Skip to main content
Erschienen in: Lasers in Medical Science 7/2021

27.10.2020 | Original Article

Safety of laser-generated shockwave treatment for bacterial biofilms in a cutaneous rodent model

verfasst von: William Yao, Edward C. Kuan, Warren S. Grundfest, Maie A. St. John

Erschienen in: Lasers in Medical Science | Ausgabe 7/2021

Einloggen, um Zugang zu erhalten

Abstract

Bacterial biofilms are often found in chronically infected wounds. Biofilms protect bacteria from antibiotics and impair wound healing. Surgical debridement is often needed to remove the biofilm from an infected wound. Laser-generated shockwave (LGS) treatment is a novel tissue-sparing treatment for biofilm disruption. Previous studies have demonstrated that LGS is effective in disrupting biofilms in vitro. In this study, we aim to determine the safety threshold of the LGS technology in an in vivo rodent model. To understand the in vivo effects of LGS on healthy cutaneous tissue, the de-haired dorsal skin of Sprague-Dawley rats were treated with LGS at three different peak pressures (118, 296, 227 MPa). These pressures were generated using a 1064 nm Nd/YAG laser (pulse duration 5 ns and laser fluence of 777.9 mJ) with laser spot size diameters of 2.2, 3.0, and 4.2 mm, respectively. Following treatment, the animals were observed for 72 h, and a small subset was euthanized at 1-h, 24-h, and 72-h post-treatment and assessed for tissue injury or inflammation under histology. Each treatment group consisted of 9 rats (n = 3/time point for 1-h, 24-h, 72-h post-treatment). An additional 4 control (untreated) rats were included in the analysis, for a total of 31 animals. Gross injuries occurred in 21 (77%) animals and consisted of minor erythema, with prevalence positively correlated with peak pressure (p < 0.05). Of injuries under gross observation, 94% resolved within 24 h. Under histological analysis, the injuries and tissue inflammation were found to be localized to the epidermis and superficial dermis. LGS appears to be well tolerated by cutaneous tissue for the laser energy settings shown to be effective against bacterial biofilm in vitro. All injuries incurred, at even the highest peak pressures, were clinically mild and resolved within 1 day. This lends further support to the overall safety of LGS and serves to translate LGS towards in vivo efficacy studies.
Literatur
1.
Zurück zum Zitat Cosgrove SE (2006) The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 42(Suppl 2):S82–S89CrossRef Cosgrove SE (2006) The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 42(Suppl 2):S82–S89CrossRef
2.
Zurück zum Zitat Sheng W-H, Chie W-C, Chen Y-C, Hung C-C, Wang J-T, Chang S-C (2005) Impact of nosocomial infections on medical costs, hospital stay, and outcome in hospitalized patients. J\ Formos Med Assoc 104:318–326PubMed Sheng W-H, Chie W-C, Chen Y-C, Hung C-C, Wang J-T, Chang S-C (2005) Impact of nosocomial infections on medical costs, hospital stay, and outcome in hospitalized patients. J\ Formos Med Assoc 104:318–326PubMed
3.
Zurück zum Zitat Merritt JH, Kadouri DE, O'Toole GA (2014) Wound care market by type (traditional (wound closure, anti infective), basic (films, cleansing), advanced (hydrogels, hydrocolloids, alginate, collagen), active (artificial skin & skin substitutes), pressure relief devices, NPWT). Markets and Markets Merritt JH, Kadouri DE, O'Toole GA (2014) Wound care market by type (traditional (wound closure, anti infective), basic (films, cleansing), advanced (hydrogels, hydrocolloids, alginate, collagen), active (artificial skin & skin substitutes), pressure relief devices, NPWT). Markets and Markets
4.
Zurück zum Zitat Markets for advanced wound management technologies (2014) Wellesley, MA Markets for advanced wound management technologies (2014) Wellesley, MA
5.
