Skip to main content
Erschienen in: Cardiology and Therapy 4/2022

Open Access 12.10.2022 | Original Research

Long-Term Association between Intensive Medical Treatment and the Incidence of Cardiovascular Outcomes in Patients with Dyslipidemia: an Observational Study

verfasst von: Guilherme Renke, Débora Pinto Gapanowicz, Marcela Batista Pereira, Fernanda Mattos, Marcelo Ribeiro-Alves, Marcelo Assad, Annie Seixas Bello Moreira

Erschienen in: Cardiology and Therapy | Ausgabe 4/2022

Abstract

Introduction

The management of patients with dyslipidemia (DLP) requires intensive medical follow-up as an essential part of treatment and to reduce the risk of cardiovascular (CV) outcomes. The aim of this study was to evaluate whether adherence to medical treatment changed the prevalence of CV disease events in a retrospective 7-year follow-up analysis.

Methods

This retrospective study involved 92 patients divided into two groups according to their adherence: the REG group with 64 patients who had medical appointments from 2012 to 2018, and the DROP group, with 28 patients who had medical appointments in 2012 but did not complete regular appointments until 2018. Cox proportional hazard models were fitted to estimate hazard ratios associated with CV outcomes as primary endpoints.

Results

We observed a total of 32 cases of acute myocardial infarction (AMI) in the study population, 17 (338.41 pY) in the REG group and 15 (62.97 pY) in the DROP group. An increased hazard of AMIs was observed in the DROP group compared with the REG group by follow-up time (p < 0.001). We found that previous events of AMI and congestive heart failure (CHF) were associated with progression to treatment dropout (p < 0.05) and that two drugs were considered a risk factor for treatment dropout, diuretics and fibrates (p < 0.05).

Conclusions

A reduced hazard of AMI was observed in patients who complete a greater number of medical appointments and receive multidisciplinary treatment on a regular basis.
Key Summary Points
(1) Regular medical and multidisciplinary treatment is associated with reduced hazard of AMI.
(2) There is an improvement in HDL cholesterol (HDL-c) levels in patients on regular medical treatment compared with dropout patients.
(3) Use of medications such as diuretics and fibrates increase the risk for treatment dropout.
(4) Patients with the presence of previous events of both AMI and CHF had a greater chance of not adhering to follow-up clinic management.
(5) Greater adherence to multidisciplinary treatment with a nutritionist is probably the key finding associated with reduced hazard in CV outcomes.

Introduction

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. According to data from the National Health and Nutrition Examination Survey (NHANES) 2015–2018, the prevalence of CVD was 49.2% overall in adults ≥ 20 years of age (126.9 million in 2018), and increased with age in both men and women [1, 2].
Several risk factors contribute to the etiology and development of CVD, especially dyslipidemia (DLP) and type 2 diabetes mellitus (T2DM). Although contemporary data show a significant decrease in CVD rates in individuals with DLP and T2DM, both diseases remain highly prevalent and are important risk factors for CVD [3, 4]. There is still little evidence whether a regular and more comprehensive multidisciplinary approach in the treatment of CV risk factors in adults with DLP and T2DM can reduce CV events. The intensive treatment of DLP in adults with T2DM is discussed in the relevant sections of the latest evidence-based guidelines of the Brazilian Society of Cardiology, the European Society of Cardiology, and the American Heart Association [14].
Although there is robust evidence regarding the long-term efficacy of clinical treatment for controlling individual risk factors in patients with DLP and T2DM [3, 4], little is known about the effect of intensive multidisciplinary or multifactorial strategies that affect the various risk factors of patients with established CVD [57]. Overall, they found that high-risk CV patients with long-standing DLP and T2DM had a 50% reduction in the risk of CV events and mortality when they receive intensive multidisciplinary treatment [5]. In another study, after 5 years of multidisciplinary treatment, the rate of CV events (including mortality, CV morbidity, and revascularization) is 17% lower in patients undergoing intensive treatment than in those undergoing usual treatment [6]. According to the Steno2 study in Denmark, which compared the effect of a targeted, intensified, multifactorial intervention with that of conventional treatment on modifiable risk factors for CV disease in patients with T2DM, there is a reduction of 50% in CV and microvascular events [7].
Evaluating the long-term effects of a multidisciplinary intervention, including medical and nutritionist consultations, can assist in the development of guidelines, education, and training regarding CV outcomes for primary care teams [58]. Chronic diseases related to nutrition, such as CVD and T2DM, represent an increasingly significant health burden for the population [8, 9]. Given the ability of dietary modification to improve the biomarkers of chronic diseases, the participation of nutritionists in promoting behavior changes is recognized as a first-line approach for CV diseases [9].
Intensive follow-up with regular medical and nutritional consultations is essential to ensure that patients correctly adhere to drug treatments and achieve their therapeutic goals [10]. Among almost all cute myocardial infarction (AMI) patients, approximately half discontinue medications 12 months after the AMI. Greater interaction among medical teams and patients enables better adherence to medical treatment by 55%; however, it is not associated with greater adherence to medications [11].
Thus, the aim of the study was to evaluate how adherence to multidisciplinary treatment and a greater number of medical consultations affected CV outcomes in patients with DLP and T2DM who were followed up for 7 years. We also evaluated the effect of medical follow-up on the lipid profile, hospitalizations, and the number of medications used, and assessed the prevalence of T2DM.

