Skip to main content
Erschienen in: Cardiovascular Toxicology 12/2021

14.09.2021 | Human Immunodeficiency Virus

HIV Tat Protein Induces Myocardial Fibrosis Through TGF-β1-CTGF Signaling Cascade: A Potential Mechanism of HIV Infection-Related Cardiac Manifestations

verfasst von: Yannan Jiang, Lu Chai, Hongguang Wang, Xiuyun Shen, Moyondafoluwa Blessing Fasae, Jinfeng Jiao, Yahan Yu, Jiaming Ju, Bing Liu, Yunlong Bai

Erschienen in: Cardiovascular Toxicology | Ausgabe 12/2021

Einloggen, um Zugang zu erhalten

Abstract

Human immunodeficiency virus (HIV) infection is a risk factor of cardiovascular diseases (CVDs). HIV-infected patients exhibit cardiac dysfunction coupled with cardiac fibrosis. However, the reason why HIV could induce cardiac fibrosis remains largely unexplored. HIV-1 trans-activator of transcription (Tat) protein is a regulatory protein, which plays a critical role in the pathogenesis of various HIV-related complications. In the present study, recombinant Tat was administered to mouse myocardium or neonatal mouse cardiac fibroblasts in different doses. Hematoxylin–eosin and Masson’s trichrome staining were performed to observe the histological changes of mice myocardial tissues. EdU staining and MTS assay were used to evaluate the proliferation and viability of neonatal mouse cardiac fibroblasts, respectively. Real-time PCR and western blot analysis were used to detect CTGF, TGF-β1, and collagen I mRNA and protein expression levels, respectively. The results showed that Tat promoted the occurrence of myocardial fibrosis in mice. Also, we found that Tat increased the proliferative ability and the viability of neonatal mouse cardiac fibroblasts. The protein and mRNA expression levels of TGF-β1 and CTGF were significantly upregulated both in Tat-treated mouse myocardium and neonatal mouse cardiac fibroblasts. However, co-administration of TGF-β inhibitor abrogated the enhanced expression of collagen I induced by Tat in neonatal mouse cardiac fibroblasts. In conclusion, Tat contributes to HIV-related cardiac fibrosis through enhanced TGF-β1-CTGF signaling cascade.
Literatur
2.
Zurück zum Zitat Feinstein, M. J., Bahiru, E., Achenbach, C., Longenecker, C. T., Hsue, P., So-Armah, K., Freiberg, M. S., & Lloyd-Jones, D. M. (2016). Patterns of cardiovascular mortality for HIV-infected adults in the United States: 1999 to 2013. The American Journal of Cardiology, 117, 214–220.CrossRef Feinstein, M. J., Bahiru, E., Achenbach, C., Longenecker, C. T., Hsue, P., So-Armah, K., Freiberg, M. S., & Lloyd-Jones, D. M. (2016). Patterns of cardiovascular mortality for HIV-infected adults in the United States: 1999 to 2013. The American Journal of Cardiology, 117, 214–220.CrossRef
3.
Zurück zum Zitat Thiara, D. K., Liu, C. Y., Raman, F., Mangat, S., Purdy, J. B., Duarte, H. A., Schmidt, N., Hur, J., Sibley, C. T., Bluemke, D. A., & Hadigan, C. (2015). Abnormal myocardial function is related to myocardial steatosis and diffuse myocardial fibrosis in HIV-infected adults. The Journal of Infectious Diseases, 212, 1544–1551.CrossRef Thiara, D. K., Liu, C. Y., Raman, F., Mangat, S., Purdy, J. B., Duarte, H. A., Schmidt, N., Hur, J., Sibley, C. T., Bluemke, D. A., & Hadigan, C. (2015). Abnormal myocardial function is related to myocardial steatosis and diffuse myocardial fibrosis in HIV-infected adults. The Journal of Infectious Diseases, 212, 1544–1551.CrossRef
4.
Zurück zum Zitat d’Amati, G., di Gioia, C. R., & Gallo, P. (2001). Pathological findings of HIV-associated cardiovascular disease. Annals of the New York Academy of Sciences, 946, 23–45.CrossRef d’Amati, G., di Gioia, C. R., & Gallo, P. (2001). Pathological findings of HIV-associated cardiovascular disease. Annals of the New York Academy of Sciences, 946, 23–45.CrossRef
5.
