Skip to main content
Erschienen in: Cardiovascular Toxicology 12/2022

09.11.2022

Methylmercury Toxicity During Heart Development: A Combined Analysis of Morphological and Functional Parameters

verfasst von: Nathália Ronconi-Krüger, Jacqueline Pinheiro, Carmen Simioni, Evelise Maria Nazari

Erschienen in: Cardiovascular Toxicology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

The heart of higher vertebrates develops early as a tubular structure, which requires cellular and molecular events for proliferation, differentiation and apoptosis for growth, and individualization of cardiac chambers. Exposure to different stressors can cause disturbances in the normal development and functionality of the cardiovascular system. This study aimed to characterize the impact of methylmercury (MeHg) on heart development, specifically related to tissue morphology and parameters of vascular integrity and contractility, also focusing on cell cycle and apoptosis, using Gallus domesticus embryos as a model. The results showed morphological alterations, reduction in the thickness of the ventricular walls, and trabeculae changes in the hearts of embryos exposed to 0.1 µg MeHg/50 µL saline solution. These impacts were associated with increased contents of proteins related to cell cycle arrest and reduced cardiomyocyte proliferation. In addition, the contents of endothelial mediators for contractility and vascular integrity were imbalanced. The quantity and morphology of mitochondria of cardiomyocytes were injured. Together, these negative measurements impacted the reduction of heartbeats. In general, the parameters identified here demonstrate the relevance of combined molecular cellular tissue and physiological diagnosis for a better understanding of the cardiotoxicity of MeHg during development.
Literatur
2.
Zurück zum Zitat Afridi, H. I., Kazi, T. G., Talpur, F. N., Kazi, A., Arain, S. S., Arain, S. A., Brahman, K. D., & Panhwar, A. H. (2014). Interaction between selenium and mercury in biological samples of Pakistani myocardial infarction patients at different stages as related to controls. Biological Trace Element Research, 158(2), 143–151. https://doi.org/10.1007/s12011-014-9932-8CrossRefPubMed Afridi, H. I., Kazi, T. G., Talpur, F. N., Kazi, A., Arain, S. S., Arain, S. A., Brahman, K. D., & Panhwar, A. H. (2014). Interaction between selenium and mercury in biological samples of Pakistani myocardial infarction patients at different stages as related to controls. Biological Trace Element Research, 158(2), 143–151. https://​doi.​org/​10.​1007/​s12011-014-9932-8CrossRefPubMed
4.
Zurück zum Zitat Morel, F. M., Kraepiel, A. M., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566.CrossRef Morel, F. M., Kraepiel, A. M., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566.CrossRef
6.
Zurück zum Zitat Sørensen, N., Murata, K., Budtz-Jørgensen, E., Weihe, P., & Grandjean, P. (1999). Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age. Epidemiology, 10, 370–375.CrossRefPubMed Sørensen, N., Murata, K., Budtz-Jørgensen, E., Weihe, P., & Grandjean, P. (1999). Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age. Epidemiology, 10, 370–375.CrossRefPubMed
8.
Zurück zum Zitat Choi, A. L., Weihe, P., Budtz-Jørgensen, E., Jørgensen, P. J., Salonen, J. T., Tuomainen, T. P., Murata, K., Nielsen, H. P., Petersen, M. S., Askham, J., & Grandjean, P. (2009). Methylmercury exposure and adverse cardiovascular effects in Faroese whaling men. Environmental Health Perspectives, 117(3), 367–372. https://doi.org/10.1289/ehp.11608CrossRefPubMed Choi, A. L., Weihe, P., Budtz-Jørgensen, E., Jørgensen, P. J., Salonen, J. T., Tuomainen, T. P., Murata, K., Nielsen, H. P., Petersen, M. S., Askham, J., & Grandjean, P. (2009). Methylmercury exposure and adverse cardiovascular effects in Faroese whaling men. Environmental Health Perspectives, 117(3), 367–372. https://​doi.​org/​10.​1289/​ehp.​11608CrossRefPubMed
9.
Zurück zum Zitat Faria, T. D., Simões, M. R., Vassallo, D. V., Forechi, L., Almenara, C. C., Marchezini, B. A., Stefanon, I., & Vassallo, P. F. (2018). Xanthine oxidase activation modulates the endothelial (vascular) dysfunction related to HgCl2 exposure plus myocardial infarction in rats. Cardiovascular Toxicology, 18(2), 161–174. https://doi.org/10.1007/s12012-017-9427-xCrossRefPubMed Faria, T. D., Simões, M. R., Vassallo, D. V., Forechi, L., Almenara, C. C., Marchezini, B. A., Stefanon, I., & Vassallo, P. F. (2018). Xanthine oxidase activation modulates the endothelial (vascular) dysfunction related to HgCl2 exposure plus myocardial infarction in rats. Cardiovascular Toxicology, 18(2), 161–174. https://​doi.​org/​10.​1007/​s12012-017-9427-xCrossRefPubMed