Zurück zum Zitat Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ (2008) Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 58(2):185–206CrossRef Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ (2008) Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 58(2):185–206CrossRef
6.
Zurück zum Zitat Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464CrossRef Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464CrossRef
7.
Zurück zum Zitat Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745CrossRef Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745CrossRef
8.
Zurück zum Zitat Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176(8):2137CrossRef Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176(8):2137CrossRef
9.
Zurück zum Zitat Jones ME, Karlowsky JA, Draghi DC, Thornsberry C, Sahm DF, Nathwani D (2003) Epidemiology and antibiotic susceptibility of bacteria causing skin and soft tissue infections in the USA and Europe: a guide to appropriate antimicrobial therapy. Int J Antimicrob Agents 22:406–419CrossRef Jones ME, Karlowsky JA, Draghi DC, Thornsberry C, Sahm DF, Nathwani D (2003) Epidemiology and antibiotic susceptibility of bacteria causing skin and soft tissue infections in the USA and Europe: a guide to appropriate antimicrobial therapy. Int J Antimicrob Agents 22:406–419CrossRef
10.
Zurück zum Zitat Jones RN (2001) Resistance patterns among nosocomial pathogens: trends over the past few years. Chest 119:397S–404SCrossRef Jones RN (2001) Resistance patterns among nosocomial pathogens: trends over the past few years. Chest 119:397S–404SCrossRef
11.
Zurück zum Zitat Livermore DM (2007) Introduction: the challenge of multiresistance. Int J Antimicrob Agents 29(Suppl 3):S1–S7CrossRef Livermore DM (2007) Introduction: the challenge of multiresistance. Int J Antimicrob Agents 29(Suppl 3):S1–S7CrossRef
13.
Zurück zum Zitat Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J, of America IDS (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164CrossRef Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J, of America IDS (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164CrossRef
14.
Zurück zum Zitat James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44CrossRef James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44CrossRef
15.
Zurück zum Zitat Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34:419–427CrossRef Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34:419–427CrossRef
16.
Zurück zum Zitat Halim AS, Khoo TL, Saad AZM (2012) Wound bed preparation from a clinical perspective. Indian J Plastic Surg 45:193–202CrossRef Halim AS, Khoo TL, Saad AZM (2012) Wound bed preparation from a clinical perspective. Indian J Plastic Surg 45:193–202CrossRef
17.
Zurück zum Zitat Francis NC, Kassam I, Nowroozi B, Grundfest WS, Taylor ZD (2015) Analysis of flexible substrates for clinical translation of laser-generated shockwave therapy. Biomed Opt Express 6(3):827–837CrossRef Francis NC, Kassam I, Nowroozi B, Grundfest WS, Taylor ZD (2015) Analysis of flexible substrates for clinical translation of laser-generated shockwave therapy. Biomed Opt Express 6(3):827–837CrossRef
18.
Zurück zum Zitat Navarro A, Taylor ZD, Matolek AZ, Weltman A, Ramaprasad V, Huang S, Beenhouwer DO, Haake DA, Gupta V, Grundfest WS (2010) Bacterial biofilm disruption using laser-generated shockwaves. In: Infect Drug Resist. pp 82141H-82141H-82148 Navarro A, Taylor ZD, Matolek AZ, Weltman A, Ramaprasad V, Huang S, Beenhouwer DO, Haake DA, Gupta V, Grundfest WS (2010) Bacterial biofilm disruption using laser-generated shockwaves. In: Infect Drug Resist. pp 82141H-82141H-82148
19.
Zurück zum Zitat Ramaprasad V, Navarro A, Patel S, Patel V, Nowroozi BN, Taylor ZD, Yong W, Gupta V, Grundfest WS (2014) Effect of laser generated shockwaves 1 on ex-vivo pigskin. Lasers Surg Med 46:620–627CrossRef Ramaprasad V, Navarro A, Patel S, Patel V, Nowroozi BN, Taylor ZD, Yong W, Gupta V, Grundfest WS (2014) Effect of laser generated shockwaves 1 on ex-vivo pigskin. Lasers Surg Med 46:620–627CrossRef