Methods

Ethical Aspects

The present research project was developed according to the recommendations of resolution no. 466/2012 and the Declaration of Helsinki, modified in Hong Kong in 1989, for research involving humans. The research project was submitted to and approved by the Research Ethics Committee of the National Institute of Cardiology (NIC) and was registered with the National Research Ethics System on 9 June 2020 (31565920.3.0000.5272). The informed consent form was sent by mail and digitally, and consent was given digitally and through an audio recording owing to the COVID-19 pandemic. The researchers maintained the confidentiality and integrity of the information.

Study Design and Population

This was a retrospective study involving patients treated at the lipids and T2DM service of the NIC from 1 January 2012 to 31 December 2018. Convenience sampling of all patients with DLP who were treated at the outpatient clinic of the NIC in 2012 was used. Ninety-two patients were divided into two groups: The REG group, which comprised 64 patients who maintained medical appointments from 2012 to 2018 (with the last consultation performed between 1 January and 31 December 2018), and the DROP group, which comprised 28 patients who underwent medical consultations in 2012 but did not continue regular consultations until 2018.
To be included, patients were required to have the following two characteristics: (1) Being an adult of either sex aged between 35 and 75 years and (2) having attended the DLP and T2DM services of the NIC in 2012. Cancer patients, wheelchair users, pregnant women, lactating women, and patients with active tuberculosis, mental alienation, multiple sclerosis, leprosy, Parkinson’s disease, ankylosing spondylarthrosis, severe nephropathy, advanced stages of Paget’s disease, and acquired immunodeficiency syndrome were excluded.
The participants’ clinical variables were recorded on a specific form and included their name, age, sex, history of smoking, physical exercise, systemic arterial hypertension (SAH), T2DM, angina, previous diseases, CV events, AMI, cerebrovascular accident (CVA), CVD, and number of outpatient medical visits during the study period. All medical records of patients treated at the outpatient clinic of the DLP and T2DM services were evaluated throughout 2012. To evaluate possible deaths, changes in address indicating a move to another city, and follow-up treatment at other hospitals, the patients were contacted by telephone, and the information that was acquired was added to a form developed specifically for the study.
Adherence was assessed according to the number of consultations completed during the 7-year study period, and patients were deemed adherent to multidisciplinary treatment if they had completed at least two annual visits to the outpatient clinic and at least one consultation with the nutritionist during the 7-year study period. Adherence to drug treatment could not be evaluated in this study; however, it was possible to determine the profile of the drugs that the patients used during the study period.
The anthropometric variables analyzed were weight, height, body mass index, waist circumference, and blood pressure. Patients’ laboratory test results were assessed at two time points: 2012 and 2018. Our analysis included the following tests: total cholesterol (CT), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), triglycerides, fasting glycemia, glycated hemoglobin (HbA1c), creatine phosphokinase (CPK), and C-reactive protein (CRP).

Statistical Analysis

The collected data were tabulated in a spreadsheet using the double-entry technique for validation. In the evaluation of the differences in sociodemographic, clinical, and laboratory characteristics between the two groups, for continuous numerical variables, the Mann–Whitney U test was used to evaluate the hypothesis that the different samples were taken from the same distribution or from distributions with the same median. Similarly, for categorical nominal variables, chi-square tests were used to evaluate the differences in frequencies between the different groups to verify the hypothesis of independence between the groups and these variables. For inferences, multiples statistical models were applied. For the analyses of the use of medications and the experience of CV events by patients between groups, binomial (logit link function) generalized linear models were fitted. For the analysis of progression to a CV event by patients between groups, a time-to-event analysis, Cox proportional hazard models were fitted. For the analysis of the number of medications used by patients between groups, negative-binomial (logarithmic link functions) generalized linear models were fitted. Finally, for the analysis of patients’ main groups of lipids between groups, linear models were fitted. Regardless of the fitted model, to eliminate the sample bias, confounding variables were selected using bivariate models and were included in the multivariate models if their adjusted p-value was < 0.2. All models included age, sex, schooling years, established T2DM, and marital and working status as confounding factors. Binomial models for the experience of CV events, Cox proportional hazard models for the analysis of progression (time-to-event) to a CV event, negative-binomial generalized linear models for the analysis of the number of medications used, and linear models for the analysis of main groups of lipids, also included body mass index (BMI) and auto-declared skin color as confounding factors. Odds-ratio (OR), relative-risk (RR), and hazard ratio (HR) were used to represent relative risks in binomial, negative-binomial, and Cox proportional hazard models, respectively. All statistical analyses were performed in R v. 3.6.1. Results with two-tailed p-values < 0.05 were considered significant.

