Skip to main content
Erschienen in: Cardiovascular Toxicology 1/2019

10.07.2018

Long-Term IL-2 Incubation-Induced L-type Calcium Channels Activation in Rat Ventricle Cardiomyocytes

verfasst von: Tatiana Filatova, Vadim Mitrokhin, Olga Kamkina, Irina Lovchikova, Mitko Mladenov, Andre Kamkin

Erschienen in: Cardiovascular Toxicology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

The following study examined the impact of IL-2 on Ca2+ channel activity in the event of several hours’ incubation in IL-2. The right ventricle free wall for action potential measurements was isolated and perfused with Tyrode solution. The whole-cell voltage clamp experiments were performed on enzymatically isolated single cardiomyocytes. The whole-cell voltage clamp recording of Ca2+ currents was performed using the Cs+-based pipette and bath solutions. The protocol with depolarizing prepulse (− 40 mV) was used to inactivate both Na+ current and Ca2+T-type current. The L-type Ca2+ current was elicited by a series of 250 ms depolarizing square pulses with 10 mV increments. At the 15th minute of continuous recording, the peak density at 0 mV was − 3.036 ± 0.3015 pA/pF under IL-2 and − 3.008 ± 0.3452 pA/pF in control conditions. The IL-2 in moderate concentration (1 ng/mL) has no acute effects on ICa.L in rat ventricular cells. In contrast, to the lack of acute effects, the long-term incubation with IL-2 (2 h or more) produced a prominent enhancement of Ca2+L-type current. In rat, ventricular myocardium IL-2 (1 ng/mL) produced a very gradual prolongation of subendocardial APs which reached a maximal extent after 3–4 h of treatment. The patch clamp study shows an IL-2-induced ICa.L current activation, while the action potential studies on multicellular ventricular preparations suggest an IL-2-induced L-type Ca2+ channel participation in the development of AP.
Literatur
1.
Zurück zum Zitat Arai, K., Nishida, J., Hayashida, K., Hatake, K., Kitamura, T., Miyajima, A., et al. (1990). Coordinate regulation of immune and inflammatory responses by cytokines. Rinsho Byori, 38, 347–353.PubMed Arai, K., Nishida, J., Hayashida, K., Hatake, K., Kitamura, T., Miyajima, A., et al. (1990). Coordinate regulation of immune and inflammatory responses by cytokines. Rinsho Byori, 38, 347–353.PubMed
2.
Zurück zum Zitat Marriott, B. J., Goldman, H. J., Keeling, J. P., Baig, K. M., Dalgleish, G. A., & McKenna, J. W. (1996). Abnormal cytokine profiles in patients with idiopathic dilated cardiomyopathy and their asymptomatic relatives. Heart, 75, 287–290.CrossRefPubMedPubMedCentral Marriott, B. J., Goldman, H. J., Keeling, J. P., Baig, K. M., Dalgleish, G. A., & McKenna, J. W. (1996). Abnormal cytokine profiles in patients with idiopathic dilated cardiomyopathy and their asymptomatic relatives. Heart, 75, 287–290.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Matsumori, A., Yamada, T., Suzuki, H., Matoba, Y., & Sasayama, S. (1994). Increased circulating cytokines in patients with myocarditis and cardiomyopathy. British Heart Journal, 72, 561–566.CrossRefPubMedPubMedCentral Matsumori, A., Yamada, T., Suzuki, H., Matoba, Y., & Sasayama, S. (1994). Increased circulating cytokines in patients with myocarditis and cardiomyopathy. British Heart Journal, 72, 561–566.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Cao, C. M., Xia, Q., Bruce, L. C., Zhang, X., Fu, C., & Chen, J. Z. (2003). Interleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATPase, but decreases its sensitivity to calcium in rat cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 306, 572–580.CrossRefPubMed Cao, C. M., Xia, Q., Bruce, L. C., Zhang, X., Fu, C., & Chen, J. Z. (2003). Interleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATPase, but decreases its sensitivity to calcium in rat cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 306, 572–580.CrossRefPubMed
