Skip to main content
Erschienen in: Inflammation 5/2020

27.05.2020 | Original Article

Lin28B Regulates Angiotensin II-Mediated Let-7c/miR-99a MicroRNA Formation Consequently Affecting Macrophage Polarization and Allergic Inflammation

verfasst von: Anant Jaiswal, Mohita Maurya, Preeti Maurya, Manoj Kumar Barthwal

Erschienen in: Inflammation | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Angiotensin-II (Ang-II) receptor plays a role in allergic airway inflammation; however, the underlying mechanism and role of macrophages need better understanding. In the present study, angiotensin-II infusion (1 μg/kg/min) in ovalbumin-induced airway inflammation mice model significantly decreased immune cell infiltration, goblet cell hyperplasia, and eosinophil numbers in lungs. Ang-II infusion increased M1 and decreased M2 macrophage population in bronchoalveolar lavage fluid and respective macrophage markers in lung macrophages. Similarly, in vitro Ang-II treatment in murine bone marrow-derived macrophages (BMDMs) induced M1 and reduced M2 macrophage phenotype with enhanced bactericidal activity. Mechanistically, Ang-II inhibits Let-7c and miR-99a expression in BMDMs and in vivo as well. Lentiviral overexpression of Let-7c and miR-99a miRNAs in BMDMs abrogated Ang-II-induced M1 phenotype activation and promoted M2 phenotype, which is governed by targeting TNFα by miR-99a. In lung macrophages, ovalbumin-induced TNFα inhibition was rescued after Ang-II treatment. In BMDMs, knockdown of TNFα abrogated Ang-II-induced M2 to M1 macrophage phenotype switch and associated bactericidal activity. Ang-II affects mature miRNA formation by enhancing Lin28B levels in macrophages in vivo and in vitro. Furthermore, Lin28B knockdown prevented Ang-II-mediated inhibition of mature Let-7c/miR-99a miRNA formation, M2 to M1 macrophage phenotype switch, and increased bactericidal activity. Therefore, present study suggests a role of Lin28B in Ang-II-induced Let-7c/miR-99a miRNA formation that consequently affects TNFα production, M1 phenotype activation, and allergic airway inflammation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Martinez, F.D., and D. Vercelli. Asthma. Lancet 382 (9901): 1360–1372. Martinez, F.D., and D. Vercelli. Asthma. Lancet 382 (9901): 1360–1372.
2.
Zurück zum Zitat Locksley, R.M. 2010. Asthma and allergic inflammation. Cell 140 (6): 777–783.CrossRef Locksley, R.M. 2010. Asthma and allergic inflammation. Cell 140 (6): 777–783.CrossRef
3.
Zurück zum Zitat Finkelman, F.D., S.P. Hogan, G.K. Hershey, M.E. Rothenberg, and M. Wills-Karp. 2010. Importance of cytokines in murine allergic airway disease and human asthma. Journal of Immunology 184 (4): 1663–1674.CrossRef Finkelman, F.D., S.P. Hogan, G.K. Hershey, M.E. Rothenberg, and M. Wills-Karp. 2010. Importance of cytokines in murine allergic airway disease and human asthma. Journal of Immunology 184 (4): 1663–1674.CrossRef
4.
Zurück zum Zitat Haworth, O., and B.D. Levy. 2007. Endogenous lipid mediators in the resolution of airway inflammation. The European Respiratory Journal 30 (5): 980–992.CrossRef Haworth, O., and B.D. Levy. 2007. Endogenous lipid mediators in the resolution of airway inflammation. The European Respiratory Journal 30 (5): 980–992.CrossRef
6.
Zurück zum Zitat Khan, B.V., D.G. Harrison, M.T. Olbrych, R.W. Alexander, and R.M. Medford. 1996. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 93 (17): 9114–9119.CrossRef Khan, B.V., D.G. Harrison, M.T. Olbrych, R.W. Alexander, and R.M. Medford. 1996. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 93 (17): 9114–9119.CrossRef
8.
Zurück zum Zitat Dandona, P., V. Kumar, A. Aljada, H. Ghanim, T. Syed, D. Hofmayer, P. Mohanty, D. Tripathy, and R. Garg. 2003. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: Evidence of an antiinflammatory action. The Journal of Clinical Endocrinology and Metabolism 88 (9): 4496–4501. https://doi.org/10.1210/jc.2002-021836.CrossRefPubMed Dandona, P., V. Kumar, A. Aljada, H. Ghanim, T. Syed, D. Hofmayer, P. Mohanty, D. Tripathy, and R. Garg. 2003. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: Evidence of an antiinflammatory action. The Journal of Clinical Endocrinology and Metabolism 88 (9): 4496–4501. https://​doi.​org/​10.​1210/​jc.​2002-021836.CrossRefPubMed
9.