Results

A total of 124 medical records of patients treated at the lipid and T2DM outpatient clinic during 2012 were evaluated. A total of 32 patients were excluded, including three patients who were under 35 years of age and 28 patients with chronic disabling diseases who were older than 76 years of age (Fig. 1). The study population had a mean age of approximately 67 years, and most were men (54.3%), elderly (58.7%), white (58.7%), and married (63.3%). The REG group consisted of 64 patients who were followed up until 2018, and the DROP group comprised 28 patients who did not adhere to treatment until 2018 (Table 1). We observed a median follow-up time of 5.72 (IQR = 1.37) years of the study population, including 5.97 (IQR = 0.60) years in the REG group and 3.63 (IQR = 2.21) years in the DROP group. We observed that the patients who were most active in the labor market were the least adherent to regular treatment; these patients comprised 71.4% of the DROP group and 45.3% of the REG group (p = 0.002). Regarding education, 30.7% of the participants had at least 10 years of education. Regarding anthropometric parameters, patients with a body mass index (BMI) of 28.25 kg/m2 (overweight range of 25.0–29.9 kg/m2) were considered overweight according to the World Health Organization classification. The median systolic ablood pressure of the study population was 136 mmHg, the diastolic blood pressure was 80 mmHg, and 93.5% of the individuals had a diagnosis of SAH. We observed a prevalence rate of 75% for T2DM. A total of 46.7% of the studied patients had current or previous angina, indicating that the study population had a high degree of CV risk. Regarding lifestyle, the prevalence of a sedentary lifestyle was 83.7%, and the prevalence of smoking was 30.4%. Regarding the number of nutrition consultations according to the follow-up time, a total of 57 consultations were observed in the study population, 76.6% of the REG group had at least one nutrition consultation versus 28.6% of the DROP group.
Table 1
General characteristics of the study participants, previous events at baseline, and comparisons between the REG group, who maintained medical visits from 2012 to 2018, and the DROP group, who underwent medical visits in 2012 but did not continue regular treatment until 2018
Variables
Total
REG
DROP
p-Value
(n = 92)
(n = 64)
(n = 28)
Data
 Age (years)
67 (IQR = 9.25)
67 (IQR = 10.25)
66 (IQR = 6.75)
0.489
 Men—n (%)
50 (54.3%)
33 (51.6%)
17 (60.7%)
0.560
 Women—n (%)
42 (45.7%)
31 (48.4%)
11 (39.3%)
0.607
 Elderly (≥ 65 years)—n (%)
54 (58.7%)
37 (57.8%)
17 (60.7%)
0.976
Demographic data
 Marital status (married)—n (%)
50 (54.3%)
35 (54.7%)
15 (53.6%)
0.181
 Schooling (complete elementary school)—n (%)
23 (25%)
14 (21.9%)
9 (32.1%)
0.632
 Occupation (active)—n (%)
49 (53.3%)
29 (45.3%)
20 (71.4%)
0.002
 Race/color (white)—n (%)
54 (58.7%)
41 (64.1%)
13 (46.4%)
0.434
Anthropometric data
 Weight (kg)
75 (IQR = 17.88)
73 (IQR = 16.4)
80 (IQR = 15.75)
0.024
 BMI (kg/m2)
28.25 (IQR = 5.32)
28.1 (IQR = 5.3)
28.7 (IQR = 4.67)
0.959
 SBP (mmHg)
136 (IQR = 23)
140 (IQR = 23)
130 (IQR = 22.5)
0.238
 DBP (mmHg)
80 (IQR = 10)
80 (IQR = 10)
80 (IQR = 10)
0.969
Clinical data
 Smoking—n (%)
28 (30.4%)
15 (23.4%)
13 (46.4%)
0.055
 Physical exercise—n (%)
15 (16.3%)
13 (20.3%)
2 (7.1%)
0.276
 Hypertension—n (%)
86 (93.5%)
58 (90.6%)
28 (100%)
0.246
 T2DM—n (%)
69 (75%)
52 (81.2%)
17 (60.7%)
0.064
Values are expressed as n (%) or median ± IQR. Mann–Whitney U test, chi-square test
IQR interquartile range, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, T2DM type 2 diabetes mellitus
Significant difference p < 0.05
We found no association of previous diseases, namely myocardial revascularization surgery (MCRS), percutaneous transluminal coronary angioplasty (PTCA), or dilated cardiomyopathy (DCM), with adherence to follow-up clinical management, but an association with AMI and congestive heart failure (CHF) was identified (Table 2). Patients with previous events of both acute AMI [aOR = 33.63 (2.09–541.42), p = 0.026] and CHF [aOR = 103.64 (2.38–4511.47), p = 0.031] had a greater chance of not adhering to follow-up clinic management than those who had not experienced these events previously.
Table 2
Association between previous events at baseline and groups; REG group, who maintained medical follow-up from 2012 to 2018, and the DROP group, who underwent medical consultations in 2012 but did not continue regular follow-up until 2018
Variables
Total
REG
DROP
OR (CI 95%)a
p-Value
(n = 92)
(n = 64)
(n = 28)
Previous events
 Previous disease—n (%)
67 (72.8%)
45 (70.3%)
22 (78.6%)
0.27 (0.01–5.05)
0.768
 AMI—n (%)
45 (48.9%)
30 (46.9%)
15 (53.6%)
33.63 (2.09–541.42)
0.026
 PTCA—n (%)
25 (27.2%)
16 (25%)
9 (32.1%)
1.56 (0.19–12.87)
1
 MCRS—n (%)
33 (35.9%)
20 (31.2%)
13 (46.4%)
4.67 (0.56–39.03)
0.309
 CHF—n (%)
32 (34.8%)
14 (21.9%)
18 (64.3%)
103.64 (2.38–4511.47)
0.031
 DCM—n (%)
9 (9.8%)
5 (7.8%)
4 (14.3%)
0.15 (0.01–2.99)
0.431
 Aneurysm—n (%)
1 (1.1%)
1 (1.6%)
0 (0%)
NC
NC
 Arrhythmias—n (%)
21 (22.8%)
8 (12.5%)
13 (46.4%)
90.76 (0.81–10,108.47)
0.121
 History of angina—n (%)
43 (46.7%)
29 (45.3%)
14 (50%)
1.84 (0.24–14.06)
1
Values are expressed as n (%)
AMI acute myocardial infarction, PTCA percutaneous transluminal coronary angioplasty, MCRS myocardial revascularization surgery, CHF congestive heart failure, DCM dilated cardiomyopathy, NC not calculated
Significant association p < 0.05
aOR: Adjusted Odds Ratio, where age, sex, schooling years, marital and working status, body mass index (BMI), established T2DM, and auto-declared skin color were included in multiple binomial (logit link function) generalized linear models
We evaluated the risk factor associated with treatment dropout based on medication use measured at baseline (Table 3). We observed that two drugs were considered a risk factor for treatment dropout, diuretics [aOR = 43.33 (2.23–841.39), p = 0.025] and fibrates [aOR = 320.01 (3.97–25809.74), p = 0.020]. Despite statins being the most used drug, we did not observe any association of risk or protection for treatment dropout [aOR = 0.16 (0.01–2.58), p = 0.396]. The same was observed for widely used drugs such as beta blockers [aOR = 8 (0.05–1269.03), p = 0.842], antiplatelet agents [aOR = 3.22 (0.47–21.98), p = 0.464], and metformin [aOR = 2.86 (0.18–46.43), p = 0.921].
Table 3
Risk factors associated with treatment dropout based on medications used at baseline
Variable
Total (n = 92)
REG (n = 64)
DROP (n = 28)
OR (CI 95%)a
p-Value
Drug
     
