Skip to main content
Erschienen in: Journal of Orthopaedic Surgery and Research 1/2022

Open Access 01.12.2022 | Research Article

Measurement of tissue oxygen saturation during arthroscopic surgery of knee with a tourniquet

verfasst von: Ning Hao, Mengxue Cui, Yongyong Shi, Zitao Liu, Xiangyu Li, Yansheng Chen, Gaofeng Zhao

Erschienen in: Journal of Orthopaedic Surgery and Research | Ausgabe 1/2022

Abstract

Background

Tourniquets provide better tissue visibility during arthroscopic surgery. However, multiple postoperative adverse events associated with ischemia may be caused by excessive inflation pressure and duration. We aimed to evaluate the degree of tourniquet-induced ischemia using a noninvasive continuous real-time monitoring method and the relationship between changes in tissue oxygen saturation (StO2) and blood biochemical markers of ischemic injuries in patients undergoing arthroscopic knee surgery.

Methods

This was a prospective observational study using near-infrared spectroscopy (NIRS). Data were collected from 29 consecutive patients who underwent arthroscopic procedures. Twenty-five patients underwent anterior cruciate ligament reconstruction, and four underwent meniscal repair. We investigated tourniquet‐induced changes in StO2, monitored using NIRS, and blood biochemical markers of ischemic injuries.

Results

A significant decrease in the mean StO2 from the baseline was observed during tourniquet inflation in the operative legs. The average decrease in the mean StO2 was 58%. A comparison of mean StO2 between the nonoperative and operative legs before tourniquet deflation showed that mean values of StO2 in the operative legs were significantly lower than those in the nonoperative legs. No significant clinical relationships were observed between changes in StO2 and blood biochemical markers of ischemic injuries (creatine kinase) (p = 0.04, r = 0.38) or tourniquet duration (p = 0.05, r = 0.366).

Conclusions

Our results demonstrated that StO2 could be used to evaluate tissue perfusion in real time but did not support the hypothesis that StO2 is a useful method for predicting the degree of tourniquet-induced injury during arthroscopic knee surgery.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
NIRS
Near-infrared spectroscopy
StO2
Tissue oxygen saturation
ACL
Anterior cruciate ligament
CK
Creatine kinase
MYO
Myoglobin
BMI
Body mass index

Background

Knee ligament injuries, including anterior cruciate ligament (ACL) and meniscal tears, are common sports injuries, especially in young athletes [1]. As a minimally invasive surgery, arthroscopic surgery is widely used for the treatment of these injuries [2].
In most cases, a tourniquet is used to provide a bloodless field, better tissue visibility intraoperatively, and fewer transfusion units [3, 4]. However, this procedure is associated with several complications. Soft tissue damage may occur because of excessive inflation pressure and duration, including damage to the skin, vessels, muscles, and nerves, ischemia/reperfusion injury, and thromboembolism [59]. As there are no evidence-based guidelines for the use of tourniquets in clinical settings, an objective method is required to determine an optimal tourniquet protocol that enhances visualization and minimizes potential tissue injury.
Many studies have focused on indicators that predict the degree of ischemia caused by tourniquets, such as measuring local tissue metabolite changes [10, 11] and assessing serum creatine kinase (CK) and myoglobin (MYO) levels pre- and postoperatively [12]. Few studies have performed noninvasive continuous real-time monitoring of ischemic changes in tourniquet-exposed skeletal muscles and subcutaneous tissues.
Oxygen saturation (StO2) of brain tissue has been measured noninvasively using near-infrared spectroscopy (NIRS) [13] for years and has been increasingly utilized to monitor peripheral tissue oxygenation. NIRS has been widely used for extremity blood oxygen saturation measurements in critically ill patients [14, 15]. Riley et al. [16] suggested that changes in StO2 caused by tourniquets can be continuously monitored using NIRS. To our knowledge, no studies have investigated the relationship between StO2 and blood biochemical markers of ischemic injuries.
Herein, we aimed to determine whether StO2 change can serve as a predictor of tourniquet-induced ischemia. Furthermore, it could provide a new method for investigating ischemic conditions, which could be employed in relevant future orthopedic settings for different tourniquet durations and cuff pressures.