Zurück zum Zitat Diep, Q.N., F. Amiri, R.M. Touyz, J.S. Cohn, D. Endemann, M.F. Neves, and E.L. Schiffrin. 2002. PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 40 (6): 866–871.CrossRef Diep, Q.N., F. Amiri, R.M. Touyz, J.S. Cohn, D. Endemann, M.F. Neves, and E.L. Schiffrin. 2002. PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 40 (6): 866–871.CrossRef
10.
Zurück zum Zitat Diep, Q.N., M. El Mabrouk, J.S. Cohn, D. Endemann, F. Amiri, A. Virdis, M.F. Neves, and E.L. Schiffrin. 2002. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: Role of peroxisome proliferator-activated receptor-gamma. Circulation 105 (19): 2296–2302.CrossRef Diep, Q.N., M. El Mabrouk, J.S. Cohn, D. Endemann, F. Amiri, A. Virdis, M.F. Neves, and E.L. Schiffrin. 2002. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: Role of peroxisome proliferator-activated receptor-gamma. Circulation 105 (19): 2296–2302.CrossRef
11.
Zurück zum Zitat Michel, M.C., H.R. Brunner, C. Foster, and Y. Huo. 2016. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacology & Therapeutics 164: 1–81.CrossRef Michel, M.C., H.R. Brunner, C. Foster, and Y. Huo. 2016. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacology & Therapeutics 164: 1–81.CrossRef
12.
Zurück zum Zitat Coop, C.A., R.S. Schapira, and T.M. Freeman. 2017. Are ACE inhibitors and beta-blockers dangerous in patients at risk for anaphylaxis? The Journal of Allergy and Clinical Immunology. In Practice 5 (5): 1207–1211.CrossRef Coop, C.A., R.S. Schapira, and T.M. Freeman. 2017. Are ACE inhibitors and beta-blockers dangerous in patients at risk for anaphylaxis? The Journal of Allergy and Clinical Immunology. In Practice 5 (5): 1207–1211.CrossRef
13.
Zurück zum Zitat Ohwada, K., K. Watanabe, K. Okuyama, Y. Ohkawara, T. Sugaya, M. Takayanagi, and I. Ohno. 2007. The involvement of type 1a angiotensin II receptors in the regulation of airway inflammation in a murine model of allergic asthma. Clinical and Experimental Allergy 37 (11): 1720–1727.CrossRef Ohwada, K., K. Watanabe, K. Okuyama, Y. Ohkawara, T. Sugaya, M. Takayanagi, and I. Ohno. 2007. The involvement of type 1a angiotensin II receptors in the regulation of airway inflammation in a murine model of allergic asthma. Clinical and Experimental Allergy 37 (11): 1720–1727.CrossRef
17.
Zurück zum Zitat Karp, C.L., and P.J. Murray. 2012. Non-canonical alternatives: What a macrophage is 4. The Journal of Experimental Medicine 209 (3): 427–431.CrossRef Karp, C.L., and P.J. Murray. 2012. Non-canonical alternatives: What a macrophage is 4. The Journal of Experimental Medicine 209 (3): 427–431.CrossRef
19.
Zurück zum Zitat Nabe, T., H. Wakamori, C. Yano, A. Nishiguchi, R. Yuasa, H. Kido, Y. Tomiyama, A. Tomoda, H. Kida, A. Takiguchi, M. Matsuda, K. Ishihara, S. Akiba, S. Ohya, H. Fukui, N. Mizutani, and S. Yoshino. 2015. Production of interleukin (IL)-33 in the lungs during multiple antigen challenge-induced airway inflammation in mice, and its modulation by a glucocorticoid. European Journal of Pharmacology 757: 34–41. https://doi.org/10.1016/j.ejphar.2015.03.015.CrossRefPubMed Nabe, T., H. Wakamori, C. Yano, A. Nishiguchi, R. Yuasa, H. Kido, Y. Tomiyama, A. Tomoda, H. Kida, A. Takiguchi, M. Matsuda, K. Ishihara, S. Akiba, S. Ohya, H. Fukui, N. Mizutani, and S. Yoshino. 2015. Production of interleukin (IL)-33 in the lungs during multiple antigen challenge-induced airway inflammation in mice, and its modulation by a glucocorticoid. European Journal of Pharmacology 757: 34–41. https://​doi.​org/​10.​1016/​j.​ejphar.​2015.​03.​015.CrossRefPubMed
25.
