Skip to main content
Erschienen in: BMC Ophthalmology 1/2023

Open Access 01.12.2023 | Case Report

Bilateral angle closure glaucoma with retinitis pigmentosa in young patients: case series

verfasst von: Ziyang Lu, Lu Wang, Xi Ying, Lian Tan

Erschienen in: BMC Ophthalmology | Ausgabe 1/2023

Abstract

Background

To report the ocular characteristics and management of three cases of retinitis pigmentosa (RP) concurrent primary angle closure glaucoma (PACG).

Case presentation

Three middle-aged patients presenting with diminished vision, high intraocular pressure (IOP), and typical fundus manifestations of RP were clinically evaluated. The individualized treatment was based on the ocular conditions of each case. A novel genetic alteration in ZNF408 was identified in one patient. Two patients with short-axial eyes received unilateral combined trabeculectomy, cataract surgery, and Irido-zonulo-hyaloid-vitrectomy. One of them had a subluxated lens, managed with a capsular tension ring implantation. Their contralateral eyes, respectively, underwent laser peripheral iridotomy (LPI) and transscleral cyclophotocoagulation. The third patient underwent bilaterally combined laser peripheral iridoplasty, LPI, and medication. Ultimately, all patients achieved the target IOP during a two-year follow-up.

Conclusion

Young patients with RP may have a risk of developing angle closure glaucoma, and conversely, patients with angle closure glaucoma at younger age should be aware of the presence of RP. Therefore, routine gonioscopy and IOP monitoring are required for RP patients, and detailed fundus examinations are warranted for young PACG patients.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12886-023-03190-y.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
RP
Retinitis pigmentosa
PACG
Primary angle-closure glaucoma
IOP
Intraocular pressure
LPI
Laser peripheral iridotomy
RPE
Retinal pigment epithelium
ff-ERG
Full-field electroretinogram
PAC
Peripheral anterior chamber
OCT
Optical coherence tomography
ACA
Anterior chamber angle
TCP
Transscleral cyclophotocoagulation
IZHV
Irido-zonulo-hyaloid-vitrectomy
GAT
Goldmann applanation tonometry
AL
Axial length
LT
Lens thickness
ACD
Anterior chamber depth
BCVA
Best Corrected Visual Acuity
LP
Light perception
Trab
Trabeculectomy
Phaco
Phacoemulsification
IOL
Intraocular lens
CTR
Capsular tension ring
AV
Anterior vitrectomy
LPIp
Laser peripheral iridoplasty

Background

Retinitis pigmentosa (RP), a leading cause of human blindness worldwide, is an inherited retinal degenerated disease [1]. It features progressive loss of photoreceptors and retinal pigment epithelium (RPE). The fundus appearances manifest as waxy optic discs, attenuated retinal vessels, and peripheral pigment migration resembling bony spicules [2]. The full-field electroretinogram (ff-ERG), an essential diagnostic tool for RP, indicates a reduction in a- and b-wave amplitudes. The disease is typically characterized by nyctalopia, decreased visual acuity, and gradual visual field defect, with or without abnormal color vision [1]. The possible explanation of reduced vision in RP can be progressive photoreceptor cell death and treatable complications, including cataract, macular abnormalities, glaucoma, and so on. The worldwide prevalence of RP is about 1 in 4000 for a total of more than 1 million patients affected. In previous clinical practices, the co-occurrence of RP and glaucoma has been reported since 1862 [3]. A population-based case–control study in Taiwan showed that RP patients had a 3.64-fold greater odds of developing acute angle closure (ACG) than in the general population [4], supporting a strong association between RP and angle closure glaucoma.
Here, we report three cases of primary angle closure glaucoma (PACG) in RP along with their personalized treatments. Informed consent was obtained from the patients, and all the work conducted was in accordance with the Declaration of Helsinki.