Methods

Settings and study populations

This prospective observational study was approved by our hospital’s ethics committee (approval no. ZE2022-043-01), and informed consent was obtained from all the patients or their families. The inclusion criteria were as follows: age, 18–60 years; body mass index (BMI), 19–24 kg/m2; lower limb surgery with a tourniquet; blood loss during surgery < 100 mL; and American Society of Anesthesiologists class I and II. In this pilot feasibility study, patients who underwent arthroscopic knee surgery were monitored for lower-extremity oxygenation levels.
Ultrasound (GE LOGIQ e NextGen, GE Healthcare, USA) was used to measure subcutaneous fat thickness under the NIRS probe. To ensure that StO2 was maintained, a probe was placed 1 cm distal to a nonsterile tourniquet outside the surgical field and similarly positioned on the nonoperative limb. The probe was covered with a disposable waterproof membrane, placed in the detection area, and fixed using medical tape. Figure 1 shows an example of probe placement [14]. Measurements were conducted continuously during the entire surgery. Blood samples were analyzed as biochemical markers of ischemic injuries before tourniquet inflation and 24 h after tourniquet deflation. Each patient served as a control.

Statistical analyses

Paired t tests and repeated-measures analysis of variance were performed using SPSS software (version, IBM Corp., Armonk, NY, USA) to examine differences in StO2 between and within the operative and nonoperative legs at baseline and following anesthesia, tourniquet inflation, and tourniquet deflation. The level of significance was set at P < 0.05.
To determine the relationship between the changes in StO2 and biochemical markers of ischemic injuries and identify the factors influencing ischemic injuries, we performed a correlation analysis between BMI, surgery time, tourniquet duration, changes in StO2, and biochemical markers (CK and MYO). Correlations were evaluated using Pearson’s correlation coefficient. The calculations were performed using GraphPad Prism 6 (La Jolla, CA, USA).

Results

A total of 29 consecutive patients who underwent arthroscopic procedures were included in this study. Twenty-five patients underwent ACL reconstruction, while four underwent meniscal repair. Patient demographics are listed in Table 1. The mean (standard deviation) tourniquet duration for these 29 patients was 99.31 (31.2) min, with a range of 27–167 min. Figure 2 shows the StO2 changes with a representative linear fit used to determine the breakpoint from the baseline to the tourniquet deflation state.
Table 1
Patient demographics (N = 29)
Demographic
Value
Age, mean (SD), Y
28 (8.988)
Sex, No
 
 Female
7
 Male
22
Weight, mean (SD), kg
67.9 (8.235)
Height, mean (SD), cm
171.9 (8.222)
Body mass index, mean (SD), kg/m2
22.91 (1.109)
Subcutaneous fat thickness*, mean (SD)
0.876 (0.286)
Tourniquet duration, mean (SD), min
99.31 (31.22)
Surgical type
 
 Anterior cruciate ligament reconstruction
25
 Meniscal repair
4
*Subcutaneous fat thickness under the NIRS probe
SD, standard deviation
A comparison of mean StO2 between the nonoperative and operative legs showed no significant difference at baseline, before tourniquet inflation, and after tourniquet deflation. However, before tourniquet deflation, the mean StO2 in the operative legs was significantly lower than that in the nonoperative legs (Fig. 3).
Figure 4 shows changes in mean StO2 from baseline due to tourniquet inflation and deflation in the operative and nonoperative legs. There was a significant decrease from baseline in mean StO2 in the operative legs. The average decrease in mean StO2 was 58% in the operative legs. The effect reached a plateau after 10–30 min.
We examined changes in StO2 following anesthesia administration. There was a measurable increase in the mean StO2 in both legs following anesthesia.
Figure 5 shows biochemical markers (CK and MYO) at baseline and 24 h after tourniquet deflation. There was a measurable and significant increase from the baseline. CK increased from 124 ± 63 U/L at baseline to 407 ± 189 U/L 24 h after tourniquet deflation. MYO increased from 28 ± 13 mg/L at baseline to 83 ± 32 mg/L 24 h after tourniquet deflation.
A correlation analysis between the average change in mean StO2 in the operative legs during tourniquet inflation from baseline and tourniquet duration, surgery time, and change in CK revealed no correlation between tourniquet duration (r = 0.366, p = 0.05); a moderate correlation between StO2 and surgery time (r = 0.414, p = 0.025), CK, and tourniquet duration (r = 0.525, p = 0.035); and a low correlation between StO2 and CK (r = 0.38, p = 0.04). The results are shown in Fig. 6. BMI and subcutaneous fat thickness under the probe did not correlate with the average change in mean StO2 (data not shown).