26.
Zurück zum Zitat O'Neill, L.A., F.J. Sheedy, and C.E. McCoy. 2011. MicroRNAs: The fine-tuners of toll-like receptor signalling. Nature Reviews. Immunology 11 (3): 163–175.CrossRef O'Neill, L.A., F.J. Sheedy, and C.E. McCoy. 2011. MicroRNAs: The fine-tuners of toll-like receptor signalling. Nature Reviews. Immunology 11 (3): 163–175.CrossRef
27.
Zurück zum Zitat Pua, H.H., D.F. Steiner, S. Patel, J.R. Gonzalez, J.F. Ortiz-Carpena, R. Kageyama, N.T. Chiou, A. Gallman, D. de Kouchkovsky, L.T. Jeker, M.T. McManus, D.J. Erle, and K.M. Ansel. 2016. MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T helper 2 cell-associated cytokine production. Immunity 44 (4): 821–832.CrossRef Pua, H.H., D.F. Steiner, S. Patel, J.R. Gonzalez, J.F. Ortiz-Carpena, R. Kageyama, N.T. Chiou, A. Gallman, D. de Kouchkovsky, L.T. Jeker, M.T. McManus, D.J. Erle, and K.M. Ansel. 2016. MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T helper 2 cell-associated cytokine production. Immunity 44 (4): 821–832.CrossRef
28.
Zurück zum Zitat Johansson, K., C. Malmhall, P. Ramos-Ramirez, and M. Radinger. 2017. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. The Journal of Allergy and Clinical Immunology 139 (3): 1007–1016 e1009.CrossRef Johansson, K., C. Malmhall, P. Ramos-Ramirez, and M. Radinger. 2017. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. The Journal of Allergy and Clinical Immunology 139 (3): 1007–1016 e1009.CrossRef
30.
Zurück zum Zitat Sharma, A., M. Kumar, T. Ahmad, U. Mabalirajan, J. Aich, A. Agrawal, and B. Ghosh. 2012. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. Journal of Applied Physiology (Bethesda, MD: 1985) 113 (3): 459–464.CrossRef Sharma, A., M. Kumar, T. Ahmad, U. Mabalirajan, J. Aich, A. Agrawal, and B. Ghosh. 2012. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. Journal of Applied Physiology (Bethesda, MD: 1985) 113 (3): 459–464.CrossRef
32.
Zurück zum Zitat Jaiswal, A., S. S. Reddy, M. Maurya, P. Maurya, and M. K. Barthwal. 2018. MicroRNA-99a mimics inhibit M1 macrophage phenotype and adipose tissue inflammation by targeting TNFalpha. Cellular & Molecular Immunology. Jaiswal, A., S. S. Reddy, M. Maurya, P. Maurya, and M. K. Barthwal. 2018. MicroRNA-99a mimics inhibit M1 macrophage phenotype and adipose tissue inflammation by targeting TNFalpha. Cellular & Molecular Immunology.
33.
Zurück zum Zitat Liao, B., X. Bao, L. Liu, S. Feng, A. Zovoilis, W. Liu, Y. Xue, J. Cai, X. Guo, B. Qin, R. Zhang, J. Wu, L. Lai, M. Teng, L. Niu, B. Zhang, M.A. Esteban, and D. Pei. 2011. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. The Journal of Biological Chemistry 286 (19): 17359–17364.CrossRef Liao, B., X. Bao, L. Liu, S. Feng, A. Zovoilis, W. Liu, Y. Xue, J. Cai, X. Guo, B. Qin, R. Zhang, J. Wu, L. Lai, M. Teng, L. Niu, B. Zhang, M.A. Esteban, and D. Pei. 2011. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. The Journal of Biological Chemistry 286 (19): 17359–17364.CrossRef
34.
Zurück zum Zitat Sun, D., Y.S. Lee, A. Malhotra, H.K. Kim, M. Matecic, C. Evans, R.V. Jensen, C.A. Moskaluk, and A. Dutta. 2011. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Research 71 (4): 1313–1324.CrossRef Sun, D., Y.S. Lee, A. Malhotra, H.K. Kim, M. Matecic, C. Evans, R.V. Jensen, C.A. Moskaluk, and A. Dutta. 2011. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Research 71 (4): 1313–1324.CrossRef
35.