5.
Zurück zum Zitat Finkel, M. S., Oddis, C. V., Jacob, T. D., Watkins, S. C., Hattler, B. G., & Simmons, R. L. (1992). Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science, 257, 387–389.CrossRefPubMed Finkel, M. S., Oddis, C. V., Jacob, T. D., Watkins, S. C., Hattler, B. G., & Simmons, R. L. (1992). Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science, 257, 387–389.CrossRefPubMed
6.
Zurück zum Zitat Weisensee, D., Bereiter-Hahn, J., Schoeppe, W., & Löw-Friedrich, I. (1993). Effects of cytokines on the contractility of cultured cardiac myocytes. International Journal of Immunopharmacology, 15, 581–587.CrossRefPubMed Weisensee, D., Bereiter-Hahn, J., Schoeppe, W., & Löw-Friedrich, I. (1993). Effects of cytokines on the contractility of cultured cardiac myocytes. International Journal of Immunopharmacology, 15, 581–587.CrossRefPubMed
7.
Zurück zum Zitat Cao, C. M., Xia, Q., Chen, Y. Y., Zhang, X., & Shen, Y. L. (2002). Opioid receptor-mediated effects of interleukin-2 on the [Ca2+]i transient and contraction in isolated ventricular myocytes of the rat. Pflügers Archiv, 443, 635–642.CrossRefPubMed Cao, C. M., Xia, Q., Chen, Y. Y., Zhang, X., & Shen, Y. L. (2002). Opioid receptor-mediated effects of interleukin-2 on the [Ca2+]i transient and contraction in isolated ventricular myocytes of the rat. Pflügers Archiv, 443, 635–642.CrossRefPubMed
8.
Zurück zum Zitat Cao, C. M., Xia, Q., Bruce, I. C., Zhang, X., Fu, C., & Chen, J. Z. (2003). Interleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATP-ase, but decreases its sensitivity to calcium in rat cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 306, 572–580.CrossRefPubMed Cao, C. M., Xia, Q., Bruce, I. C., Zhang, X., Fu, C., & Chen, J. Z. (2003). Interleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATP-ase, but decreases its sensitivity to calcium in rat cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 306, 572–580.CrossRefPubMed
9.
Zurück zum Zitat Cao, C. M., Xia, Q., Tu, J., Chen, M., Wu, S., & Wong, T. M. (2004). Cardio-protection of interleukin-2 is mediated via kappa-opioid receptors. Journal of Pharmacology and Experimental Therapeutics, 309, 560–567.CrossRefPubMed Cao, C. M., Xia, Q., Tu, J., Chen, M., Wu, S., & Wong, T. M. (2004). Cardio-protection of interleukin-2 is mediated via kappa-opioid receptors. Journal of Pharmacology and Experimental Therapeutics, 309, 560–567.CrossRefPubMed
10.
Zurück zum Zitat Zhang, W. M., & Wong, T. M. (1998). Suppression of cAMP by phosphoinositol/Ca2+ pathway in the cardiac kappa-opioid receptor. American Journal of Physiology, 274, 82–87.CrossRef Zhang, W. M., & Wong, T. M. (1998). Suppression of cAMP by phosphoinositol/Ca2+ pathway in the cardiac kappa-opioid receptor. American Journal of Physiology, 274, 82–87.CrossRef
11.
Zurück zum Zitat Isenberg, G., & Klockner, U. (1982). Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflügers Archiv, 395, 6–18.CrossRefPubMed Isenberg, G., & Klockner, U. (1982). Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflügers Archiv, 395, 6–18.CrossRefPubMed
12.