Discussion

Our study showed that StO2, measured by NIRS on tourniquet-exposed subcutaneous tissue of patients who underwent arthroscopic knee arthroplasty, progressively decreased with increasing occlusion pressure of the tourniquet. The average decrease in the mean StO2 was 58% in the operative legs. However, tourniquet duration and surgery time had a relatively small effect on StO2, and the effect reached a plateau 10–30 min after tourniquet inflation.
Previous studies have shown that StO2 measured using NIRS may be used to predict tourniquet-induced injury [17]. Herein, although tourniquet duration and surgery time were associated with StO2, their effects were relatively small and reached a plateau. In comparison, changes in biochemical markers were much greater. To evaluate ischemic injuries, we measured the levels of CK and MYO. CK, a tissue damage marker, is found in many cell types, mainly in the mitochondria and cytoplasm, and is an enzyme that performs intracellular energy functions, muscle contraction, and energy production in the body. CK levels increase several-fold in patients undergoing tourniquet procedures because of ischemic injuries [1820]. Herein, change in CK was associated with the tourniquet duration 24 h postoperatively. MYO is released from damaged tissues, indicating tissue damage.
Herein, NIRS, which measures changes in StO2 in a noninvasive manner, was used to assess whether StO2 changes can serve as a predictor of tourniquet-induced ischemia. The reason for this is that most blood in tissues is venous, and tissue ischemia increases oxygen consumption, lowering venous oxyhemoglobin levels. Therefore, StO2 mostly reflects venous saturation and the level of local perfusion in real time. When high tourniquet pressures were applied, deeper tissue perfusate oxygenation was maintained at a certain level; therefore, the level of StO2 reached a plateau after tourniquet inflation. However, the metabolic changes resulting from tourniquet-induced tissue ischemia persisted. Thus, the results showed no clinically significant association between StO2 and biochemical markers of limb ischemia.
Our results also showed that there was a small but significant increase in StO2 resulting from anesthesia due to vasodilation that occurred after anesthesia induction, similar to the results reported by Karahan et al. [21]. This finding demonstrates that StO2 can be used to monitor perfusion in subcutaneous tissues. NIRS is easy to operate, minimally invasive, compact, and lightweight, facilitating easy movement for monitoring multiple locations. Until now, it has been used in situations such as vascular occlusion tests, in trauma patients with decreased extremity blood flow, and for monitoring the vitality of transplanted tissue [2225].
This study had some limitations. First, we used CK and MYO as biochemical markers of tourniquet-induced injury. However, surgical trauma also increased the number of markers, which could not be avoided since we cannot simply inflate a tourniquet without surgery. Therefore, patients who underwent arthroscopic surgery, which is a minimally invasive surgery, were selected for the study. Furthermore, whether the two will interact to determine the increase in biochemical markers remains uncertain and requires further investigation. Second, we did not evaluate the correlation between StO2 and oxygen free radicals and inflammatory cytokines due to tourniquet [26], which may be associated with tourniquet-induced ischemia. Third, the ischemia–reperfusion is complicated, and we did not consider the effects of heat transfer and time courses on StO2 in this study. In the future, we may design a study with larger sample size and repeated measures that consider the temperature effects and time courses.

Conclusions

Our results showed that StO2 could be used to evaluate tissue perfusion in real time but did not support the hypothesis that StO2, as measured using NIRS, is useful for predicting the degree of tourniquet-induced injury during arthroscopic knee surgery. Further studies are required to assess how to evaluate the degree of ischemic injuries in patients undergoing procedures involving tourniquets and whether improving StO2 can improve patient outcomes.

Acknowledgements

Not applicable.