Zurück zum Zitat Prendergast, B. D. (2003). HIV and cardiovascular medicine. Heart, 89, 793–800.CrossRef Prendergast, B. D. (2003). HIV and cardiovascular medicine. Heart, 89, 793–800.CrossRef
6.
Zurück zum Zitat deFilippi, C., Christenson, R., Joyce, J., Park, E. A., Wu, A., Fitch, K. V., Looby, S. E., Lu, M. T., Hoffmann, U., Grinspoon, S. K., & Lo, J. (2018). Brief report: Statin effects on myocardial fibrosis markers in people living with HIV. Journal of Acquired Immune Deficiency Syndromes, 78, 105–110.CrossRef deFilippi, C., Christenson, R., Joyce, J., Park, E. A., Wu, A., Fitch, K. V., Looby, S. E., Lu, M. T., Hoffmann, U., Grinspoon, S. K., & Lo, J. (2018). Brief report: Statin effects on myocardial fibrosis markers in people living with HIV. Journal of Acquired Immune Deficiency Syndromes, 78, 105–110.CrossRef
7.
Zurück zum Zitat Shannon, R. P., Simon, M. A., Mathier, M. A., Geng, Y. J., Mankad, S., & Lackner, A. A. (2000). Dilated cardiomyopathy associated with simian AIDS in nonhuman primates. Circulation, 101, 185–193.CrossRef Shannon, R. P., Simon, M. A., Mathier, M. A., Geng, Y. J., Mankad, S., & Lackner, A. A. (2000). Dilated cardiomyopathy associated with simian AIDS in nonhuman primates. Circulation, 101, 185–193.CrossRef
8.
Zurück zum Zitat Mak, I. T., Kramer, J. H., Chen, X., Chmielinska, J. J., Spurney, C. F., & Weglicki, W. B. (2013). Mg supplementation attenuates ritonavir-induced hyperlipidemia, oxidative stress, and cardiac dysfunction in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 305, R1102-1111.CrossRef Mak, I. T., Kramer, J. H., Chen, X., Chmielinska, J. J., Spurney, C. F., & Weglicki, W. B. (2013). Mg supplementation attenuates ritonavir-induced hyperlipidemia, oxidative stress, and cardiac dysfunction in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 305, R1102-1111.CrossRef
9.
Zurück zum Zitat Ahamed, J., Terry, H., Choi, M. E., & Laurence, J. (2016). Transforming growth factor-beta1-mediated cardiac fibrosis: Potential role in HIV and HIV/antiretroviral therapy-linked cardiovascular disease. AIDS, 30, 535–542.CrossRef Ahamed, J., Terry, H., Choi, M. E., & Laurence, J. (2016). Transforming growth factor-beta1-mediated cardiac fibrosis: Potential role in HIV and HIV/antiretroviral therapy-linked cardiovascular disease. AIDS, 30, 535–542.CrossRef
10.
Zurück zum Zitat Debaisieux, S., Rayne, F., Yezid, H., & Beaumelle, B. (2012). The ins and outs of HIV-1 Tat. Traffic, 13, 355–363.CrossRef Debaisieux, S., Rayne, F., Yezid, H., & Beaumelle, B. (2012). The ins and outs of HIV-1 Tat. Traffic, 13, 355–363.CrossRef
11.
Zurück zum Zitat Duan, M., Yao, H., Hu, G., Chen, X., Lund, A. K., & Buch, S. (2013). HIV Tat induces expression of ICAM-1 in HUVECs: implications for miR-221/-222 in HIV-associated cardiomyopathy. PLoS ONE, 8, e60170.CrossRef Duan, M., Yao, H., Hu, G., Chen, X., Lund, A. K., & Buch, S. (2013). HIV Tat induces expression of ICAM-1 in HUVECs: implications for miR-221/-222 in HIV-associated cardiomyopathy. PLoS ONE, 8, e60170.CrossRef
12.