 Beta blockers—n (%)
80 (87%)
55 (85.9%)
25 (89.3%)
8 (0.05–1269.03)
0.842
 CCBs—n (%)
25 (27.2%)
20 (31.2%)
5 (17.9%)
0.13 (0.01–1.49)
0.201
 ACEIs—n (%)
31 (33.7%)
16 (25%)
15 (53.6%)
73.79 (1.65–3296.87)
0.052
 ARBs—n (%)
41 (44.6%)
31 (48.4%)
10 (35.7%)
0.57 (0.1–3.42)
0.596
 Statins—n (%)
81 (88%)
58 (90.6%)
23 (82.1%)
0.16 (0.01–2.58)
0.396
 Anticoagulants—n (%)
9 (9.8%)
9 (14.1%)
0 (0%)
NC
NC
 Antiplatelets—n (%)
59 (64.1%)
37 (57.8%)
22 (78.6%)
3.22 (0.47–21.98)
0.464
 Diuretics—n (%)
54 (58.7%)
31 (48.4%)
23 (82.1%)
43.33 (2.23–841.39)
0.025
 Ezetimibe—n (%)
30 (32.6%)
28 (43.8%)
2 (7.1%)
0.08 (0.01–0.93)
0.088
 Fibrates—n (%)
18 (19.6%)
10 (15.6%)
8 (28.6%)
320.01 (3.97–25809.74)
0.020
 Antiarrhythmics—n (%)
20 (21.7%)
8 (12.5%)
12 (42.9%)
5.81 (0.46–73.37)
0.347
 Oral hypoglycemics—n (%)
28 (30.4%)
22 (34.4%)
6 (21.4%)
0.24 (0.03–2.09)
0.389
  Glinides—n (%)
16 (17.4%)
13 (20.3%)
3 (10.7%)
0.3 (0.01–7.94)
0.945
  Metformin—n (%)
45 (48.9%)
32 (50%)
13 (46.4%)
2.86 (0.18–46.43)
0.921
 Insulin—n (%)
16 (17.4%)
11 (17.2%)
5 (17.9%)
0.95 (0.1–9.45)
1
 Allopurinol—n (%)
17 (18.5%)
8 (12.5%)
9 (32.1%)
18.9 (0.63–566.39)
0.180
 Adrenergic agonists—n (%)
3 (3.3%)
2 (3.1%)
1 (3.6%)
NC
NC
 Nitrates—n (%)
31 (33.7%)
19 (29.7%)
12 (42.9%)
6.11 (0.65–57.24)
0.225
Values are expressed as n (%). Absolute frequency (relative)
ACEIs angiotensin-converting enzyme inhibitors, ARBs angiotensin receptor blockers, CCBs calcium channel blockers, NC not calculated
Significant difference p < 0.05
aOR adjusted odds ratio, where age, sex, BMI, ethnicity, marital status, occupation, established T2DM, and schooling years were included in multiple binomial models
In the evaluation of the number of CV events along the study period, when we compared the two groups, we observed a total of 32 cases of AMI in the study population: 17 (338.41 pY) in the REG group and 15 (62.97 pY) in the DROP group. In fact, AMI was strongly associated with progression to treatment dropout [aHR = 15.282 (3.26–71.645), p < 0.001]. We observed a total of 53 hospital admissions during the study period: 29 (295.74 pY) in the REG group and 24 (51.58 pY) in the DROP group. However, the number of hospital admissions was not associated with progression to treatment dropout [aHR = 14.561 (4.496–47.157), p = 7.927]. A total of five cases of stroke were observed: three (379.56 pY) in the REG group and two (90.24 pY) in the DROP group, with no difference observable to the progression to treatment dropout. The total number of deaths was 64.3% higher in the DROP group, and seven (25%) were because of CV death. As expected, cardiovascular deaths were not observed in the REG group.
In the evaluation of laboratory results (Fig. 2), we observed no mean differences at baseline between the groups. However, we found a decrease in CT (27.77 mg/dL, p = 0.005) and an increase in HDL-c (6.42 mg/dL, p = 0.042) serum levels in the REG group between baseline (T1) and a second evaluation made after 7 years (T2). None of these differences were observed in the DROP group. We observed an increase in HDL-c (11.40 mg/dL, p = 0.013) serum levels in the REG group compared with the DROP group in T2. We did not observe significant changes in LDL-c levels (T1 × T2) in the REG group: 115 mg/dL (IQR = 59.5) × 94.5 mg/dL (IQR = 42.75) or in the DROP group: 91 mg/dL (IQR = 67.25) × 88 mg/dL (IQR = 62). We found no mean differences for triglycerides, fasting glycemia, HbA1c, CRP, or CPK serum levels between evaluations in either group (Table 4).
Table 4
Laboratory variables at baseline (T1) and second evaluation made after follow-up time (T2) with comparison between groups: the REG group who maintained medical visits from 2012 to 2018, and the DROP group, who underwent medical visits in 2012 but did not continue regular treatment until 2018
Variable
Overall (T1)
REG (T1)
DROP (T1)
REG (T2)
DROP (T2)
p-Value
CT (mg/dL)
173 (IQR = 71)
193 (IQR = 73.75)
182 (IQR = 95.5)
166 (IQR = 54.25)
162.5 (IQR = 57.75)
0.032
LDL-c (mg/dL)
98.5 (IQR = 53)
115 (IQR = 59.5)
91 (IQR = 67.25)
94.5 (IQR = 42.75)
88 (IQR = 62)
0.209
HDL-c (mg/dL)
40 (IQR = 15.25)
41 (IQR = 14.5)
33 (IQR = 14.75)
44.5 (IQR = 19)
39.5 (IQR = 16)
0.001
Triglycerides (mg/dL)
146 (IQR = 105.75)
139 (IQR = 115.25)
171 (IQR = 256)
147 (IQR = 94.25)
145.5 (IQR = 102.75)
0.202
Fasting glucose (mg/dL)
109.5 (IQR = 52)
110 (IQR = 48)
126.5 (IQR = 49.75)
104.5 (IQR = 62.25)
108.5 (IQR = 38.25)
0.403
CRP (mg/dL)
0.21 (IQR = 0.6)
0.13 (IQR = 0.33)
0.69 (IQR = 0.82)
0.2 (IQR = 0.35)
0.4 (IQR = 0.59)
0.003
CPK (U/L)
109 (IQR = 104)
107 (IQR = 109.75)
131.5 (IQR = 178)
115 (IQR = 59.75)
87 (IQR = 144.5)
0.704
HbA1c (%)
6.59 (IQR = 2)
6.5 (IQR = 1.75)
6.6 (IQR = 2.71)
6.5 (IQR = 2.15)
6.75 (IQR = 1.75)
0.773
Values are expressed as median ± IQR
IQR: interquartile range, CT total cholesterol, LDL-c low-density lipoprotein, HDL-c high-density lipoprotein, HbA1c glycated hemoglobin, CPK creatine phosphokinase, CRP C-reactive protein
Significant difference p < 0.05