Declarations

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. For human experiments, the trial was conducted in accordance with the Declaration of Helsinki (as revised in 2013). This prospective observational study was approved by our hospital’s ethics committee (approval no. ZE2022-043-01), and informed consent was obtained from all the patients or their families.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med. 2016;44:1502–7.CrossRef Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med. 2016;44:1502–7.CrossRef
2.
Zurück zum Zitat Bradley KE, Cevallos N, Jansson HL, Lansdown DA, Pandya NK, Feeley BT, et al. Younger patients are more likely to undergo arthroscopic meniscal repair and revision meniscal surgery in a large cross-sectional cohort. Arthroscopy. 2022;38:2875-83.e1.CrossRef Bradley KE, Cevallos N, Jansson HL, Lansdown DA, Pandya NK, Feeley BT, et al. Younger patients are more likely to undergo arthroscopic meniscal repair and revision meniscal surgery in a large cross-sectional cohort. Arthroscopy. 2022;38:2875-83.e1.CrossRef
3.
Zurück zum Zitat Sandhu K, Goyal D, Kahal KS, Khichy H. Assessment of short-term outcomes of total knee arthroplasty performed with and without a tourniquet. Cureus. 2022;14:e25324. Sandhu K, Goyal D, Kahal KS, Khichy H. Assessment of short-term outcomes of total knee arthroplasty performed with and without a tourniquet. Cureus. 2022;14:e25324.
4.
Zurück zum Zitat Migliorini F, Maffulli N, Aretini P, Trivellas A, Tingart M, Eschweiler J, et al. Impact of tourniquet during knee arthroplasty: a bayesian network meta-analysis of peri-operative outcomes. Arch Orthop Trauma Surg. 2021;141:1007–23.CrossRef Migliorini F, Maffulli N, Aretini P, Trivellas A, Tingart M, Eschweiler J, et al. Impact of tourniquet during knee arthroplasty: a bayesian network meta-analysis of peri-operative outcomes. Arch Orthop Trauma Surg. 2021;141:1007–23.CrossRef
5.
Zurück zum Zitat Migliorini F, Maffulli N, Eschweiler J, Knobe M, Tingart M, Betsch M. Tourniquet use during knee arthroplasty: a Bayesian network meta-analysis on pain, function, and thromboembolism. Surgeon. 2022;20:241–51.CrossRef Migliorini F, Maffulli N, Eschweiler J, Knobe M, Tingart M, Betsch M. Tourniquet use during knee arthroplasty: a Bayesian network meta-analysis on pain, function, and thromboembolism. Surgeon. 2022;20:241–51.CrossRef
6.
Zurück zum Zitat Morelli I, Maffulli N, Brambilla L, Agnoletto M, Peretti GM, Mangiavini L. Quadriceps muscle group function and after total knee arthroplasty-asystematic narrative update. Br Med Bull. 2021;137:51–69.CrossRef Morelli I, Maffulli N, Brambilla L, Agnoletto M, Peretti GM, Mangiavini L. Quadriceps muscle group function and after total knee arthroplasty-asystematic narrative update. Br Med Bull. 2021;137:51–69.CrossRef
7.
Zurück zum Zitat Kanaya H, Enokida M, Ishida K, Yamashita T, Nagashima H. Factors associated with perioperative deep vein thrombosis in arthroscopic anterior cruciate ligament reconstruction. J Orthop Sci. 2022;S0949–2658(22):00167–71. Kanaya H, Enokida M, Ishida K, Yamashita T, Nagashima H. Factors associated with perioperative deep vein thrombosis in arthroscopic anterior cruciate ligament reconstruction. J Orthop Sci. 2022;S0949–2658(22):00167–71.
8.
Zurück zum Zitat Kumar SN, Chapman JA, Rawlins I. Vascular injuries in total knee arthroplasty. A review of the problem with special reference to the possible effects of the tourniquet. J Arthroplast. 1998;13:211–6. Kumar SN, Chapman JA, Rawlins I. Vascular injuries in total knee arthroplasty. A review of the problem with special reference to the possible effects of the tourniquet. J Arthroplast. 1998;13:211–6.
9.
Zurück zum Zitat Horlocker TT, Hebl JR, Gali B, Jankowski CJ, Burkle CM, Berry DJ, et al. Anesthetic, patient, and surgical risk factors for neurologic complications after prolonged total tourniquet time during total knee arthroplasty. Anesth Analg. 2006;102:950–5.CrossRef Horlocker TT, Hebl JR, Gali B, Jankowski CJ, Burkle CM, Berry DJ, et al. Anesthetic, patient, and surgical risk factors for neurologic complications after prolonged total tourniquet time during total knee arthroplasty. Anesth Analg. 2006;102:950–5.CrossRef