20.
Zurück zum Zitat Taylor ZD, Navarro A, Kealey CP, Beenhouwer D, Haake DA, Grundfest WS, Gupta V (2010) Bacterial biofilm disruption using laser generated shockwaves. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. pp 1028-1032 Taylor ZD, Navarro A, Kealey CP, Beenhouwer D, Haake DA, Grundfest WS, Gupta V (2010) Bacterial biofilm disruption using laser generated shockwaves. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. pp 1028-1032
21.
Zurück zum Zitat Yao W, Kuan EC, Francis NC, St John MA, Grundfest WS, Taylor ZD (2017) Laser-generated shockwaves enhance antibacterial activity against biofilms in vitro. Lasers Surg Med 49:539–547CrossRef Yao W, Kuan EC, Francis NC, St John MA, Grundfest WS, Taylor ZD (2017) Laser-generated shockwaves enhance antibacterial activity against biofilms in vitro. Lasers Surg Med 49:539–547CrossRef
22.
Zurück zum Zitat Francis NC, Yao W, Grundfest WS, Taylor ZD (2017) Laser-generated shockwaves as a treatment to reduce bacterial load and disrupt biofilm. IEEE Trans Biomed Eng 64(4):882–889 Francis NC, Yao W, Grundfest WS, Taylor ZD (2017) Laser-generated shockwaves as a treatment to reduce bacterial load and disrupt biofilm. IEEE Trans Biomed Eng 64(4):882–889
23.
Zurück zum Zitat Nigri GR, Tsai S, Kossodo S, Waterman P, Fungaloi P, Hooper DC, Doukas AG, LaMuraglia GM (2001) Laser-induced shock waves enhance sterilization of infected vascular prosthetic grafts. Lasers Surg Med 29(5):448–454CrossRef Nigri GR, Tsai S, Kossodo S, Waterman P, Fungaloi P, Hooper DC, Doukas AG, LaMuraglia GM (2001) Laser-induced shock waves enhance sterilization of infected vascular prosthetic grafts. Lasers Surg Med 29(5):448–454CrossRef
24.
Zurück zum Zitat Krespi YP, Stoodley P, Hall-Stoodley L (2008) Laser disruption of biofilm. Laryngoscope 118(7):1168–1173CrossRef Krespi YP, Stoodley P, Hall-Stoodley L (2008) Laser disruption of biofilm. Laryngoscope 118(7):1168–1173CrossRef
25.
Zurück zum Zitat Fife CE, Carter MJ (2012) Wound care outcomes and associated cost among patients treated in US outpatient wound centers: Data From the US Wound Registry. Wounds 24:10–17PubMed Fife CE, Carter MJ (2012) Wound care outcomes and associated cost among patients treated in US outpatient wound centers: Data From the US Wound Registry. Wounds 24:10–17PubMed
26.
Zurück zum Zitat Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771CrossRef Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771CrossRef
28.
Zurück zum Zitat Lee S, Kollias N, McAuliffe DJ, Flotte TJ, Doukas AG (1999) Topical drug delivery in humans with a single photomechanical wave. Pharm Res 16:1717–1721CrossRef Lee S, Kollias N, McAuliffe DJ, Flotte TJ, Doukas AG (1999) Topical drug delivery in humans with a single photomechanical wave. Pharm Res 16:1717–1721CrossRef
29.
Zurück zum Zitat Matlaga BR, McAteer JA, Connors BA, Handa RK, Evan AP, Williams JC, Lingeman JE, Willis LR (2008) Potential for cavitation-mediated tissue damage in shockwave lithotripsy. J Endourol 22(1):121–126CrossRef Matlaga BR, McAteer JA, Connors BA, Handa RK, Evan AP, Williams JC, Lingeman JE, Willis LR (2008) Potential for cavitation-mediated tissue damage in shockwave lithotripsy. J Endourol 22(1):121–126CrossRef
30.
Zurück zum Zitat Evan AP, Willis LR, Lingeman JE, McAteer JA (1998) Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 78(1):1–8CrossRef Evan AP, Willis LR, Lingeman JE, McAteer JA (1998) Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 78(1):1–8CrossRef
Metadaten
Titel
Safety of laser-generated shockwave treatment for bacterial biofilms in a cutaneous rodent model
verfasst von
William Yao
Edward C. Kuan
Warren S. Grundfest
Maie A. St. John
Publikationsdatum
27.10.2020
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 7/2021
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-020-03171-3

Weitere Artikel der Ausgabe 7/2021

Lasers in Medical Science 7/2021 Zur Ausgabe