Zurück zum Zitat Bai, Y. L., Liu, H. B., Sun, B., Zhang, Y., Li, Q., Hu, C. W., Zhu, J. X., Gong, D. M., Teng, X., Zhang, Q., Yang, B. F., & Dong, D. L. (2011). HIV Tat protein inhibits hERG K+ channels: A potential mechanism of HIV infection induced LQTs. Journal of Molecular and Cellular Cardiology, 51, 876–880.CrossRef Bai, Y. L., Liu, H. B., Sun, B., Zhang, Y., Li, Q., Hu, C. W., Zhu, J. X., Gong, D. M., Teng, X., Zhang, Q., Yang, B. F., & Dong, D. L. (2011). HIV Tat protein inhibits hERG K+ channels: A potential mechanism of HIV infection induced LQTs. Journal of Molecular and Cellular Cardiology, 51, 876–880.CrossRef
13.
Zurück zum Zitat Raidel, S. M., Haase, C., Jansen, N. R., Russ, R. B., Sutliff, R. L., Velsor, L. W., Day, B. J., Hoit, B. D., Samarel, A. M., & Lewis, W. (2002). Targeted myocardial transgenic expression of HIV Tat causes cardiomyopathy and mitochondrial damage. American Journal of Physiology. Heart and Circulatory Physiology, 282, H1672-1678.CrossRef Raidel, S. M., Haase, C., Jansen, N. R., Russ, R. B., Sutliff, R. L., Velsor, L. W., Day, B. J., Hoit, B. D., Samarel, A. M., & Lewis, W. (2002). Targeted myocardial transgenic expression of HIV Tat causes cardiomyopathy and mitochondrial damage. American Journal of Physiology. Heart and Circulatory Physiology, 282, H1672-1678.CrossRef
14.
Zurück zum Zitat Fang, Q., Kan, H., Lewis, W., Chen, F., Sharma, P., & Finkel, M. S. (2009). Dilated cardiomyopathy in transgenic mice expressing HIV Tat. Cardiovascular Toxicology, 9, 39–45.CrossRef Fang, Q., Kan, H., Lewis, W., Chen, F., Sharma, P., & Finkel, M. S. (2009). Dilated cardiomyopathy in transgenic mice expressing HIV Tat. Cardiovascular Toxicology, 9, 39–45.CrossRef
15.
Zurück zum Zitat Yue, Y., Meng, K., Pu, Y., & Zhang, X. (2017). Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Research and Clinical Practice, 133, 124–130.CrossRef Yue, Y., Meng, K., Pu, Y., & Zhang, X. (2017). Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Research and Clinical Practice, 133, 124–130.CrossRef
16.
Zurück zum Zitat Meng, X. M., Nikolic-Paterson, D. J., & Lan, H. Y. (2016). TGF-beta: The master regulator of fibrosis. Nature Reviews Nephrology, 12, 325–338.CrossRef Meng, X. M., Nikolic-Paterson, D. J., & Lan, H. Y. (2016). TGF-beta: The master regulator of fibrosis. Nature Reviews Nephrology, 12, 325–338.CrossRef
17.
Zurück zum Zitat Chen, J. T., Wang, C. Y., & Chen, M. H. (2018). Curcumin inhibits TGF-beta1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts. Journal of the Formosan Medical Association, 117, 1115–1123.CrossRef Chen, J. T., Wang, C. Y., & Chen, M. H. (2018). Curcumin inhibits TGF-beta1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts. Journal of the Formosan Medical Association, 117, 1115–1123.CrossRef
18.
Zurück zum Zitat Yamamoto, T., Noble, N. A., Miller, D. E., Gold, L. I., Hishida, A., Nagase, M., Cohen, A. H., & Border, W. A. (1999). Increased levels of transforming growth factor-beta in HIV-associated nephropathy. Kidney International, 55, 579–592.CrossRef Yamamoto, T., Noble, N. A., Miller, D. E., Gold, L. I., Hishida, A., Nagase, M., Cohen, A. H., & Border, W. A. (1999). Increased levels of transforming growth factor-beta in HIV-associated nephropathy. Kidney International, 55, 579–592.CrossRef
19.