10.
Zurück zum Zitat Hanberg P, Bue M, Kabel J, Jørgensen AR, Søballe K, Stilling M. Tourniquet-induced ischemia and reperfusion in subcutaneous tissue, skeletal muscle, and calcaneal cancellous bone. APMIS. 2021;129:225–31.CrossRef Hanberg P, Bue M, Kabel J, Jørgensen AR, Søballe K, Stilling M. Tourniquet-induced ischemia and reperfusion in subcutaneous tissue, skeletal muscle, and calcaneal cancellous bone. APMIS. 2021;129:225–31.CrossRef
11.
Zurück zum Zitat Halladin NL, Ekeløf S, Alamili M, Bendtzen K, Lykkesfeldt J, Rosenberg J, et al. Lower limb ischaemia and reperfusion injury in healthy volunteers measured by oxidative and inflammatory biomarkers. Perfusion. 2015;30:64–70.CrossRef Halladin NL, Ekeløf S, Alamili M, Bendtzen K, Lykkesfeldt J, Rosenberg J, et al. Lower limb ischaemia and reperfusion injury in healthy volunteers measured by oxidative and inflammatory biomarkers. Perfusion. 2015;30:64–70.CrossRef
12.
Zurück zum Zitat Tai TW, Chang CW, Lai KA, Lin CJ, Yang CY. Effects of tourniquet use on blood loss and soft-tissue damage in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2012;94:2209–15.CrossRef Tai TW, Chang CW, Lai KA, Lin CJ, Yang CY. Effects of tourniquet use on blood loss and soft-tissue damage in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2012;94:2209–15.CrossRef
13.
Zurück zum Zitat Tribuddharat S, Ngamsaengsirisup K, Mahothorn P, Sathitkarnmanee T. Correlation and agreement of regional cerebral oxygen saturation measured from sensor sites at frontal and temporal areas in adult patients undergoing cardiovascular anesthesia. PeerJ. 2022;10:e14058.CrossRef Tribuddharat S, Ngamsaengsirisup K, Mahothorn P, Sathitkarnmanee T. Correlation and agreement of regional cerebral oxygen saturation measured from sensor sites at frontal and temporal areas in adult patients undergoing cardiovascular anesthesia. PeerJ. 2022;10:e14058.CrossRef
15.
Zurück zum Zitat Palanca AA, Yang A, Bishop JA. The effects of limb elevation on muscle oxygen saturation: a near-infrared spectroscopy study in humans. PM&R. 2016;8:221–4.CrossRef Palanca AA, Yang A, Bishop JA. The effects of limb elevation on muscle oxygen saturation: a near-infrared spectroscopy study in humans. PM&R. 2016;8:221–4.CrossRef
16.
Zurück zum Zitat Gaines RR, Rice AN, Gadsden JC, Morgan BT, Vacchiano CA. Use of near-infrared spectroscopy to measure tissue oxygen saturation during total knee arthroplasty with use of a tourniquet. AANA J. 2019;87:192–8. Gaines RR, Rice AN, Gadsden JC, Morgan BT, Vacchiano CA. Use of near-infrared spectroscopy to measure tissue oxygen saturation during total knee arthroplasty with use of a tourniquet. AANA J. 2019;87:192–8.
17.
Zurück zum Zitat Shadgan B, Reid WD, Harris RL, Jafari S, Powers SK, O’Brien PJ. Hemodynamic and oxidative mechanisms of tourniquet-induced muscle injury: near-infrared spectroscopy for the orthopedics setting. J Biomed Opt. 2012;17:81408–501.CrossRef Shadgan B, Reid WD, Harris RL, Jafari S, Powers SK, O’Brien PJ. Hemodynamic and oxidative mechanisms of tourniquet-induced muscle injury: near-infrared spectroscopy for the orthopedics setting. J Biomed Opt. 2012;17:81408–501.CrossRef
18.
Zurück zum Zitat Aktaş E, Atay Ç, Deveci MA, Arıkan M, Toğral G, Yıldırım A. Impact of oxidative stress on early postoperative knee function and muscle injury biochemical markers: is it possible to create an ischemic preconditioning effect in sequential ischemic surgical procedures? Acta Orthop Traumato. 2015;49:387–93. Aktaş E, Atay Ç, Deveci MA, Arıkan M, Toğral G, Yıldırım A. Impact of oxidative stress on early postoperative knee function and muscle injury biochemical markers: is it possible to create an ischemic preconditioning effect in sequential ischemic surgical procedures? Acta Orthop Traumato. 2015;49:387–93.
19.
