positioning during examination, the execution of a good quality exam depends on experienced technicians. In our study, we had to repeat the radiographic exam in three patients because of unsatisfactory exams that did not include both clavicles in their entirety.
The shortening of the fractured clavicle is one of the main parameters for surgical indication. Since there is no statistical difference between the methods presented, the study showed us that it is possible to evaluate the length of the fractured clavicle using any of the radiographic methods described.
If there was a significant statistical difference in our study, we would be able to standardize a single radiographic method to the assessment of the fractured clavicle length and facilitate conduct taking.

Conclusion

Our results show that there is no significant statistical difference in the clavicle fracture length measurement among the variety of radiographic exam performances made in this study, and the method that comes closest to computed tomography results is the PA thorax incidence, with the patient in the lying position. However, it is not recommended due to the intensification of pain.

Acknowledgements

The authors would like to thank all the patients for their participation and the collaboration of all radiography technicians at Hospital Municipal de Santo André.

Declarations

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional by the number (CAAE: 09036718.2.0000.5488). The research ethics committee approved this study according to the Helsing protocol.
Ethics Committee: UGA II Hospital Ipiranga– Plataforma Brasil CAAE: 09036718.2.0000.5488. Opinion Number: 3.347.255.
Informed consent: Informed consent was obtained from all individual participants included in the study.
Not applicable.
All authors of the manuscript have read and agreed to its content and are accountable for all aspects of the accuracy and integrity of the manuscript in accordance with ICMJE criteria.
This article is original, has not already been published in a journal, and is not currently under consideration by another journal.
All the authors agree to the terms of the BioMed Central Copyright and License Agreement.