Zurück zum Zitat Sawaya, B. E., Thatikunta, P., Denisova, L., Brady, J., Khalili, K., & Amini, S. (1998). Regulation of TNFalpha and TGFbeta-1 gene transcription by HIV-1 Tat in CNS cells. Journal of Neuroimmunology, 87, 33–42.CrossRef Sawaya, B. E., Thatikunta, P., Denisova, L., Brady, J., Khalili, K., & Amini, S. (1998). Regulation of TNFalpha and TGFbeta-1 gene transcription by HIV-1 Tat in CNS cells. Journal of Neuroimmunology, 87, 33–42.CrossRef
20.
Zurück zum Zitat Lotz, M., Clark-Lewis, I., & Ganu, V. (1994). HIV-1 transactivator protein Tat induces proliferation and TGF beta expression in human articular chondrocytes. Journal of Cell Biology, 124, 365–371.CrossRef Lotz, M., Clark-Lewis, I., & Ganu, V. (1994). HIV-1 transactivator protein Tat induces proliferation and TGF beta expression in human articular chondrocytes. Journal of Cell Biology, 124, 365–371.CrossRef
21.
Zurück zum Zitat Barreto-de-Souza, V., Xavier Medeiros, T., Machado Motta, M. C., Bou-Habib, D. C., & Saraiva, E. M. (2008). HIV-1 infection and HIV-1 Tat protein permit the survival and replication of a non-pathogenic trypanosomatid in macrophages through TGF-beta1 production. Microbes and Infection, 10, 642–649.CrossRef Barreto-de-Souza, V., Xavier Medeiros, T., Machado Motta, M. C., Bou-Habib, D. C., & Saraiva, E. M. (2008). HIV-1 infection and HIV-1 Tat protein permit the survival and replication of a non-pathogenic trypanosomatid in macrophages through TGF-beta1 production. Microbes and Infection, 10, 642–649.CrossRef
22.
Zurück zum Zitat Chu, Q., Jiang, Y., Zhang, W., Xu, C., Du, W., Tuguzbaeva, G., Qin, Y., Li, A., Zhang, L., Sun, G., Cai, Y., Feng, Q., Li, G., Li, Y., Du, Z., Bai, Y., & Yang, B. (2016). Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget, 7, 84658–84665.CrossRef Chu, Q., Jiang, Y., Zhang, W., Xu, C., Du, W., Tuguzbaeva, G., Qin, Y., Li, A., Zhang, L., Sun, G., Cai, Y., Feng, Q., Li, G., Li, Y., Du, Z., Bai, Y., & Yang, B. (2016). Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget, 7, 84658–84665.CrossRef
23.
Zurück zum Zitat Jiang, Y., Du, W., Chu, Q., Qin, Y., Tuguzbaeva, G., Wang, H., Li, A., Li, G., Li, Y., Chai, L., Yue, E., Sun, X., Wang, Z., Pavlov, V., Yang, B., & Bai, Y. (2018). Downregulation of long non-coding RNA Kcnq1ot1: An important mechanism of arsenic trioxide-induced long QT syndrome. Cellular Physiology and Biochemistry, 45, 192–202.CrossRef Jiang, Y., Du, W., Chu, Q., Qin, Y., Tuguzbaeva, G., Wang, H., Li, A., Li, G., Li, Y., Chai, L., Yue, E., Sun, X., Wang, Z., Pavlov, V., Yang, B., & Bai, Y. (2018). Downregulation of long non-coding RNA Kcnq1ot1: An important mechanism of arsenic trioxide-induced long QT syndrome. Cellular Physiology and Biochemistry, 45, 192–202.CrossRef
24.
Zurück zum Zitat Gu, J., Babayeva, N. D., Suwa, Y., Baranovskiy, A. G., Price, D. H., & Tahirov, T. H. (2014). Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle, 13, 1788–1797.CrossRef Gu, J., Babayeva, N. D., Suwa, Y., Baranovskiy, A. G., Price, D. H., & Tahirov, T. H. (2014). Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle, 13, 1788–1797.CrossRef
25.
Zurück zum Zitat Lapierre, J., Rodriguez, M., Ojha, C. R., & El-Hage, N. (2018). Critical role of Beclin1 in HIV Tat and morphine-induced inflammation and calcium release in glial cells from autophagy deficient mouse. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology, 13(3), 355–370.CrossRef Lapierre, J., Rodriguez, M., Ojha, C. R., & El-Hage, N. (2018). Critical role of Beclin1 in HIV Tat and morphine-induced inflammation and calcium release in glial cells from autophagy deficient mouse. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology, 13(3), 355–370.CrossRef
26.