Zurück zum Zitat Hove-Madsen, L., & Bers, D. M. (1993). Sarcoplasmic reticulum Ca2+ uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes. Circulation Research, 73, 820–828.CrossRefPubMed Hove-Madsen, L., & Bers, D. M. (1993). Sarcoplasmic reticulum Ca2+ uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes. Circulation Research, 73, 820–828.CrossRefPubMed
13.
Zurück zum Zitat Brinkmeier, H., Kaspar, A., Wietholter, H., & Rudel, R. (1992). Interleukin-2 inhibits sodium currents in human muscle cells. Pflügers Archiv, 420, 621–623.CrossRefPubMed Brinkmeier, H., Kaspar, A., Wietholter, H., & Rudel, R. (1992). Interleukin-2 inhibits sodium currents in human muscle cells. Pflügers Archiv, 420, 621–623.CrossRefPubMed
14.
Zurück zum Zitat Aksyonov, A., Mitrokhin, V. M., & Mladenov, M. I. (2015). Effects of interleukin-2 on bioelectric activity of rat atrial myocardium under normal conditions and during gradual stretching. Immunology Letters, 167, 23–28.CrossRefPubMed Aksyonov, A., Mitrokhin, V. M., & Mladenov, M. I. (2015). Effects of interleukin-2 on bioelectric activity of rat atrial myocardium under normal conditions and during gradual stretching. Immunology Letters, 167, 23–28.CrossRefPubMed
15.
Zurück zum Zitat Kazanski, V., Mitrokhin, V., Mladenov, M., & Kamkin, A. (2017). Cytokine effects on mechano-induced electrical activity in atrial myocardium. Immunological Investigations, 46, 22–37.CrossRefPubMed Kazanski, V., Mitrokhin, V., Mladenov, M., & Kamkin, A. (2017). Cytokine effects on mechano-induced electrical activity in atrial myocardium. Immunological Investigations, 46, 22–37.CrossRefPubMed
16.
Zurück zum Zitat Ovchinnikov, R. S., Mitrokhin, V. M., & Mladenov, M. I. (2015). Effects of interleukin-17A on the bio-electric activity of rat atrial myocardium under normal conditions and during gradual stretching. Cytokine, 76, 561–565.CrossRefPubMed Ovchinnikov, R. S., Mitrokhin, V. M., & Mladenov, M. I. (2015). Effects of interleukin-17A on the bio-electric activity of rat atrial myocardium under normal conditions and during gradual stretching. Cytokine, 76, 561–565.CrossRefPubMed
17.
Zurück zum Zitat Ovchinnikov, R. S., Mitrokhin, V. M., & Mladenov, M. I. (2015). Effects of vascular endothelial growth factor β on the bioelectric activity of rat atrial myocardium under normal conditions and during gradual stretching. Journal of Biological Regulators & Homeostatic Agents, 29, 835–840. Ovchinnikov, R. S., Mitrokhin, V. M., & Mladenov, M. I. (2015). Effects of vascular endothelial growth factor β on the bioelectric activity of rat atrial myocardium under normal conditions and during gradual stretching. Journal of Biological Regulators & Homeostatic Agents, 29, 835–840.
18.
Zurück zum Zitat Mitrokhin, V. M., Mladenov, M. I., & Kamkin, A. G. (2015). IL-1 provokes electrical abnormalities in rat atrial myocardium. International Immunopharmacology, 28, 780–784.CrossRefPubMed Mitrokhin, V. M., Mladenov, M. I., & Kamkin, A. G. (2015). IL-1 provokes electrical abnormalities in rat atrial myocardium. International Immunopharmacology, 28, 780–784.CrossRefPubMed
19.
Zurück zum Zitat Mitrokhin, V. M., Mladenov, M. I., & Kamkin, A. G. (2015). Effects of interleukin-6 on the bio-electric activity of rat atrial tissue under normal conditions and during gradual stretching. Immunobiology, 220, 1107–1112.CrossRefPubMed Mitrokhin, V. M., Mladenov, M. I., & Kamkin, A. G. (2015). Effects of interleukin-6 on the bio-electric activity of rat atrial tissue under normal conditions and during gradual stretching. Immunobiology, 220, 1107–1112.CrossRefPubMed