Discussion

Despite the higher number of visits/year in the DROP group, we observed an increased hazard of AMIs by follow-up time in the DROP group compared with the REG group (p < 0.001). In addition, previous AMI was also associated with progression to treatment dropout (p < 0.05). Thus, patients who are noncompliant with follow-up visits are those who experience more events. In fact, although patients with DLP should already be considered at high CV risk, the presence of additional risk factors, such as T2DM and other chronic conditions, amplifies the risk of CVD [10]. It is estimated that coronary events, fatal or not, occur in approximately 50% of men diagnosed with DLP before the age of 50 years and in 30% of women diagnosed before the age of 60 years [1013]. In addition, the literature indicates that the average age at CVD presentation is approximately 43 years in men and 52 years in women [13]. It is known, however, that when patients with DLP and multiple comorbidities receive adequate treatment and achieve therapeutic goals, their risk of developing CVD is similar to that of the general population [13, 14]. A randomized trial showed that intensive patient care improved patient adherence and decreased serum CT and LDL-c levels [11]. The improvements in patient adherence and blood lipid levels were consistent with the results of randomized clinical trials with a follow-up of more than 6 months [58]. Although we did not find an improvement in LDL-c for either group, there was a similar trend in our study for CT and HDL-c in the REG group. We observed a significant improvement in laboratory parameters (REGT1 × REGT2) for a decrease in CT and an increase in HDL-c (p < 0.05). We did not observe significant mean differences for the DROP group. In the intergroup mean difference comparison (REGT2 × DROPT2) an increase in HDL-c was the only exception, with a significant improvement in the evaluation of laboratory results with follow-up time (p < 0.05). Interestingly, despite this lack of significant laboratory changes, we observed that the DROP group completed more consultations/year than the REG group, possibly because the patients in the DROP group had a higher CV risk (p = 0.007).
Another interesting finding was the high prevalence of T2DM in the study population. The reported prevalence of T2DM in the adult population is 12% [1]; however, in our study, this prevalence was 75%, identified by HbA1c values greater than or equal to 6.5%. The importance of long-term drug treatment for patients with T2DM has been demonstrated in several randomized clinical trials [58]. Reducing blood glucose in high-risk CV patients with prediabetes or T2DM is essential [7]. Glycemia is a strong and independent predictor of long-term mortality in patients with CVD, and intensive blood glucose control is necessary [14]. Despite this, in our study we did not observe significant mean differences in HbA1c levels after follow-up in either group, including 6.5% (IQR = 2.15) in the REG group and 6.75 (IQR = 1.75) in the DROP group. However, even though no laboratory improvement was observed, regular multidisciplinary treatment of patients with T2DM was associated with reduced CV risk compared with routine care in the first 5 years after diagnosis [58]. Interestingly, we observed that patients in the REG group had greater adherence to multidisciplinary treatment compared with patients in the DROP group (p < 0.001).
The benefit of statin therapy is also related to the overall risk and intensity of treatment [15]. Patients with T2DM have a higher CV risk than those without T2DM; high-intensity statin therapy is preferred for patients with T2DM [14, 16, 17]. However, no randomized clinical trial of treatment with high-intensity statins has been conducted in cohorts exclusively comprising patients with T2DM. In our study, statins were the most commonly used drugs; they showed similar use between groups [aOR = 0.16 (0.01–2.42)] and were used by 88% of patients, many of whom were considered high risk, having experienced CV events prior to our study (72.8%). Greater adherence to drug therapy is associated with lower mortality and lower CV morbidity [3, 10, 11]. In a meta-analysis, therapy associated with a 50% decrease in LDL-c led to a 15% reduction in CV outcomes [18]. In fact, we observed a trend towards greater use of statins by the REG group (90.6%) than by the DROP group (82.1%) (p = 0.069). However, we did not observe any association of risk or protection for statin treatment dropout (p = 0.372). Early medical interventions and a greater number of consultations offer promise as a potential method for addressing this important care gap to maximize the acceptance of treatment [19]. Higher adherence to drug therapy is associated with lower mortality, lower CV morbidity, and lower costs to the health system [3, 12, 13]. Although we did not assess adherence to drug therapy in our study, we observed that the use of some medications, such as fibrates and diuretics, were listed as a major risk factor for treatment dropout (p < 0.05).
The presence of previous CV events is also related to lower adherence to long-term drug therapy, and approximately 50% of patients discontinue medication 12 months after a CV event [12]. In our study, patients with the presence of previous events of both AMI and CHF had a greater chance of not adhering to follow-up clinic management than those who had not experienced these events previously (p < 0.05).
There is growing evidence of lower overall mortality in patients who are treated by a multidisciplinary team at specialized outpatient services for DLP and T2DM versus primary care treatment [11, 20, 21]. A large study with a European population showed that after 5 years of intensive treatment compared with basic treatment, there was a greater reduction in CV risk factors [511]. There was also an increase in the prescription of medications and a 17% reduction in CV outcomes [11]. Interestingly, as already mentioned, we observed a higher number of medical visits per follow-up time point in the DROP group [aOR = 4.36 (3.95–4.81)] than in the REG group [aOR = 3.38 (3.2–3.57)] (p = 0.007). However, the number of consultations with a nutritionist was significantly higher in the REG group (76.6%) than in the DROP group (28.6%) by follow-up time, showing greater adherence to multidisciplinary treatment. (p < 0.001). Thus, we cannot disregard the possibility that a reduced hazard in CV outcomes is related to greater adherence to multidisciplinary treatment with physicians and nutritionists.
Our study has some limitations including the sample size, which is relatively small, and findings could be due to selection bias. The DROP group only has half the patients compared with the REG group, which may be one reason we did not find a significant difference between the two groups in the CV outcomes.

