Skip to main content
main-content
Erschienen in: Lasers in Medical Science 8/2021

01.02.2021 | Original Article

Two-dimensional correlation (2D) method for improving the accuracy of OCT-based noninvasive blood glucose concentration (BGC) monitoring

verfasst von: Ya Su, Huiqing Liu, Hongjie Wang, Lei Chen, Guoqing Yang, Haishu Xin, X. Steve Yao

Erschienen in: Lasers in Medical Science | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Abstract

The optical scattering coefficient (μs) in the dermis layer of human skin obtained with optical coherence tomography (OCT) has shown to have a strong correlation with the blood glucose concentration (BGC), which can be used for noninvasive BGC monitoring. Unfortunately, the nonhomogeneity in the skin may cause inaccuracies for the BGC analysis. In this paper, we propose a 2D correlation analysis method to identify 2D regions in the skin with μs sensitive to BGC variations and only use data in these regions to calculate μs for minimizing the inaccuracy induced by nonhomogeneity and therefore improving the accuracy of OCT-based BGC monitoring. We demonstrate the effectiveness of the 2D method with OCT data obtained with in vivo human forearm skins of nine different human subjects. In particular, we present a 3D OCT data set in a two-dimensional (2D) map of depth vs. a lateral dimension and calculate the correlation coefficient R between the μs and the BGC in each region of the 2D map with the BGC data measured with a glucose meter using finger blood. We filter out the μs data from regions with low R values and only keep the μs data with R values sufficiently high (R-filter). The filtered μs data in all the regions are then averaged to produce an average μs data. We define a term called overall relevancy (OR) to quantify the degree of correlation between the filtered/averaged μs data and the finger-blood BGC data to determine the optimal R value for such an R-filter with the highest obtained OR. We found that the optimal R for such an R-filter has an absolute value (|R|) of 0.6 or 0.65. We further show that the R-filter obtained with the 2D correlation method yields better OR between μs and the BGC than that obtained with the previously reported 1D correlation method. We believe that the method demonstrated in this paper is important for understanding the influence of BGC on μs in human skins and therefore for improving the accuracy of OCT-based noninvasive BGC monitoring, although further studies are required to validate its effectiveness.
Literatur
1.
Zurück zum Zitat C. C.T . Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C (1993) N.Engl.J.Med 329(3):977–986 C. C.T . Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C (1993) N.Engl.J.Med 329(3):977–986
2.
Zurück zum Zitat Takashi M, Kokoro T, Fumi Y, Hiroshi O, Junichiro K, Kazunori Y, Naoki S (2015) J, Diabetes Invest 6(6):687–691 CrossRef Takashi M, Kokoro T, Fumi Y, Hiroshi O, Junichiro K, Kazunori Y, Naoki S (2015) J, Diabetes Invest 6(6):687–691 CrossRef