Case presentations

Case 1

A 53-year-old female presented with 10 days history of blurry vision in the left eye. She had a family history of RP. On examination, the best-corrected visual acuity (BCVA) was 20/63 OD and only light perception OS. Intraocular pressure (IOP) was 19 mmHg OD and 33 mmHg OS for the first visit, and rising to 27 mmHg OD and 37 mmHg OS one week later, respectively. Pigmentary keratic precipitates (KP), Tyndall phenomenon, dilated pupils with no light response, narrow peripheral anterior chamber (PAC) with Van Herrick (VH) grade 1, and slight lens opacification were observed in bilateral eyes. The presence of osteoblast-like pigmentation in the inferior peripheral retina OU was observed (Fig. S1). The cup to disc ratio (CDR) was nearly 0.5 OD and 0.6 OS (Fig. 1A). No significant abnormalities were evident on the macular optical coherence tomography (OCT) of both eyes (Fig. 1B). The right eye had a visual field defect with retention of a small central and inferotemporal island, while no residual visual field existed in the left eye (Fig. 1C). Gonioscopy of both eyes revealed iridotrabecular synechia in full-circumferential range. A remarkable reduction in a- and b-wave amplitudes was seen in ff-ERG (Fig. S2). We applied genetic testing to the patient and identified a novel single nucleotide homozygous, transversion mutation (c.1618 C > T) of exon 5 in the ZNF408 gene (Fig. 1E). Both eye received two times daily topical beta-blocker (0.5% timolol), two times daily carbonic anhydrase inhibitors (0.15% brinzolamide), three times daily topical alpha-2 agonists (0.2% brimonidine tartrate) and one times daily travoprost (0.004%). But the left eye still had uncontrolled IOP and consequently undergoing transscleral cyclophotocoagulation (TCP). IOP in the right eye remained well-controlled with topical anti-glaucoma medications for ten months, and became elevated and progressively worsened to a peak of 43 mmHg. Hence, combined cataract surgery, trabeculectomy and the Irido-zonulo-hyaloid-vitrectomy (IZHV) were performed in the right eye. The postoperative anterior segment was kept in a stable condition (Fig. 1D), with BCVA improving to 20/28 OD, and IOP was maintained normal during a 2-year follow-up.

Case 2

A 54-year-old female presented with a 10 days history of painless visual loss in the right eye. She was otherwise systemically well and had no significant family history. The BCVA was 20/80 OD and 20/40 OS. Goldmann applanation tonometry (GAT) revealed an IOP of 38 mmHg OD and 14 mmHg OS. The depth of PAC was VH grade 1 OU. The pupil was mid-dilated and minimally reacting to light OD. The lens was slightly opacity OU. A fundus examination revealed that discs were waxy pale with a CDR of 0.4 OD and 0.3 OS, respectively. Bony spicule pigmentation diffused in the mid-peripheral and peripheral retina (Fig. 2A). Macular OCT suggested no significant abnormality OU (Fig. 2B). However, a tubular visual field was observed in bilateral eyes (Fig. 2C). Decreased a- and b-wave amplitudes were observed in both eyes with ff-ERG (Fig. S2). Gonioscopy revealed closed angle in all quadrant OD, whereas narrow ACA in three quadrants OS. The ocular biometric parameters of both eyes were shown in Table 1. The IOP was out of control with four kinds of anti-glaucoma medications, thus combined cataract surgery and trabeculectomy were performed on the right eye. Whole-circumference unstable zonular fibers were discovered during phacoemulsification, treated by the implantation of a capsular tension ring. Simultaneously, the right eye underwent the IZHV to prevent malignant glaucoma. Laser peripheral iridotomy (LPI) was performed in the left eye (Fig. 2D). The postoperative BCVA was 20/32 OD, and IOP was maintained within normal at postoperative 2 years.
Table 1
Clinical characteristics and management of the three cases in the study
 
Age (yrs)
Gender
 
AL (mm)
LT (mm)
ACD (mm)
Presenting BCVA
Presenting IOP (mmHg)
Management
2-year postoperative BCVA
2-year postoperative IOP (mmHg)
Case 1
53
Female
OD
21.78
5.27
1.73
20/63
19
Trab + Phaco + IOL + AV
20/28
8.6
OS
21.80
5.25
1.64
LP
33
TCP
LP
12.4
Case 2
54
Female
OD
21.75
4.85
1.61
20/80
38
Trab + Phaco + IOL + CTR + AV
20/32
13
OS
21.62
4.64
2.50
20/40
14
LPI
20/40
17
Case 3
47
Male
OD
26.63
5.21
2.09
20/125
27
LPIp + LPI
20/200
9.4
OS
26.34
5.06
2.23
20/32
27
LPIp + LPI
20/40
9.4
AL Axial length, LT Lens thickness, ACD Anterior chamber depth, BCVA Best Corrected Visual Acuity, LP light perception, Trab trabeculectomy, Phaco phacoemulsification, IOL intraocular lens, TCP transscleral cyclophotocoagulation, CTR capsular tension ring, AV anterior vitrectomy, LPI laser peripheral iridotomy, LPIp laser peripheral iridoplasty