10.
Zurück zum Zitat Jin, X., Hidiroglou, N., Lok, E., Taylor, M., Kapal, K., Ross, N., Sarafin, K., Lau, A., De Souza, A., Chan, H. M., & Mehta, R. (2012). Dietary selenium (Se) and vitamin E (VE) supplementation modulated methylmercury-mediated changes in markers of cardiovascular diseases in rats. Cardiovascular Toxicology, 12(1), 10–24. https://doi.org/10.1007/s12012-011-9134-yCrossRefPubMed Jin, X., Hidiroglou, N., Lok, E., Taylor, M., Kapal, K., Ross, N., Sarafin, K., Lau, A., De Souza, A., Chan, H. M., & Mehta, R. (2012). Dietary selenium (Se) and vitamin E (VE) supplementation modulated methylmercury-mediated changes in markers of cardiovascular diseases in rats. Cardiovascular Toxicology, 12(1), 10–24. https://​doi.​org/​10.​1007/​s12012-011-9134-yCrossRefPubMed
11.
Zurück zum Zitat Fardin, P. B. A., Simões, R. P., Schereider, I. R. G., Almenara, C. C. P., Simões, M. R., & Vassallo, D. V. (2020). Chronic mercury exposure in prehypertensive SHRs accelerates hypertension development and activates vasoprotective mechanisms by increasing NO and H2O2 production. Cardiovascular Toxicology, 20(3), 197–210. https://doi.org/10.1007/s12012-019-09545-6CrossRefPubMed Fardin, P. B. A., Simões, R. P., Schereider, I. R. G., Almenara, C. C. P., Simões, M. R., & Vassallo, D. V. (2020). Chronic mercury exposure in prehypertensive SHRs accelerates hypertension development and activates vasoprotective mechanisms by increasing NO and H2O2 production. Cardiovascular Toxicology, 20(3), 197–210. https://​doi.​org/​10.​1007/​s12012-019-09545-6CrossRefPubMed
27.
Zurück zum Zitat Kaptoge, S., Pennells, L., De Bacquer, D., Cooney, M. T., Kavousi, M., Stevens, G., Riley, L. M., Savin, S., Khan, T., Altay, S., Amouyel, P., et al. (2019). World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet Global Health, 7(10), e1332–e1345. https://doi.org/10.1016/S2214-109X(19)30318-3CrossRef Kaptoge, S., Pennells, L., De Bacquer, D., Cooney, M. T., Kavousi, M., Stevens, G., Riley, L. M., Savin, S., Khan, T., Altay, S., Amouyel, P., et al. (2019). World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet Global Health, 7(10), e1332–e1345. https://​doi.​org/​10.​1016/​S2214-109X(19)30318-3CrossRef
37.
Zurück zum Zitat Ivy, G. O., & Gurd, J. W. (1988). A proteinase inhibitor model of lipofuscin formation. In: Zs-Nagy I (ed) Lipofuscin-1987: state of the art. (pp. 83–108). Elsevier. Ivy, G. O., & Gurd, J. W. (1988). A proteinase inhibitor model of lipofuscin formation.  In: Zs-Nagy I (ed) Lipofuscin-1987: state of the art.  (pp. 83–108). Elsevier.
40.
Zurück zum Zitat Ou, Y. C., White, C. C., Krejsa, C. M., Ponce, R. A., Kavanagh, T. J., & Faustman, E. M. (1999). The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neuronal cells. Neurotoxicology, 20(5), 793–804.PubMed Ou, Y. C., White, C. C., Krejsa, C. M., Ponce, R. A., Kavanagh, T. J., & Faustman, E. M. (1999). The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neuronal cells. Neurotoxicology, 20(5), 793–804.PubMed
43.
Zurück zum Zitat Stringari, J., Nunes, A. K., Franco, J. L., Bohrer, D., Garcia, S. C., Dafre, A. L., Milatovic, D., Souza, D. O., Rocha, J. B., Aschner, M., & Farina, M. (2008). Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicology and Applied Pharmacology, 227(1), 147–154. https://doi.org/10.1016/j.taap.2007.10.010CrossRefPubMed Stringari, J., Nunes, A. K., Franco, J. L., Bohrer, D., Garcia, S. C., Dafre, A. L., Milatovic, D., Souza, D. O., Rocha, J. B., Aschner, M., & Farina, M. (2008). Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicology and Applied Pharmacology, 227(1), 147–154. https://​doi.​org/​10.​1016/​j.​taap.​2007.​10.​010CrossRefPubMed
46.
Zurück zum Zitat Sedmera, D., Hu, N., Weiss, K. M., Keller, B. B., Denslow, S., & Thompson, R. P. (2002). Cellular changes in experimental left heart hypoplasia. The Anatomical Record: An Official Publication of the American Association of Anatomists, 267(2), 137–145. https://doi.org/10.1002/ar.10098CrossRef Sedmera, D., Hu, N., Weiss, K. M., Keller, B. B., Denslow, S., & Thompson, R. P. (2002). Cellular changes in experimental left heart hypoplasia. The Anatomical Record: An Official Publication of the American Association of Anatomists, 267(2), 137–145. https://​doi.​org/​10.​1002/​ar.​10098CrossRef
49.
Metadaten
Titel
Methylmercury Toxicity During Heart Development: A Combined Analysis of Morphological and Functional Parameters
verfasst von
Nathália Ronconi-Krüger
Jacqueline Pinheiro
Carmen Simioni
Evelise Maria Nazari
Publikationsdatum
09.11.2022
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 12/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09772-4