Competing interests

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Robinson CM. Fractures of the clavicle in the adult. Epidemiology and classification. J Bone Joint Surg Br Vol. 1998;80(3):476–84.CrossRef Robinson CM. Fractures of the clavicle in the adult. Epidemiology and classification. J Bone Joint Surg Br Vol. 1998;80(3):476–84.CrossRef
2.
Zurück zum Zitat Rowe CR. An atlas of anatomy and treatment of mid-clavicular fractures. Clin Orthop. 1968;58:29–42.CrossRefPubMed Rowe CR. An atlas of anatomy and treatment of mid-clavicular fractures. Clin Orthop. 1968;58:29–42.CrossRefPubMed
3.
Zurück zum Zitat Postacchini F, Gumina S, De Santis P, Albo F. Epidemiology of clavicle fractures. J Shoulder Elb Surg. 2002;11(5):452–6.CrossRef Postacchini F, Gumina S, De Santis P, Albo F. Epidemiology of clavicle fractures. J Shoulder Elb Surg. 2002;11(5):452–6.CrossRef
4.
Zurück zum Zitat Neer C. Nonunion of the clavicle. JAMA. 1960;172(March 1960):96–9. Neer C. Nonunion of the clavicle. JAMA. 1960;172(March 1960):96–9.
5.
Zurück zum Zitat Eskola A, Vainionpää S, Myllynen P, Pätiälä H, Rokkanen P. Outcome of clavicular fracture in 89 patients. Arch Orthop Trauma Surg. 1986;105(6):337–8.CrossRefPubMed Eskola A, Vainionpää S, Myllynen P, Pätiälä H, Rokkanen P. Outcome of clavicular fracture in 89 patients. Arch Orthop Trauma Surg. 1986;105(6):337–8.CrossRefPubMed
6.
Zurück zum Zitat Zlowodzki M, Zelle BA, Cole PA, Jeray K, McKee MD. Treatment of acute midshaft clavicle fractures: systematic review of 2144 fractures. On behalf of the evidence-based orthopedic trauma working group. J Orthop Trauma. 2005;19(7):504–7.CrossRefPubMed Zlowodzki M, Zelle BA, Cole PA, Jeray K, McKee MD. Treatment of acute midshaft clavicle fractures: systematic review of 2144 fractures. On behalf of the evidence-based orthopedic trauma working group. J Orthop Trauma. 2005;19(7):504–7.CrossRefPubMed
7.
Zurück zum Zitat McKee RC, Whelan DB, Schemitsch EH, McKee MD. Operative versus nonoperative care of displaced midshaft clavicular fractures: A meta-analysis of randomized clinical trials. J Bone Jt Surg - Ser A. 2012;94(8):675–84.CrossRef McKee RC, Whelan DB, Schemitsch EH, McKee MD. Operative versus nonoperative care of displaced midshaft clavicular fractures: A meta-analysis of randomized clinical trials. J Bone Jt Surg - Ser A. 2012;94(8):675–84.CrossRef
8.
Zurück zum Zitat Altamimi SA, McKee MD. Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures. J Bone Jt Surg - Ser A. 2008;90(SUPPL. 2 PART 1):1–8. Altamimi SA, McKee MD. Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures. J Bone Jt Surg - Ser A. 2008;90(SUPPL. 2 PART 1):1–8.
9.
Zurück zum Zitat Hill JM, McGuire MH, Crosby LA. Closed treatment of displaced middle-third fractures of the clavicle gives poor results. J Bone Jt Surg - Ser B. 1997;79(4):537–9.CrossRef Hill JM, McGuire MH, Crosby LA. Closed treatment of displaced middle-third fractures of the clavicle gives poor results. J Bone Jt Surg - Ser B. 1997;79(4):537–9.CrossRef
10.
Zurück zum Zitat Wick M, Müller EJ, Kollig E, Muhr G. Midshaft fractures of the clavicle with a shortening of more than 2 cm predispose to nonunion. Arch Orthop Trauma Surg. 2001;121(4):207–11.CrossRefPubMed Wick M, Müller EJ, Kollig E, Muhr G. Midshaft fractures of the clavicle with a shortening of more than 2 cm predispose to nonunion. Arch Orthop Trauma Surg. 2001;121(4):207–11.CrossRefPubMed
11.
Zurück zum Zitat Goldberg MJ, Jevsevar D, Bozic KJ. Displaced clavicle fractures in adolescents: facts, controversies, and current trends. J Am Acad Orthop Surg. 2013;21(4):199–200.CrossRefPubMed Goldberg MJ, Jevsevar D, Bozic KJ. Displaced clavicle fractures in adolescents: facts, controversies, and current trends. J Am Acad Orthop Surg. 2013;21(4):199–200.CrossRefPubMed
13.
Zurück zum Zitat McKee MD, Pedersen EM, Jones C, Stephen DJG, Kreder HJ, Schemitsch EH, et al. Deficits following nonoperative treatment of displaced midshaft clavicular fractures. J Bone Jt Surg - Ser A. 2006;88(1):35–40. McKee MD, Pedersen EM, Jones C, Stephen DJG, Kreder HJ, Schemitsch EH, et al. Deficits following nonoperative treatment of displaced midshaft clavicular fractures. J Bone Jt Surg - Ser A. 2006;88(1):35–40.