Conclusion

The analysis of CV outcomes of the studied population provides a greater understanding of the importance of a multidisciplinary treatment. There seems to be a reduced hazard in CV events, especially AMI, in patients who undergo regular treatment, even without major laboratory mean differences compared with dropout patients. We observed that adherence to multimodal clinical treatment can be negatively impacted by the patient’s previous clinical condition and the profile of drugs used. This presents greater possibilities for long-term clinical applications since preventive and outpatient medical monitoring has low risk, is affordable, and may represent an additional measure to incorporate into patient treatment.

Acknowledgments

All authors had full access to all of the data in this study and take complete responsibility for the integrity of the data and accuracy of the data analysis. We also thank the participants of the study.

Funding

No funding or sponsorship was received for this study or publication of this article. The Rapid Service Fee was funded by the authors.

Author Contributions

G.R, M.A and A.S.B.M, contributed to study concept and design. G.R and M.B.P, drafted the manuscript and acquired data. D.P.G, contributed to the analysis and interpretation of data. M.R.A, contributed to statistical analysis. F.M and A.S.B.M, critically revised the manuscript.

Disclosures

Guilherme Renke has nothing to disclose, Débora Pinto Gapanowicz has nothing to disclose, Marcela Batista Pereira has nothing to disclose, Fernanda Mattos has nothing to disclose, Marcelo Ribeiro-Alves has nothing to disclose, Marcelo Assad has nothing to disclose and Annie Seixas Bello Moreira has nothing to disclose.

Compliance with Ethics Guidelines

The study protocol was approved by the ethical review committees of the Research Ethics Committee of the National Institute of Cardiology (NIC) and was registered with the National Research Ethics System on June 9, 2020 (31565920.3.0000.5272). Before interview, the written informed consent was obtained from each participant. Data were anonymised before use in this study. The informed consent form was sent by mail and digitally, and consent was given digitally and through an audio recording due to the COVID-19 pandemic.