20.
Zurück zum Zitat Li, X. Q., Zhao, M. G., Mei, Q. B., Zhang, Y. F., Guo, W., Wang, H. F., et al. (2003). Effects of tumor necrosis factor-alpha on calcium movement in rat ventricular myocytes. Acta Pharmacologica Sinica, 12, 1224–1230. Li, X. Q., Zhao, M. G., Mei, Q. B., Zhang, Y. F., Guo, W., Wang, H. F., et al. (2003). Effects of tumor necrosis factor-alpha on calcium movement in rat ventricular myocytes. Acta Pharmacologica Sinica, 12, 1224–1230.
21.
Zurück zum Zitat Chik, C. L., Li, B., Ogiwara, T., Ho, A. K., & Karpinski, E. (1996). PACAP modulates L-type Ca2+ channel currents in vascular smooth muscle cells: Involvement of PKC and PKA. The FASEB Journal, 10, 1310–1317.CrossRefPubMed Chik, C. L., Li, B., Ogiwara, T., Ho, A. K., & Karpinski, E. (1996). PACAP modulates L-type Ca2+ channel currents in vascular smooth muscle cells: Involvement of PKC and PKA. The FASEB Journal, 10, 1310–1317.CrossRefPubMed
22.
Zurück zum Zitat Trautwein, W., McDonald, T. F., & Tripathi, O. (1975). Calcium conductance and tension in mammalian ventricular muscle. Pflügers Archiv, 354, 55–74.CrossRefPubMed Trautwein, W., McDonald, T. F., & Tripathi, O. (1975). Calcium conductance and tension in mammalian ventricular muscle. Pflügers Archiv, 354, 55–74.CrossRefPubMed
23.
Zurück zum Zitat Antoni, H., Jacob, R., & Kaufmann, R. (1969). Mechanical response of the frog and mammalian myocardium to changes in the action potential duration by constant current pulses. Pflügers Archiv, 306, 33–57.CrossRefPubMed Antoni, H., Jacob, R., & Kaufmann, R. (1969). Mechanical response of the frog and mammalian myocardium to changes in the action potential duration by constant current pulses. Pflügers Archiv, 306, 33–57.CrossRefPubMed
24.
Zurück zum Zitat Edman, K. A., & Johannsson, M. (1976). The contractile state of rabbit papillary muscle in relation to stimulation frequency. The Journal of Physiology, 254, 565–581.CrossRefPubMedPubMedCentral Edman, K. A., & Johannsson, M. (1976). The contractile state of rabbit papillary muscle in relation to stimulation frequency. The Journal of Physiology, 254, 565–581.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Fabiato, A. (1985). Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. The Journal of General Physiology, 85, 247–289.CrossRefPubMed Fabiato, A. (1985). Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. The Journal of General Physiology, 85, 247–289.CrossRefPubMed
26.
Zurück zum Zitat Ha, K. C., Kwak, Y. G., Piao, C. S., Chae, H. J., & Chae, S. W. (2007). Differential effects of superoxide radical on the action potentials in ventricular muscles, Purkinje fibers and atrial muscles in the heart of different aged rats. Archives of Pharmacal Research, 30, 1088–1095.CrossRefPubMed Ha, K. C., Kwak, Y. G., Piao, C. S., Chae, H. J., & Chae, S. W. (2007). Differential effects of superoxide radical on the action potentials in ventricular muscles, Purkinje fibers and atrial muscles in the heart of different aged rats. Archives of Pharmacal Research, 30, 1088–1095.CrossRefPubMed
Metadaten
Titel
Long-Term IL-2 Incubation-Induced L-type Calcium Channels Activation in Rat Ventricle Cardiomyocytes
verfasst von
Tatiana Filatova
Vadim Mitrokhin
Olga Kamkina
Irina Lovchikova
Mitko Mladenov
Andre Kamkin
Publikationsdatum
10.07.2018
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 1/2019
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9472-0

Weitere Artikel der Ausgabe 1/2019

Cardiovascular Toxicology 1/2019 Zur Ausgabe