3.
Zurück zum Zitat Andrews JT, Solanki J, Choudhary OP, Chouksey S, Malvia N, Chaturvedi P, Sen P (2012) J PhysConf 365:012004 Andrews JT, Solanki J, Choudhary OP, Chouksey S, Malvia N, Chaturvedi P, Sen P (2012) J PhysConf 365:012004
4.
Zurück zum Zitat Larin KV, Eledrisi MS, Motamedi M, Esenaliev RO (2002) Diabetes Care 25(12):2263–2267 CrossRef Larin KV, Eledrisi MS, Motamedi M, Esenaliev RO (2002) Diabetes Care 25(12):2263–2267 CrossRef
5.
Zurück zum Zitat Ullah H, Hussain F, Ikram M (2015) Appl Phys Bvol 120(2):1–12 Ullah H, Hussain F, Ikram M (2015) Appl Phys Bvol 120(2):1–12
6.
Zurück zum Zitat Solanki J, Sen P, Andrews JT, Thareja KK (2012) J Opt 41(3):127–133 CrossRef Solanki J, Sen P, Andrews JT, Thareja KK (2012) J Opt 41(3):127–133 CrossRef
7.
Zurück zum Zitat Esenaliev RO, Larin KV, Larina IV, Motamedi M (2001) Opt Lett 26(13):992–994 CrossRef Esenaliev RO, Larin KV, Larina IV, Motamedi M (2001) Opt Lett 26(13):992–994 CrossRef
8.
Zurück zum Zitat Su Y, Meng Z, Wang L, Yu H, Liu T, Yao XY (2014) Chin J Lasers 41:0704002 CrossRef Su Y, Meng Z, Wang L, Yu H, Liu T, Yao XY (2014) Chin J Lasers 41:0704002 CrossRef
9.
Zurück zum Zitat Kuranov RV, Sapozhnikova VV, Prough DS, Cicenaite I, Esenaliev RO (2006) Phys Med Biol 51(16):3885–3900 CrossRef Kuranov RV, Sapozhnikova VV, Prough DS, Cicenaite I, Esenaliev RO (2006) Phys Med Biol 51(16):3885–3900 CrossRef
10.
Zurück zum Zitat Hori Y, Yasuno Y, Sakai S, Matsumoto M, Sugawara T, Madjarova VD, Yamanari M, Makita S, Yasui T, Araki T, Itoh M, Yatagai T (2006) Opt Express 14(5):1862–1877 CrossRef Hori Y, Yasuno Y, Sakai S, Matsumoto M, Sugawara T, Madjarova VD, Yamanari M, Makita S, Yasui T, Araki T, Itoh M, Yatagai T (2006) Opt Express 14(5):1862–1877 CrossRef
11.
Zurück zum Zitat Bhandari A, Hamre B, Frette Ø, Stamnes K, Stamnes JJ (2011) Opt Express 19(15):14549 CrossRef Bhandari A, Hamre B, Frette Ø, Stamnes K, Stamnes JJ (2011) Opt Express 19(15):14549 CrossRef
12.
Zurück zum Zitat Su Y, Yao XS, Meng Z, Yu LWH, Liu T (2014) Chin Opt Lett 12(11):111701 CrossRef Su Y, Yao XS, Meng Z, Yu LWH, Liu T (2014) Chin Opt Lett 12(11):111701 CrossRef
14.
Zurück zum Zitat Su Y, Yao XS, Wei CJ, Wang YM, Wang HJ, Li ZH (2015) Biomed Opt Express 6(2):500–513 CrossRef Su Y, Yao XS, Wei CJ, Wang YM, Wang HJ, Li ZH (2015) Biomed Opt Express 6(2):500–513 CrossRef
15.
Zurück zum Zitat Su Y, Yao XS, Wei CJ, Wang YM, Wang HJ, Li ZH (2016) IEEE Photonics J 8(1):1–10 CrossRef Su Y, Yao XS, Wei CJ, Wang YM, Wang HJ, Li ZH (2016) IEEE Photonics J 8(1):1–10 CrossRef
16.
Zurück zum Zitat Caduff A, Talary MS, Zakharov P (2010) Diabetes Technol Ther 12(1):1–9 CrossRef Caduff A, Talary MS, Zakharov P (2010) Diabetes Technol Ther 12(1):1–9 CrossRef
17.