Zurück zum Zitat Li, Q., J. Xie, B. Wang, R. Li, J. Bai, L. Ding, R. Gu, L. Wang, and B. Xu. 2016. Overexpression of microRNA-99a attenuates cardiac hypertrophy. PLoS One 11 (2): e0148480.CrossRef Li, Q., J. Xie, B. Wang, R. Li, J. Bai, L. Ding, R. Gu, L. Wang, and B. Xu. 2016. Overexpression of microRNA-99a attenuates cardiac hypertrophy. PLoS One 11 (2): e0148480.CrossRef
36.
Zurück zum Zitat Newman, M.A., J.M. Thomson, and S.M. Hammond. 2008. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. Rna 14 (8): 1539–1549.CrossRef Newman, M.A., J.M. Thomson, and S.M. Hammond. 2008. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. Rna 14 (8): 1539–1549.CrossRef
39.
Zurück zum Zitat Georgsson, J., C. Skold, B. Plouffe, G. Lindeberg, M. Botros, M. Larhed, F. Nyberg, et al. 2005. Angiotensin II pseudopeptides containing 1,3,5-trisubstituted benzene scaffolds with high AT2 receptor affinity. Journal of Medicinal Chemistry 48 (21): 6620–6631. https://doi.org/10.1021/jm050280z.CrossRefPubMed Georgsson, J., C. Skold, B. Plouffe, G. Lindeberg, M. Botros, M. Larhed, F. Nyberg, et al. 2005. Angiotensin II pseudopeptides containing 1,3,5-trisubstituted benzene scaffolds with high AT2 receptor affinity. Journal of Medicinal Chemistry 48 (21): 6620–6631. https://​doi.​org/​10.​1021/​jm050280z.CrossRefPubMed
41.
Zurück zum Zitat Plank, M.W., S. Maltby, H.L. Tay, J. Stewart, F. Eyers, P.M. Hansbro, and P.S. Foster. 2015. MicroRNA expression is altered in an ovalbumin-induced asthma model and targeting miR-155 with antagomirs reveals cellular specificity. PLoS One 10 (12): e0144810.CrossRef Plank, M.W., S. Maltby, H.L. Tay, J. Stewart, F. Eyers, P.M. Hansbro, and P.S. Foster. 2015. MicroRNA expression is altered in an ovalbumin-induced asthma model and targeting miR-155 with antagomirs reveals cellular specificity. PLoS One 10 (12): e0144810.CrossRef
42.
Zurück zum Zitat Cheng, Z., L.L. Dai, X. Wang, L.Q. Jia, X.G. Jing, P.F. Li, M. Liu, H. Wang, and L. An. 2017. MicroRNA-145 down-regulates mucin 5AC to alleviate airway remodeling and targets EGFR to inhibit cytokine expression. Oncotarget 8 (28): 46312–46325.CrossRef Cheng, Z., L.L. Dai, X. Wang, L.Q. Jia, X.G. Jing, P.F. Li, M. Liu, H. Wang, and L. An. 2017. MicroRNA-145 down-regulates mucin 5AC to alleviate airway remodeling and targets EGFR to inhibit cytokine expression. Oncotarget 8 (28): 46312–46325.CrossRef
43.
Zurück zum Zitat Han, H., and S.F. Ziegler. 2013. Bronchoalveolar lavage and lung tissue digestion. Bio Protoc 3 (16). Han, H., and S.F. Ziegler. 2013. Bronchoalveolar lavage and lung tissue digestion. Bio Protoc 3 (16).
44.
Zurück zum Zitat Tang, C., M.D. Inman, N. van Rooijen, P. Yang, H. Shen, K. Matsumoto, and P.M. O'Byrne. 2001. Th type 1-stimulating activity of lung macrophages inhibits Th2-mediated allergic airway inflammation by an IFN-gamma-dependent mechanism. Journal of Immunology 166 (3): 1471–1481.CrossRef Tang, C., M.D. Inman, N. van Rooijen, P. Yang, H. Shen, K. Matsumoto, and P.M. O'Byrne. 2001. Th type 1-stimulating activity of lung macrophages inhibits Th2-mediated allergic airway inflammation by an IFN-gamma-dependent mechanism. Journal of Immunology 166 (3): 1471–1481.CrossRef
Metadaten
Titel
Lin28B Regulates Angiotensin II-Mediated Let-7c/miR-99a MicroRNA Formation Consequently Affecting Macrophage Polarization and Allergic Inflammation
verfasst von
Anant Jaiswal
Mohita Maurya
Preeti Maurya
Manoj Kumar Barthwal
Publikationsdatum
27.05.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01258-1

Weitere Artikel der Ausgabe 5/2020

Inflammation 5/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.