Data Availability Statement

Data underlying this article will be shared on reasonable request to the corresponding author.
Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.
Literatur
1.
Zurück zum Zitat Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, Van Wagner LB, Wang NY, Tsao CW, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743.CrossRefPubMed Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, Van Wagner LB, Wang NY, Tsao CW, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743.CrossRefPubMed
2.
Zurück zum Zitat Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Angelantonio ED, Franco OH, Halvorsen S, Richard Hobbs FD, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B, ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Rev Esp Cardiol (Engl Ed). 2022;75(5):429. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Angelantonio ED, Franco OH, Halvorsen S, Richard Hobbs FD, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B, ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Rev Esp Cardiol (Engl Ed). 2022;75(5):429.
3.
Zurück zum Zitat Laddu D, Ma J, Kaar J, Ozemek C, Durant RW, Campbell T, Welsh J, Turrise S. Health behavior change programs in primary care and community practices for cardiovascular disease prevention and risk factor management among midlife and older adults: a scientific statement from the American Heart Association. Circulation. 2021;144(24):e533–49.CrossRefPubMedPubMedCentral Laddu D, Ma J, Kaar J, Ozemek C, Durant RW, Campbell T, Welsh J, Turrise S. Health behavior change programs in primary care and community practices for cardiovascular disease prevention and risk factor management among midlife and older adults: a scientific statement from the American Heart Association. Circulation. 2021;144(24):e533–49.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Izar MCO, Giraldez VZR, Bertolami A, Santos Filho RDD, Lottenberg AM, Assad MHV, Saraiva JFK, Chacra APM, Martinez TLR, Bahia LR, Fonseca FAH, Faludi AA, Sposito AC, Chagas ACP, Jannes CE, Amaral CK, Araújo DB, Cintra DE, Coutinho EDR, Cesena F, Xavier HT, Mota ICP, Giuliano ICB, Faria Neto JR, Kato JT, Bertolami MC, Miname MH, Castelo MHCG, Lavrador MSF, Machado RM, Souza PG, Alves RJ, Machado VA, Salgado Filho W. Update of the Brazilian guideline for familial hypercholesterolemia. Arq Bras Cardiol. 2021;117(4):782–844.PubMedPubMedCentral Izar MCO, Giraldez VZR, Bertolami A, Santos Filho RDD, Lottenberg AM, Assad MHV, Saraiva JFK, Chacra APM, Martinez TLR, Bahia LR, Fonseca FAH, Faludi AA, Sposito AC, Chagas ACP, Jannes CE, Amaral CK, Araújo DB, Cintra DE, Coutinho EDR, Cesena F, Xavier HT, Mota ICP, Giuliano ICB, Faria Neto JR, Kato JT, Bertolami MC, Miname MH, Castelo MHCG, Lavrador MSF, Machado RM, Souza PG, Alves RJ, Machado VA, Salgado Filho W. Update of the Brazilian guideline for familial hypercholesterolemia. Arq Bras Cardiol. 2021;117(4):782–844.PubMedPubMedCentral
5.
Zurück zum Zitat Griffin SJ, Rutten GEHM, Khunti K, Witte DR, Lauritzen T, Sharp SJ, Dalsgaard EM, Davies MJ, Irving GJ, Vos RC, Webb DR, Wareham NJ, Sandbæk A. Long-term effects of intensive multifactorial therapy in individuals with screen-detected type 2 diabetes in primary care: 10-year follow-up of the ADDITION-Europe cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(12):925–37.CrossRefPubMed Griffin SJ, Rutten GEHM, Khunti K, Witte DR, Lauritzen T, Sharp SJ, Dalsgaard EM, Davies MJ, Irving GJ, Vos RC, Webb DR, Wareham NJ, Sandbæk A. Long-term effects of intensive multifactorial therapy in individuals with screen-detected type 2 diabetes in primary care: 10-year follow-up of the ADDITION-Europe cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(12):925–37.CrossRefPubMed
6.
Zurück zum Zitat Ueki K, Sasako T, Okazaki Y, Kato M, Okahata S, Katsuyama H, Haraguchi M, Morita A, Ohashi K, Hara K, Morise A, Izumi K, Ishizuka N, Ohashi Y, Noda M, Kadowaki T, J-DOIT3 Study Group. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):951–64.CrossRefPubMed Ueki K, Sasako T, Okazaki Y, Kato M, Okahata S, Katsuyama H, Haraguchi M, Morita A, Ohashi K, Hara K, Morise A, Izumi K, Ishizuka N, Ohashi Y, Noda M, Kadowaki T, J-DOIT3 Study Group. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):951–64.CrossRefPubMed
7.
Zurück zum Zitat Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.CrossRefPubMed Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.CrossRefPubMed
8.
Zurück zum Zitat Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866–75.CrossRefPubMedCentral Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866–75.CrossRefPubMedCentral
9.
Zurück zum Zitat Mitchell LJ, Ball LE, Ross LJ, Barnes KA, Williams LT. Effectiveness of dietetic consultations in primary health care: a systematic review of randomized controlled trials. J Acad Nutr Diet. 2017;117(12):1941–62.CrossRefPubMed Mitchell LJ, Ball LE, Ross LJ, Barnes KA, Williams LT. Effectiveness of dietetic consultations in primary health care: a systematic review of randomized controlled trials. J Acad Nutr Diet. 2017;117(12):1941–62.CrossRefPubMed
10.
Zurück zum Zitat Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, Woodward M, MacMahon S, Turnbull F, Hillis GS, Chalmers J, Mant J, Salam A, Rahimi K, Perkovic V, Rodgers A. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387(10017):435–43.CrossRefPubMed Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, Woodward M, MacMahon S, Turnbull F, Hillis GS, Chalmers J, Mant J, Salam A, Rahimi K, Perkovic V, Rodgers A. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387(10017):435–43.CrossRefPubMed
11.