14.
Zurück zum Zitat Ersen A, Atalar AC, Birisik F, Saglam Y, Demirhan M. Comparison of simple arm sling and figure of eight clavicular bandage for midshaft clavicular fractures: a randomized controlled study. Bone Jt J. 2015;97B(11):1562–5.CrossRef Ersen A, Atalar AC, Birisik F, Saglam Y, Demirhan M. Comparison of simple arm sling and figure of eight clavicular bandage for midshaft clavicular fractures: a randomized controlled study. Bone Jt J. 2015;97B(11):1562–5.CrossRef
15.
Zurück zum Zitat McKee MD. In: Court-Brown CM, Heckman JD, McQueen MM, Ricci WM, Tornetta P, editors. Rockwood and Green’s fractures in adults, vol. 1. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2015. p. 1427–70. McKee MD. In: Court-Brown CM, Heckman JD, McQueen MM, Ricci WM, Tornetta P, editors. Rockwood and Green’s fractures in adults, vol. 1. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2015. p. 1427–70.
16.
Zurück zum Zitat Smekal V, Deml C, Irenberger A, Niederwanger C, Lutz M, Blauth M, et al. Length determination in midshaft clavicle fractures: validation of measurement. J Orthop Trauma. 2008;22(7):458–62.CrossRefPubMed Smekal V, Deml C, Irenberger A, Niederwanger C, Lutz M, Blauth M, et al. Length determination in midshaft clavicle fractures: validation of measurement. J Orthop Trauma. 2008;22(7):458–62.CrossRefPubMed
17.
Zurück zum Zitat Thorsmark AH, Muhareb Udby P, Ban I, Frich LH. Bone shortening of clavicular fractures: comparison of measurement methods. BMC Musculoskelet Disord. 2017;18(1):1–7.CrossRef Thorsmark AH, Muhareb Udby P, Ban I, Frich LH. Bone shortening of clavicular fractures: comparison of measurement methods. BMC Musculoskelet Disord. 2017;18(1):1–7.CrossRef
18.
Zurück zum Zitat Archer LA, Hunt S, Squire D, Moores C, Stone C, O’Dea F, et al. Plain film measurement error in acute displaced midshaft clavicle fractures. Can J Surg. 2016;59(5):311–6.CrossRefPubMedPubMedCentral Archer LA, Hunt S, Squire D, Moores C, Stone C, O’Dea F, et al. Plain film measurement error in acute displaced midshaft clavicle fractures. Can J Surg. 2016;59(5):311–6.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Jones GL, Bishop JY, Lewis B, Pedroza AD. Intraobserver and interobserver agreement in the classification and treatment of midshaft clavicle fractures. Am J Sports Med. 2014;42(5):1176–81.CrossRefPubMed Jones GL, Bishop JY, Lewis B, Pedroza AD. Intraobserver and interobserver agreement in the classification and treatment of midshaft clavicle fractures. Am J Sports Med. 2014;42(5):1176–81.CrossRefPubMed
20.
Zurück zum Zitat Daruwalla ZJ, Courtis P, Fitzpatrick C, Fitzpatrick D, Mullett H. Anatomic variation of the clavicle: A novel three-dimensional study. Clin Anat. 2010;23(2):199–209.PubMed Daruwalla ZJ, Courtis P, Fitzpatrick C, Fitzpatrick D, Mullett H. Anatomic variation of the clavicle: A novel three-dimensional study. Clin Anat. 2010;23(2):199–209.PubMed
21.
Zurück zum Zitat King PR, Scheepers S, Ikram A. Anatomy of the clavicle and its medullary canal: A computed tomography study. Eur J Orthop Surg Traumatol. 2014;24(1):37–42.CrossRefPubMed King PR, Scheepers S, Ikram A. Anatomy of the clavicle and its medullary canal: A computed tomography study. Eur J Orthop Surg Traumatol. 2014;24(1):37–42.CrossRefPubMed
22.
Zurück zum Zitat Sinha A, Edwin J, Sreeharsha B, Bhalaik V, Brownson P. A radiological study to define safe zones for drilling during plating of clavicle fractures. J Bone Jt Surg - Ser B. 2011;93 B(9):1247–52.CrossRef Sinha A, Edwin J, Sreeharsha B, Bhalaik V, Brownson P. A radiological study to define safe zones for drilling during plating of clavicle fractures. J Bone Jt Surg - Ser B. 2011;93 B(9):1247–52.CrossRef
23.
Zurück zum Zitat Kim JH, Gwak HC, Kim CW, Lee CR, Kim YJ, Seo HW. Three-dimensional clavicle displacement analysis and its effect on scapular position in acute clavicle midshaft fracture. J Shoulder Elb Surg. 2019;28(10):1877–85.CrossRef Kim JH, Gwak HC, Kim CW, Lee CR, Kim YJ, Seo HW. Three-dimensional clavicle displacement analysis and its effect on scapular position in acute clavicle midshaft fracture. J Shoulder Elb Surg. 2019;28(10):1877–85.CrossRef