Case 3

A 47-year-old male with established RP for 13 years was found high IOP bilaterally on the regular reviews. He had a history of high myopia. The BCVA was 20/125 OD and 20/32 OS. IOP with applanation was 27 mmHg OU. A slit-lamp examination showed the peripheral anterior chamber of both eyes was shallow with VH grade 2. The fundus examination revealed the retinal vessels were strongly attenuated, diffused chorioretinal atrophy OU and waxy pale discs with a CDR of 0.9 OD and 0.8 OS. We scarcely found bony spicules existed in the retina (Fig. 3A) and no detectable waves in ff-ERG (Fig. S2). Macular OCT revealed an attenuated outer nuclear layer, RPE, and loss of outer/inner segments (Fig. 3B). Significantly great impairment was observed with perimetry (Fig. 3C). Gonioscopy bilaterally indicated the four-quadrant angle was iridotrabecular appositonal and could be re-opend in dynamic gonioscope, so combined laser peripheral iridoplasty and LPI were performed in both eyes. The postoperative PAC widened (Fig. 3D) and IOP consistently was kept under control throughout a 2-year follow-up with the application of topical IOP-lowering eye drops.

Discussion and conclusions

In this series, we described three uncommon cases of RP concomitant PACG attending our hospital in 2020 and performed a regular follow-up. In our previous work, RP patients from January 2014 to January 2019 were studied retrospectively, which found concurrent glaucoma accounting for 1.6% [5]. Moreover, we reviewed the prevalence of PACG in RP patients, and figured out the Asians appear to rank the highest, especially the Chinese (Table 2). This might be explained by a larger sample size of RP and a higher prevalence in China, approximately 1.6–4.0 times than worldwide [1, 6, 7]. Furthermore, nanophthalmos, cataract, lens subluxation, increased lens thickness (LT) and anterior segment dysgenesis in RP were predisposing factors for ACG anatomically [8, 9]. As shown in Table 1, two patients had short axial eyes (Axial length < 22 mm). Zonular instability and thicker lens were also observed among them.
Table 2
Comparison of the prevalence of PACG in RP patients in previous studies
First author (Year of publication)
District
Subjects (No.)
PACG (Subjects /%)
Agea
D W Peng (1991) [10]
China
1400
30 (2.14%)
44.0 (range 13–63)
O Badeeb (1993) [11]
Canada
538
5 (0.93%)
57.2 (range 32–74)
Ko YC (2014) [4]
Taiwan, China
382
5 (1.3%)
53.3 ± 8.0
Pradhan C (2020) [12]
Nepal
234
5 (2.13%)
56.6 ± 8.3
Wang DD (2022) [13]
China
1356
39 (2.88%)
46.04 ± 14.50
Hung MC (2022) [14]
Taiwan, China
6223
100 (1.61%)
49.0 ± 18.1
Pradhan ZS (2022) [15]
India
618
14 (2.27%)
52.7 ± 2.4
aThe average age of the confirmed diagnosis of PACG in RP patients
Prevalence of PACG increased with aging steadily. People older than 80 years old have highest prevalence of 2.8%, while people aged 40–49 years have the lowest prevalence of 0.1% [16]. RP patients had an earlier onset of PACG (Table 2) [4, 1015]. The average age at which PACG is diagnosed in the general population is (34.4 ± 5.1) years old, while that in RP patients is (29.7 ± 7.0) years old [9]. This was contrary to the fact that PACG was more prevalent in the elderly population [4, 8, 16]. Meanwhile, the incidence of PACG in Chinese RP patients (Table 2) was higher than that in the general middle-aged and elderly (40 years old and above) population [16]. Those findings may suggest that a higher risk of developing angle closure glaucoma