Zurück zum Zitat Tahrir, F. G., Shanmughapriya, S., Ahooyi, T. M., Knezevic, T., Gupta, M. K., Kontos, C. D., McClung, J. M., Madesh, M., Gordon, J., Feldman, A. M., Cheung, J. Y., & Khalili, K. (2018). Dysregulation of mitochondrial bioenergetics and quality control by HIV-1 Tat in cardiomyocytes. Journal of Cellular Physiology, 233, 748–758.CrossRef Tahrir, F. G., Shanmughapriya, S., Ahooyi, T. M., Knezevic, T., Gupta, M. K., Kontos, C. D., McClung, J. M., Madesh, M., Gordon, J., Feldman, A. M., Cheung, J. Y., & Khalili, K. (2018). Dysregulation of mitochondrial bioenergetics and quality control by HIV-1 Tat in cardiomyocytes. Journal of Cellular Physiology, 233, 748–758.CrossRef
27.
Zurück zum Zitat Altavilla, G., Caputo, A., Trabanelli, C., Brocca Cofano, E., Sabbioni, S., Menegatti, M. A., Barbanti-Brodano, G., & Corallini, A. (2004). Prevalence of liver tumours in HIV-1 tat-transgenic mice treated with urethane. European Journal of Cancer, 40, 275–283.CrossRef Altavilla, G., Caputo, A., Trabanelli, C., Brocca Cofano, E., Sabbioni, S., Menegatti, M. A., Barbanti-Brodano, G., & Corallini, A. (2004). Prevalence of liver tumours in HIV-1 tat-transgenic mice treated with urethane. European Journal of Cancer, 40, 275–283.CrossRef
28.
Zurück zum Zitat Hahn, Y. K., Podhaizer, E. M., Farris, S. P., Miles, M. F., Hauser, K. F., & Knapp, P. E. (2015). Effects of chronic HIV-1 Tat exposure in the CNS: Heightened vulnerability of males versus females to changes in cell numbers, synaptic integrity, and behavior. Brain Structure & Function, 220, 605–623.CrossRef Hahn, Y. K., Podhaizer, E. M., Farris, S. P., Miles, M. F., Hauser, K. F., & Knapp, P. E. (2015). Effects of chronic HIV-1 Tat exposure in the CNS: Heightened vulnerability of males versus females to changes in cell numbers, synaptic integrity, and behavior. Brain Structure & Function, 220, 605–623.CrossRef
29.
Zurück zum Zitat Chiozzini, C., & Toschi, E. (2016). HIV-1 TAT and immune dysregulation in aids pathogenesis: A therapeutic target. Current Drug Targets, 17, 33–45.CrossRef Chiozzini, C., & Toschi, E. (2016). HIV-1 TAT and immune dysregulation in aids pathogenesis: A therapeutic target. Current Drug Targets, 17, 33–45.CrossRef
30.
Zurück zum Zitat Jiang, Y., Chai, L., Fasae, M. B., & Bai, Y. (2018). The role of HIV Tat protein in HIV-related cardiovascular diseases. Journal of Translational Medicine, 16, 121.CrossRef Jiang, Y., Chai, L., Fasae, M. B., & Bai, Y. (2018). The role of HIV Tat protein in HIV-related cardiovascular diseases. Journal of Translational Medicine, 16, 121.CrossRef
31.
Zurück zum Zitat Poggi, A., Carosio, R., Fenoglio, D., Brenci, S., Murdaca, G., Setti, M., Indiveri, F., Scabini, S., Ferrero, E., & Zocchi, M. R. (2004). Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: Competition by HIV-1 Tat. Blood, 103, 2205–2213.CrossRef Poggi, A., Carosio, R., Fenoglio, D., Brenci, S., Murdaca, G., Setti, M., Indiveri, F., Scabini, S., Ferrero, E., & Zocchi, M. R. (2004). Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: Competition by HIV-1 Tat. Blood, 103, 2205–2213.CrossRef
32.