Zurück zum Zitat Ivers NM, Schwalm JD, Bouck Z, McCready T, Taljaard M, Grace SL, Cunningham J, Bosiak B, Presseau J, Witteman HO, Suskin N, Wijeysundera HC, Atzema C, Bhatia RS, Natarajan M, Grimshaw JM. Interventions supporting long term adherence and decreasing cardiovascular events after myocardial infarction (ISLAND): pragmatic randomised controlled trial. BMJ. 2020;369:m1731.CrossRefPubMedPubMedCentral Ivers NM, Schwalm JD, Bouck Z, McCready T, Taljaard M, Grace SL, Cunningham J, Bosiak B, Presseau J, Witteman HO, Suskin N, Wijeysundera HC, Atzema C, Bhatia RS, Natarajan M, Grimshaw JM. Interventions supporting long term adherence and decreasing cardiovascular events after myocardial infarction (ISLAND): pragmatic randomised controlled trial. BMJ. 2020;369:m1731.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, Michos ED, Miedema MD, Muñoz D, Smith SC Jr, Virani SS, Williams KA Sr, Yeboah J, Ziaeian B. ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2019;74(10):e177–232.CrossRefPubMedPubMedCentral Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, Michos ED, Miedema MD, Muñoz D, Smith SC Jr, Virani SS, Williams KA Sr, Yeboah J, Ziaeian B. ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2019;74(10):e177–232.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC Jr, Sperling L, Virani SS, Yeboah J. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines (2019). Circulation. 2018;139(25):e1046–81.PubMed Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC Jr, Sperling L, Virani SS, Yeboah J. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines (2019). Circulation. 2018;139(25):e1046–81.PubMed
14.
Zurück zum Zitat LeRoith D, Biessels GJ, Braithwaite SS, Casanueva FF, Draznin B, Halter JB, Hirsch IB, McDonnell ME, Molitch ME, Murad MH, Sinclair AJ. Treatment of diabetes in older adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2019;104(5):1520–74.CrossRefPubMedPubMedCentral LeRoith D, Biessels GJ, Braithwaite SS, Casanueva FF, Draznin B, Halter JB, Hirsch IB, McDonnell ME, Molitch ME, Murad MH, Sinclair AJ. Treatment of diabetes in older adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2019;104(5):1520–74.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.CrossRef Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.CrossRef
16.
Zurück zum Zitat Campbell DJT, Lee-Krueger RCW, McBrien K, Anderson T, Quan H, Leung AA, Chen G, Lu M, Naugler C, Butalia S. Strategies for enhancing the initiation of cholesterol lowering medication among patients at high cardiovascular disease risk: a qualitative descriptive exploration of patient and general practitioners’ perspectives on a facilitated relay intervention in Alberta, Canada. BMJ Open. 2020;10(11):e038469.CrossRefPubMedPubMedCentral Campbell DJT, Lee-Krueger RCW, McBrien K, Anderson T, Quan H, Leung AA, Chen G, Lu M, Naugler C, Butalia S. Strategies for enhancing the initiation of cholesterol lowering medication among patients at high cardiovascular disease risk: a qualitative descriptive exploration of patient and general practitioners’ perspectives on a facilitated relay intervention in Alberta, Canada. BMJ Open. 2020;10(11):e038469.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Piña IL, Di Palo KE, Brown MT, Choudhry NK, Cvengros J, Whalen D, Whitsel LP, Johnson J. Medication adherence: importance, issues and policy: a policy statement from the American Heart Association. Prog Cardiovasc Dis. 2021;64:111–20.CrossRefPubMed Piña IL, Di Palo KE, Brown MT, Choudhry NK, Cvengros J, Whalen D, Whitsel LP, Johnson J. Medication adherence: importance, issues and policy: a policy statement from the American Heart Association. Prog Cardiovasc Dis. 2021;64:111–20.CrossRefPubMed
18.
Zurück zum Zitat van Driel ML, Morledge MD, Ulep R, Shaffer JP, Davies P, Deichmann R. Interventions to improve adherence to lipid-lowering medication. Cochrane Database Syst Rev. 2016;12(12):CD004371.PubMed van Driel ML, Morledge MD, Ulep R, Shaffer JP, Davies P, Deichmann R. Interventions to improve adherence to lipid-lowering medication. Cochrane Database Syst Rev. 2016;12(12):CD004371.PubMed
19.
Zurück zum Zitat Versmissen J, Oosterveer DM, Yazdanpanah M, Defesche JC, Basart DC, Liem AH, Heeringa J, Witteman JC, Lansberg PJ, Kastelein JJ, Sijbrands EJ. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ. 2008;337:a2423.CrossRefPubMedPubMedCentral Versmissen J, Oosterveer DM, Yazdanpanah M, Defesche JC, Basart DC, Liem AH, Heeringa J, Witteman JC, Lansberg PJ, Kastelein JJ, Sijbrands EJ. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ. 2008;337:a2423.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.CrossRef Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.CrossRef
21.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1988;352(9131):837–53. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1988;352(9131):837–53.
Metadaten
Titel
Long-Term Association between Intensive Medical Treatment and the Incidence of Cardiovascular Outcomes in Patients with Dyslipidemia: an Observational Study
verfasst von
Guilherme Renke
Débora Pinto Gapanowicz
Marcela Batista Pereira
Fernanda Mattos
Marcelo Ribeiro-Alves
Marcelo Assad
Annie Seixas Bello Moreira
Publikationsdatum
12.10.2022
Verlag
Springer Healthcare
Erschienen in
Cardiology and Therapy / Ausgabe 4/2022
Print ISSN: 2193-8261
Elektronische ISSN: 2193-6544
DOI
https://doi.org/10.1007/s40119-022-00282-6

Weitere Artikel der Ausgabe 4/2022

Cardiology and Therapy 4/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Dihydropyridin-Kalziumantagonisten können auf die Nieren gehen

30.04.2024 Hypertonie Nachrichten

Im Vergleich zu anderen Blutdrucksenkern sind Kalziumantagonisten vom Diyhdropyridin-Typ mit einem erhöhten Risiko für eine Mikroalbuminurie und in Abwesenheit eines RAS-Blockers auch für ein terminales Nierenversagen verbunden.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.