exist in younger patients with retinitis pigmentosa. However, more than half of the RP patients co-occurred with PACG had a normal optic disc [10]. A tubular visual field might be observed in the patients of RP or PACG at the late stage. It is worth noting that atypical glaucomatous optic discs, similar visual defects, and the incidence of rarity may lead to a higher misdiagnosis rate. Hence, comprehensive ophthalmic examinations, including gonioscopy, ff-ERG, macular OCT and genetic testing, could be warranted in younger RP patients in clinical diagnosis.
Zhong et al.’s exploration using whole exome sequencing discovered that five genes, CRB1、COL2A1、RHO、RP1L1 and PAX6, were responsible for the genetic association between early-onset PACG and RP [17, 18]. Therein, CRB1 and RHO had been implicated in familial forms of nanophthalmos [1922]. COL2A1 and PAX6 were pivotal regulators of anterior segment dysgenesis [2325]. To our knowledge, here we first report ZNF408 as a new gene associated with RP concurrent PACG, which was only previously identified alone in familial exudative vitreoretinopathy or RP [26, 27]. ZNF408 encodes a zinc finger protein that harbors 10 C2H2-type fingers thought to be implicated in DNA binding. ZNF408 is mostly expressed in human retinas, including photoreceptors, amacrine, ganglion cells and retinal blood vessels [26]. Its mutation could lead to impairment of visual function and typical changes of RP [26]. Remarkably, this is also the first report that the ZNF408 mutation was identified domestically in RP patients.
The current therapeutic strategies for PACG comprised laser, medication, or surgery (trabeculectomy, lens extraction, combined lens extraction with trabeculectomy, goniosynechialysis, etc.). The management based on cases were listed in Table 1. Notably, two patients underwent anterior vitrectomy. Prior clinical studies demonstrated that the anterior chamber tended to become refractory shallow in PACG patients with retinal disorders after trabeculectomy [28, 29]. Moreover, choroidal expansion secondary to fundus vascular abnormalities, shorter AL and zonular slackness had been proven to increase the incidence of postoperative malignant glaucoma [30, 31]. IZHV has been applied by many ophthalmologists as a golden standard to manage malignant glaucoma [32]. It was also noteworthy that two middle-aged patients without significant lens opacities underwent cataract surgeries. Our previous studies showed that cataract was the second complication in RP patients in Western China, representing approximately 43.1% [5]. Researches concerning RP unambiguously pointed out that inflammation occupied a crucial position in disease progression [3335]. Persistent ocular inflammation supposedly damaged lens zonules and induced lens opacity, leading to severe vision impairment and anterior chamber angle occlusion. Therefore, the timing for cataract surgery was recommended to be appropriate earlier for RP patients to alleviate vision impairment and monitor the fundus changes [3638]. All three patients achieved satisfactory outcomes in a two-year follow-up.
In conclusion, through describing three cases with PR concomitant PACG and their corresponding clinic treatments, we supposed that young patients with RP might have a risk of developing angle closure glaucoma, and conversely, patients with angle closure glaucoma at younger age should be aware of the presence of RP.

Acknowledgements

Not applicable.