24.
Zurück zum Zitat Omid R, Kidd C, Yi A, Villacis D, White E. Measurement of clavicle fracture shortening using computed tomography and chest radiography. CiOS Clin Orthop Surg. 2016;8(4):367–72.CrossRefPubMed Omid R, Kidd C, Yi A, Villacis D, White E. Measurement of clavicle fracture shortening using computed tomography and chest radiography. CiOS Clin Orthop Surg. 2016;8(4):367–72.CrossRefPubMed
25.
Zurück zum Zitat Lazarides S, Zafiropoulos G. Conservative treatment of fractures at the middle third of the clavicle: the relevance of shortening and clinical outcome. J Shoulder Elb Surg. 2006;15(2):191–4.CrossRef Lazarides S, Zafiropoulos G. Conservative treatment of fractures at the middle third of the clavicle: the relevance of shortening and clinical outcome. J Shoulder Elb Surg. 2006;15(2):191–4.CrossRef
26.
Zurück zum Zitat Onizuka N, Anderson JP, Gilbertson JA, MacCormick LM, Cole PA. Displacement of diaphyseal clavicle fractures related to patient position and progressive displacement in the peri-injury period. J Shoulder Elb Surg. 2018;27(4):667–73.CrossRef Onizuka N, Anderson JP, Gilbertson JA, MacCormick LM, Cole PA. Displacement of diaphyseal clavicle fractures related to patient position and progressive displacement in the peri-injury period. J Shoulder Elb Surg. 2018;27(4):667–73.CrossRef
27.
Zurück zum Zitat Backus JD, Merriman DJ, McAndrew CM, Gardner MJ, Ricci WM. Upright versus supine radiographs of clavicle fractures: does positioning matter? J Orthop Trauma. 2014;28(11):636–41.CrossRefPubMedPubMedCentral Backus JD, Merriman DJ, McAndrew CM, Gardner MJ, Ricci WM. Upright versus supine radiographs of clavicle fractures: does positioning matter? J Orthop Trauma. 2014;28(11):636–41.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Zanca P. Shoulder pain: involvement of the acromioclavicular joint. (analysis of 1,000 cases). Am J Roentgenol Radium Therapy, Nucl Med. 1971;112(3):493–506.CrossRef Zanca P. Shoulder pain: involvement of the acromioclavicular joint. (analysis of 1,000 cases). Am J Roentgenol Radium Therapy, Nucl Med. 1971;112(3):493–506.CrossRef
30.
Zurück zum Zitat De Giorgi S, Notarnicola A, Tafuri S, Solarino G, Moretti L, Moretti B. Conservative treatment of fractures of the clavicle. BMC Res Notes. 2011;4:333.CrossRefPubMedPubMedCentral De Giorgi S, Notarnicola A, Tafuri S, Solarino G, Moretti L, Moretti B. Conservative treatment of fractures of the clavicle. BMC Res Notes. 2011;4:333.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Stegeman SA, de Witte PB, Boonstra S, de Groot JH, Nagels J, Krijnen P, et al. Measurement of clavicular length and shortening after a midshaft clavicular fracture: spatial digitization versus planar roentgen photogrammetry. J Electromyogr Kinesiol. 2016;29:74–80.CrossRefPubMed Stegeman SA, de Witte PB, Boonstra S, de Groot JH, Nagels J, Krijnen P, et al. Measurement of clavicular length and shortening after a midshaft clavicular fracture: spatial digitization versus planar roentgen photogrammetry. J Electromyogr Kinesiol. 2016;29:74–80.CrossRefPubMed
32.
Zurück zum Zitat Kalra MK, Sodickson AD, Mayo-Smith WW. CT radiation: key concepts for gentle and wise use. Radiographics. 2015;35(6):1706–21.CrossRefPubMed Kalra MK, Sodickson AD, Mayo-Smith WW. CT radiation: key concepts for gentle and wise use. Radiographics. 2015;35(6):1706–21.CrossRefPubMed
Metadaten
Titel
Assessment of the measurement methods in midshaft clavicle fracture
verfasst von
Guilherme Vieira Lima
Vitor La Banca
Joel Murachovsky
Luis Gustavo Prata Nascimento
Luiz Henrique Oliveira Almeida
Roberto Yukio Ikemoto
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Musculoskeletal Disorders / Ausgabe 1/2022
Elektronische ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-022-05961-y

Weitere Artikel der Ausgabe 1/2022

BMC Musculoskeletal Disorders 1/2022 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.