Zurück zum Zitat Xu JZ, Li LL, Fu J, Xu C, Zhang GQ, Chai W, et al. Comparison of serum inflammatory indicators and radiographic results in MAKO robotic-assisted versus conventional total knee arthroplasty for knee osteoarthritis: a retrospective study of Chinese patients. BMC Musculoskelet Disord. 2022;23:418.CrossRef Xu JZ, Li LL, Fu J, Xu C, Zhang GQ, Chai W, et al. Comparison of serum inflammatory indicators and radiographic results in MAKO robotic-assisted versus conventional total knee arthroplasty for knee osteoarthritis: a retrospective study of Chinese patients. BMC Musculoskelet Disord. 2022;23:418.CrossRef
20.
Zurück zum Zitat Zhao HY, Yeersheng R, Kang XW, Xia YY, Kang PD, Wang WJ. The effect of tourniquet uses on total blood loss, early function, and pain after primary total knee arthroplasty: a prospective, randomized controlled trial. Bone Joint Res. 2020;9:322–32.CrossRef Zhao HY, Yeersheng R, Kang XW, Xia YY, Kang PD, Wang WJ. The effect of tourniquet uses on total blood loss, early function, and pain after primary total knee arthroplasty: a prospective, randomized controlled trial. Bone Joint Res. 2020;9:322–32.CrossRef
21.
Zurück zum Zitat Karahan MA, Binici O, Büyükfırat E. Tissue oxygen saturation change on upper extremities after ultrasound-guided infraclavicular brachial plexus blockade; prospective observational study. Medicina (Kaunas). 2019;55:274.CrossRef Karahan MA, Binici O, Büyükfırat E. Tissue oxygen saturation change on upper extremities after ultrasound-guided infraclavicular brachial plexus blockade; prospective observational study. Medicina (Kaunas). 2019;55:274.CrossRef
22.
Zurück zum Zitat Wang TL, Hung CR. Role of tissue oxygen saturation monitoring in diagnosing necrotizing fasciitis of the lower limbs. Ann Emerg Med. 2004;44:222–8.CrossRef Wang TL, Hung CR. Role of tissue oxygen saturation monitoring in diagnosing necrotizing fasciitis of the lower limbs. Ann Emerg Med. 2004;44:222–8.CrossRef
23.
Zurück zum Zitat Steenhaut K, Lapage K, Bové T, De Hert S, Moerman A. Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test. J Clin Monit Comput. 2017;31:1151–8.CrossRef Steenhaut K, Lapage K, Bové T, De Hert S, Moerman A. Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test. J Clin Monit Comput. 2017;31:1151–8.CrossRef
24.
Zurück zum Zitat Guo H, Bai W, Ouyang W, Liu Y, Wu C, Xu Y, et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat Commun. 2022;13:3009.CrossRef Guo H, Bai W, Ouyang W, Liu Y, Wu C, Xu Y, et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat Commun. 2022;13:3009.CrossRef
25.
Zurück zum Zitat Campos-Serra A, Mesquida J, Montmany-Vioque S, Rebasa-Cladera P, Barquero-Lopez M, Cidoncha-Secilla A, et al. Alterations in tissue oxygen saturation measured by near-infrared spectroscopy in trauma patients after initial resuscitation are associated with occult shock. Eur J Trauma Emerg Surg. 2022. https://doi.org/10.1007/s00068-022-02068-w.CrossRef Campos-Serra A, Mesquida J, Montmany-Vioque S, Rebasa-Cladera P, Barquero-Lopez M, Cidoncha-Secilla A, et al. Alterations in tissue oxygen saturation measured by near-infrared spectroscopy in trauma patients after initial resuscitation are associated with occult shock. Eur J Trauma Emerg Surg. 2022. https://​doi.​org/​10.​1007/​s00068-022-02068-w.CrossRef
26.
Zurück zum Zitat Leurcharusmee P, Sawaddiruk P, Punjasawadwong Y, Chattipakorn N, Chattipakorn SC. The possible pathophysiological outcomes and mechanisms of tourniquet-induced ischemia-reperfusion injury during total knee arthroplasty. Oxid Med Cell Longev. 2018;2018:8087598.CrossRef Leurcharusmee P, Sawaddiruk P, Punjasawadwong Y, Chattipakorn N, Chattipakorn SC. The possible pathophysiological outcomes and mechanisms of tourniquet-induced ischemia-reperfusion injury during total knee arthroplasty. Oxid Med Cell Longev. 2018;2018:8087598.CrossRef
Metadaten
Titel
Measurement of tissue oxygen saturation during arthroscopic surgery of knee with a tourniquet
verfasst von
Ning Hao
Mengxue Cui
Yongyong Shi
Zitao Liu
Xiangyu Li
Yansheng Chen
Gaofeng Zhao
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Orthopaedic Surgery and Research / Ausgabe 1/2022
Elektronische ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-022-03431-8

Weitere Artikel der Ausgabe 1/2022

Journal of Orthopaedic Surgery and Research 1/2022 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.