Declarations

This study was performed according to the Declaration of Helsinki and approved by the Ethics and Research Committee of Southwest Hospital, Army Medical University. Written consent from the patients was not necessary for this retrospective descriptive study of case series.
Informed consent was obtained from all the patients for publication of this case report and any accompanying images.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343(6256):364–6.CrossRefPubMed Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343(6256):364–6.CrossRefPubMed
3.
Zurück zum Zitat Wang M, Lin HT, Bai YJ, Ge J, Zhuo YH. Clinical evidence in concurrence of retinitis pigmentosa and glaucoma. Chin Med J (Engl). 2011;124(8):1270–4.PubMed Wang M, Lin HT, Bai YJ, Ge J, Zhuo YH. Clinical evidence in concurrence of retinitis pigmentosa and glaucoma. Chin Med J (Engl). 2011;124(8):1270–4.PubMed
4.
Zurück zum Zitat Ko YC, Liu CJ, Hwang DK, Chen TJ, Liu CJ. Increased risk of acute angle closure in retinitis pigmentosa: a population-based case-control study. PLoS One. 2014;9(9):e107660.CrossRefPubMedPubMedCentral Ko YC, Liu CJ, Hwang DK, Chen TJ, Liu CJ. Increased risk of acute angle closure in retinitis pigmentosa: a population-based case-control study. PLoS One. 2014;9(9):e107660.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Tan L, Long Y, Li Z, Ying X, Ren J, Sun C, et al. Ocular abnormalities in a large patient cohort with retinitis pigmentosa in Western China. BMC Ophthalmol. 2021;21(1):43.CrossRefPubMedPubMedCentral Tan L, Long Y, Li Z, Ying X, Ren J, Sun C, et al. Ocular abnormalities in a large patient cohort with retinitis pigmentosa in Western China. BMC Ophthalmol. 2021;21(1):43.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Xu L, Hu L, Ma K, Li J, Jonas JB. Prevalence of retinitis pigmentosa in urban and rural adult Chinese: the Beijing Eye Study. Eur J Ophthalmol. 2006;16(6):865–6.CrossRefPubMed Xu L, Hu L, Ma K, Li J, Jonas JB. Prevalence of retinitis pigmentosa in urban and rural adult Chinese: the Beijing Eye Study. Eur J Ophthalmol. 2006;16(6):865–6.CrossRefPubMed
7.
Zurück zum Zitat Teo CL, Cheung N, Poh S, Thakur S, Rim TH, Cheng CY, et al. Prevalence of retinitis pigmentosa in Singapore: the Singapore epidemiology of eye diseases study. Acta Ophthalmol. 2021;99(1):e134–5.CrossRefPubMed Teo CL, Cheung N, Poh S, Thakur S, Rim TH, Cheng CY, et al. Prevalence of retinitis pigmentosa in Singapore: the Singapore epidemiology of eye diseases study. Acta Ophthalmol. 2021;99(1):e134–5.CrossRefPubMed
8.
Zurück zum Zitat Xu J, Ouyang Z, Yang Y, Cai X, Wang Z, Lin M, et al. Ocular biometry in primary angle-closure glaucoma associated with retinitis pigmentosa. J Ophthalmol. 2017;2017:9164846.CrossRefPubMedPubMedCentral Xu J, Ouyang Z, Yang Y, Cai X, Wang Z, Lin M, et al. Ocular biometry in primary angle-closure glaucoma associated with retinitis pigmentosa. J Ophthalmol. 2017;2017:9164846.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Gao F, Wang J, Chen J, Wang X, Chen Y, Sun X. Etiologies and clinical characteristics of young patients with angle-closure glaucoma: a 15-year single-center retrospective study. Graefe’s Arch Clin Exp Ophthalmol. 2021;259(8):2379–87.CrossRef Gao F, Wang J, Chen J, Wang X, Chen Y, Sun X. Etiologies and clinical characteristics of young patients with angle-closure glaucoma: a 15-year single-center retrospective study. Graefe’s Arch Clin Exp Ophthalmol. 2021;259(8):2379–87.CrossRef
10.
Zurück zum Zitat Peng DW. Retinitis pigmentosa associated with glaucoma. [Zhonghua yan ke za zhi] Chin J Ophthalmol. 1991;27(5):262–4. Peng DW. Retinitis pigmentosa associated with glaucoma. [Zhonghua yan ke za zhi] Chin J Ophthalmol. 1991;27(5):262–4.