Zurück zum Zitat Badou, A., Bennasser, Y., Moreau, M., Leclerc, C., Benkirane, M., & Bahraoui, E. (2000). Tat protein of human immunodeficiency virus type 1 induces interleukin-10 in human peripheral blood monocytes: Implication of protein kinase C-dependent pathway. Journal of Virology, 74, 10551–10562.CrossRef Badou, A., Bennasser, Y., Moreau, M., Leclerc, C., Benkirane, M., & Bahraoui, E. (2000). Tat protein of human immunodeficiency virus type 1 induces interleukin-10 in human peripheral blood monocytes: Implication of protein kinase C-dependent pathway. Journal of Virology, 74, 10551–10562.CrossRef
33.
Zurück zum Zitat Goldstein, G., Manson, K., Tribbick, G., & Smith, R. (2000). Minimization of chronic plasma viremia in rhesus macaques immunized with synthetic HIV-1 Tat peptides and infected with a chimeric simian/human immunodeficiency virus (SHIV33). Vaccine, 18, 2789–2795.CrossRef Goldstein, G., Manson, K., Tribbick, G., & Smith, R. (2000). Minimization of chronic plasma viremia in rhesus macaques immunized with synthetic HIV-1 Tat peptides and infected with a chimeric simian/human immunodeficiency virus (SHIV33). Vaccine, 18, 2789–2795.CrossRef
34.
Zurück zum Zitat Zhou, D., Li, Z., Zhang, L., & Zhan, C. (2012). Inhibitory effect of tanshinone II A on TGF II-beta1-induced cardiac fibrosis. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban, 32, 829–833.CrossRef Zhou, D., Li, Z., Zhang, L., & Zhan, C. (2012). Inhibitory effect of tanshinone II A on TGF II-beta1-induced cardiac fibrosis. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban, 32, 829–833.CrossRef
35.
Zurück zum Zitat Huang, Z. W., Tian, L. H., Yang, B., & Guo, R. M. (2017). Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis. DNA and Cell Biology, 36, 759–766.CrossRef Huang, Z. W., Tian, L. H., Yang, B., & Guo, R. M. (2017). Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis. DNA and Cell Biology, 36, 759–766.CrossRef
36.
Zurück zum Zitat Huang, J., Matavelli, L. C., & Siragy, H. M. (2011). Renal (pro)renin receptor contributes to development of diabetic kidney disease through transforming growth factor-beta1-connective tissue growth factor signalling cascade. Clinical and Experimental Pharmacology & Physiology, 38, 215–221.CrossRef Huang, J., Matavelli, L. C., & Siragy, H. M. (2011). Renal (pro)renin receptor contributes to development of diabetic kidney disease through transforming growth factor-beta1-connective tissue growth factor signalling cascade. Clinical and Experimental Pharmacology & Physiology, 38, 215–221.CrossRef
37.
Zurück zum Zitat Dalvi, P., Sharma, H., Konstantinova, T., Sanderson, M., Brien-Ladner, A. O., & Dhillon, N. K. (2017). Hyperactive TGF-beta signaling in smooth muscle cells exposed to HIV-protein(s) and cocaine: Role in pulmonary vasculopathy. Scientific Reports, 7, 10433.CrossRef Dalvi, P., Sharma, H., Konstantinova, T., Sanderson, M., Brien-Ladner, A. O., & Dhillon, N. K. (2017). Hyperactive TGF-beta signaling in smooth muscle cells exposed to HIV-protein(s) and cocaine: Role in pulmonary vasculopathy. Scientific Reports, 7, 10433.CrossRef
Metadaten
Titel
HIV Tat Protein Induces Myocardial Fibrosis Through TGF-β1-CTGF Signaling Cascade: A Potential Mechanism of HIV Infection-Related Cardiac Manifestations
verfasst von
Yannan Jiang
Lu Chai
Hongguang Wang
Xiuyun Shen
Moyondafoluwa Blessing Fasae
Jinfeng Jiao
Yahan Yu
Jiaming Ju
Bing Liu
Yunlong Bai
Publikationsdatum
14.09.2021
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 12/2021
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-021-09687-6

Weitere Artikel der Ausgabe 12/2021

Cardiovascular Toxicology 12/2021 Zur Ausgabe