11.
Zurück zum Zitat Badeeb O, Trope G, Musarella M. Primary angle closure glaucoma and retinitis pigmentosa. Acta Ophthalmol. 1993;71(6):727–32.CrossRef Badeeb O, Trope G, Musarella M. Primary angle closure glaucoma and retinitis pigmentosa. Acta Ophthalmol. 1993;71(6):727–32.CrossRef
12.
Zurück zum Zitat Pradhan C, Khadka S, Joshi P. Angle closure glaucoma in retinitis pigmentosa. Case Rep Ophthalmol Med. 2020;2020:6023586.PubMedPubMedCentral Pradhan C, Khadka S, Joshi P. Angle closure glaucoma in retinitis pigmentosa. Case Rep Ophthalmol Med. 2020;2020:6023586.PubMedPubMedCentral
13.
Zurück zum Zitat Wang DD, Gao FJ, Hu FY, Cao WJ, Xu P, Huang Y, et al. Clinical and genetic analysis of retinitis pigmentosa with primary angle closure glaucoma in the chinese population. Curr Eye Res. 2022;47(9):1339–45.CrossRefPubMed Wang DD, Gao FJ, Hu FY, Cao WJ, Xu P, Huang Y, et al. Clinical and genetic analysis of retinitis pigmentosa with primary angle closure glaucoma in the chinese population. Curr Eye Res. 2022;47(9):1339–45.CrossRefPubMed
14.
Zurück zum Zitat Hung MC, Chen YY. Association between retinitis pigmentosa and an increased risk of primary angle closure glaucoma: a population-based cohort study. PLoS One. 2022;17(9):e0274066.CrossRefPubMedPubMedCentral Hung MC, Chen YY. Association between retinitis pigmentosa and an increased risk of primary angle closure glaucoma: a population-based cohort study. PLoS One. 2022;17(9):e0274066.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Pradhan ZS, Shroff S, Bansod A, Poornachandra B, Shetty A, Devi S, et al. Prevalence of primary angle-closure disease in retinitis pigmentosa. Indian J Ophthalmol. 2022;70(7):2449–51.CrossRefPubMedPubMedCentral Pradhan ZS, Shroff S, Bansod A, Poornachandra B, Shetty A, Devi S, et al. Prevalence of primary angle-closure disease in retinitis pigmentosa. Indian J Ophthalmol. 2022;70(7):2449–51.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Zhang N, Wang J, Chen B, Li Y, Jiang B. Prevalence of primary angle closure glaucoma in the last 20 years: a meta-analysis and systematic review. front Med. 2020;7:624179.CrossRef Zhang N, Wang J, Chen B, Li Y, Jiang B. Prevalence of primary angle closure glaucoma in the last 20 years: a meta-analysis and systematic review. front Med. 2020;7:624179.CrossRef
17.
Zurück zum Zitat Liu X, Li J, Lin S, Xiao X, Luo J, Wei W, et al. Evaluation of the genetic association between early-onset primary angle-closure glaucoma and retinitis pigmentosa. Exp Eye Res. 2020;197:108118.CrossRefPubMed Liu X, Li J, Lin S, Xiao X, Luo J, Wei W, et al. Evaluation of the genetic association between early-onset primary angle-closure glaucoma and retinitis pigmentosa. Exp Eye Res. 2020;197:108118.CrossRefPubMed
18.
Zurück zum Zitat Xiao T, Xu K, Zhang X, Xie Y, Li Y. Sector Retinitis Pigmentosa caused by mutations of the RHO gene. Eye. 2019;33(4):592–9.CrossRefPubMed Xiao T, Xu K, Zhang X, Xie Y, Li Y. Sector Retinitis Pigmentosa caused by mutations of the RHO gene. Eye. 2019;33(4):592–9.CrossRefPubMed
19.
Zurück zum Zitat Zenteno JC, Buentello-Volante B, Ayala-Ramirez R, Villanueva-Mendoza C. Homozygosity mapping identifies the Crumbs homologue 1 (Crb1) gene as responsible for a recessive syndrome of retinitis pigmentosa and nanophthalmos. Am J Med Genet A. 2011;155A(5):1001–6.CrossRefPubMed Zenteno JC, Buentello-Volante B, Ayala-Ramirez R, Villanueva-Mendoza C. Homozygosity mapping identifies the Crumbs homologue 1 (Crb1) gene as responsible for a recessive syndrome of retinitis pigmentosa and nanophthalmos. Am J Med Genet A. 2011;155A(5):1001–6.CrossRefPubMed
20.
Zurück zum Zitat Paun CC, Pijl BJ, Siemiatkowska AM, Collin RW, Cremers FP, Hoyng CB, et al. A novel crumbs homolog 1 mutation in a family with retinitis pigmentosa, nanophthalmos, and optic disc drusen. Mol Vis. 2012;18:2447–53.PubMedPubMedCentral Paun CC, Pijl BJ, Siemiatkowska AM, Collin RW, Cremers FP, Hoyng CB, et al. A novel crumbs homolog 1 mutation in a family with retinitis pigmentosa, nanophthalmos, and optic disc drusen. Mol Vis. 2012;18:2447–53.PubMedPubMedCentral
21.
Zurück zum Zitat Ehrenberg M, Pierce EA, Cox GF, Fulton AB. CRB1: one gene, many phenotypes. Semin Ophthalmol. 2013;28(5–6):397–405.CrossRefPubMed Ehrenberg M, Pierce EA, Cox GF, Fulton AB. CRB1: one gene, many phenotypes. Semin Ophthalmol. 2013;28(5–6):397–405.CrossRefPubMed
22.
Zurück zum Zitat Yu Y, Xia X, Li H, Zhang Y, Zhou X, Jiang H. A new rhodopsin R135W mutation induces endoplasmic reticulum stress and apoptosis in retinal pigment epithelial cells. J Cell Physiol. 2019;234(8):14100–8.CrossRefPubMed Yu Y, Xia X, Li H, Zhang Y, Zhou X, Jiang H. A new rhodopsin R135W mutation induces endoplasmic reticulum stress and apoptosis in retinal pigment epithelial cells. J Cell Physiol. 2019;234(8):14100–8.CrossRefPubMed
23.
Zurück zum Zitat Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science. 1995;267(5205):1788–92.CrossRefPubMed Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science. 1995;267(5205):1788–92.CrossRefPubMed
24.
Zurück zum Zitat Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res. 2012;31(5):351–76.CrossRefPubMed Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res. 2012;31(5):351–76.CrossRefPubMed
25.
Zurück zum Zitat Richards AJ, Martin S, Yates JR, Scott JD, Baguley DM, Pope FM, et al. COL2A1 exon 2 mutations: relevance to the Stickler and Wagner syndromes. Br J Ophthalmol. 2000;84(4):364–71.CrossRefPubMedPubMedCentral Richards AJ, Martin S, Yates JR, Scott JD, Baguley DM, Pope FM, et al. COL2A1 exon 2 mutations: relevance to the Stickler and Wagner syndromes. Br J Ophthalmol. 2000;84(4):364–71.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Avila-Fernandez A, Perez-Carro R, Corton M, Lopez-Molina MI, Campello L, Garanto A, et al. Whole-exome sequencing reveals ZNF408 as a new gene associated with autosomal recessive retinitis pigmentosa with vitreal alterations. Hum Mol Genet. 2015;24(14):4037–48.CrossRefPubMed Avila-Fernandez A, Perez-Carro R, Corton M, Lopez-Molina MI, Campello L, Garanto A, et al. Whole-exome sequencing reveals ZNF408 as a new gene associated with autosomal recessive retinitis pigmentosa with vitreal alterations. Hum Mol Genet. 2015;24(14):4037–48.CrossRefPubMed
27.
Zurück zum Zitat Collin RW, Nikopoulos K, Dona M, Gilissen C, Hoischen A, Boonstra FN, et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci USA. 2013;110(24):9856–61.CrossRefPubMedPubMedCentral Collin RW, Nikopoulos K, Dona M, Gilissen C, Hoischen A, Boonstra FN, et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci USA. 2013;110(24):9856–61.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Zhong Y, Guo X, Xiao H, Luo J, Zuo C, Huang X, et al. Flat anterior chamber after trabeculectomy in secondary angle-closure glaucoma with BEST1 gene mutation: case series. PLoS One. 2017;12(1):e0169395.CrossRefPubMedPubMedCentral Zhong Y, Guo X, Xiao H, Luo J, Zuo C, Huang X, et al. Flat anterior chamber after trabeculectomy in secondary angle-closure glaucoma with BEST1 gene mutation: case series. PLoS One. 2017;12(1):e0169395.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Li M, Zhu W, Fan X, Sun X, Kong X. Outcomes of filtering surgery versus clear lens extraction in young patients with angle-closure glaucoma. Am J Ophthalmol. 2023;S0002-9394(23):00314–8. Li M, Zhu W, Fan X, Sun X, Kong X. Outcomes of filtering surgery versus clear lens extraction in young patients with angle-closure glaucoma. Am J Ophthalmol. 2023;S0002-9394(23):00314–8.
30.
Zurück zum Zitat Quigley HA, Friedman DS, Congdon NG. Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma. 2003;12(2):167–80.CrossRefPubMed Quigley HA, Friedman DS, Congdon NG. Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma. 2003;12(2):167–80.CrossRefPubMed
31.
Zurück zum Zitat Chandler PA, Grant WM. Mydriatic-cycloplegic treatment in malignant glaucoma. Arch Ophthalmol. 1962;68:353–9.CrossRefPubMed Chandler PA, Grant WM. Mydriatic-cycloplegic treatment in malignant glaucoma. Arch Ophthalmol. 1962;68:353–9.CrossRefPubMed
32.
Zurück zum Zitat Yu X, Zhao Z, Zhang D, Yang X, Sun N, Lin Y, et al. Anterior vitrectomy, phacoemulsification cataract extraction and irido-zonulo-hyaloid-vitrectomy in protracted acute angle closure crisis. Int Ophthalmol. 2021;41(9):3087–97.CrossRefPubMedPubMedCentral Yu X, Zhao Z, Zhang D, Yang X, Sun N, Lin Y, et al. Anterior vitrectomy, phacoemulsification cataract extraction and irido-zonulo-hyaloid-vitrectomy in protracted acute angle closure crisis. Int Ophthalmol. 2021;41(9):3087–97.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Singh I, Singh AK, Contreras MA. Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected contributor to neuropathology. J Child Neurol. 2009;24(9):1147–57.CrossRefPubMedPubMedCentral Singh I, Singh AK, Contreras MA. Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected contributor to neuropathology. J Child Neurol. 2009;24(9):1147–57.CrossRefPubMedPubMedCentral
34.
35.
Zurück zum Zitat McMurtrey JJ, Tso MOM. A review of the immunologic findings observed in retinitis pigmentosa. Surv Ophthalmol. 2018;63(6):769–81.CrossRefPubMed McMurtrey JJ, Tso MOM. A review of the immunologic findings observed in retinitis pigmentosa. Surv Ophthalmol. 2018;63(6):769–81.CrossRefPubMed
36.
Zurück zum Zitat Jackson H, Garway-Heath D, Rosen P, Bird AC, Tuft SJ. Outcome of cataract surgery in patients with retinitis pigmentosa. Br J Ophthalmol. 2001;85(8):936–8.CrossRefPubMedPubMedCentral Jackson H, Garway-Heath D, Rosen P, Bird AC, Tuft SJ. Outcome of cataract surgery in patients with retinitis pigmentosa. Br J Ophthalmol. 2001;85(8):936–8.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Yoshida N, Ikeda Y, Murakami Y, Nakatake S, Fujiwara K, Notomi S, et al. Factors affecting visual acuity after cataract surgery in patients with retinitis pigmentosa. Ophthalmology. 2015;122(5):903–8.CrossRefPubMed Yoshida N, Ikeda Y, Murakami Y, Nakatake S, Fujiwara K, Notomi S, et al. Factors affecting visual acuity after cataract surgery in patients with retinitis pigmentosa. Ophthalmology. 2015;122(5):903–8.CrossRefPubMed
38.
Zurück zum Zitat Bayyoud T, Bartz-Schmidt KU, Yoeruek E. Long-term clinical results after cataract surgery with and without capsular tension ring in patients with retinitis pigmentosa: a retrospective study. BMJ open. 2013;3(4):e002616.CrossRefPubMedPubMedCentral Bayyoud T, Bartz-Schmidt KU, Yoeruek E. Long-term clinical results after cataract surgery with and without capsular tension ring in patients with retinitis pigmentosa: a retrospective study. BMJ open. 2013;3(4):e002616.CrossRefPubMedPubMedCentral
Metadaten
Titel
Bilateral angle closure glaucoma with retinitis pigmentosa in young patients: case series
verfasst von
Ziyang Lu
Lu Wang
Xi Ying
Lian Tan
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2023
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-023-03190-y

Weitere Artikel der Ausgabe 1/2023

BMC Ophthalmology 1/2023 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.