Zurück zum Zitat Faber D, Van DMF, Aalders M, Van LT (2004) Opt Express 12(19):4353–4365 CrossRef Faber D, Van DMF, Aalders M, Van LT (2004) Opt Express 12(19):4353–4365 CrossRef
18.
Zurück zum Zitat Laufer J, Simpson R, Kohl M, Essenpreis M, Cope M (1998) Phys Med Biol 43(9):2479–2489 CrossRef Laufer J, Simpson R, Kohl M, Essenpreis M, Cope M (1998) Phys Med Biol 43(9):2479–2489 CrossRef
19.
Zurück zum Zitat Yao XS, Wang LZ, Meng Z China Patent 2015, 201310210400.0 [P] Yao XS, Wang LZ, Meng Z China Patent 2015, 201310210400.0 [P]
20.
Zurück zum Zitat Turani Z, Fatemizadeh E, Blumetti T, Daveluy S, Moraes AF, Chen W, Mehregan D, Andersen PE, Nasiriavanaki M (2019) Cancer Res 79(8):2021–2030 CrossRef Turani Z, Fatemizadeh E, Blumetti T, Daveluy S, Moraes AF, Chen W, Mehregan D, Andersen PE, Nasiriavanaki M (2019) Cancer Res 79(8):2021–2030 CrossRef
21.
Zurück zum Zitat Lee CK, Tsai MT, Chang FY, Yang CH, Shen SC, Yuan O, Yang CH (2013) Sensors 13(4):4041–4050 CrossRef Lee CK, Tsai MT, Chang FY, Yang CH, Shen SC, Yuan O, Yang CH (2013) Sensors 13(4):4041–4050 CrossRef
22.
Zurück zum Zitat Kholodnykh AI, Petrova IY, Larin KV, Motamedi M, Esenaliev RO (2003) Appl Opt 42(16):3027–3037 CrossRef Kholodnykh AI, Petrova IY, Larin KV, Motamedi M, Esenaliev RO (2003) Appl Opt 42(16):3027–3037 CrossRef
23.
Zurück zum Zitat Yang Y, Wang T, Biswal NC, Wang X, Sanders M, Brewer M, Zhu Q (2011) J Biomed Opt 16:2143–2152 Yang Y, Wang T, Biswal NC, Wang X, Sanders M, Brewer M, Zhu Q (2011) J Biomed Opt 16:2143–2152
24.
Zurück zum Zitat Coleman AJ, Richardson TJ, Orchard G, Uddin A, Choi MJ, Lacy KE (2013) Skin Res Technol 19(1):e10–e19 CrossRef Coleman AJ, Richardson TJ, Orchard G, Uddin A, Choi MJ, Lacy KE (2013) Skin Res Technol 19(1):e10–e19 CrossRef
25.
Zurück zum Zitat Schliesser JA, Gallimore G, Kunjukunju N, Sabates NR, Koulen P, Sabates FN (2014) Clin Ophthalmol (default):2337–2345 Schliesser JA, Gallimore G, Kunjukunju N, Sabates NR, Koulen P, Sabates FN (2014) Clin Ophthalmol (default):2337–2345
26.
Zurück zum Zitat Tsukamoto Y, Kinoshita Y, Kitagawa H, Munekage M, Munekage E, Takezaki Y, Yatabe T, Yamashita K, Yamazaki R, Okabayashi T, Tarumi M, Kobayashi M, Mishina S, Hanazaki K (2013) Artif Organs 37(4):E67–E73 CrossRef Tsukamoto Y, Kinoshita Y, Kitagawa H, Munekage M, Munekage E, Takezaki Y, Yatabe T, Yamashita K, Yamazaki R, Okabayashi T, Tarumi M, Kobayashi M, Mishina S, Hanazaki K (2013) Artif Organs 37(4):E67–E73 CrossRef
27.
28.
Zurück zum Zitat Larin KV, Motamedi M, Ashitkov TV, Esenaliev RO (2003) Phys Med Biol 48(10):1371 CrossRef Larin KV, Motamedi M, Ashitkov TV, Esenaliev RO (2003) Phys Med Biol 48(10):1371 CrossRef
29.
Zurück zum Zitat Graaff R, Aarnoudse JG, Zijp JR, Sloot PMA, de Mul FFM, Greve J, Koelink MH (1992) Appl Opt 31(10):1370–1376 CrossRef Graaff R, Aarnoudse JG, Zijp JR, Sloot PMA, de Mul FFM, Greve J, Koelink MH (1992) Appl Opt 31(10):1370–1376 CrossRef
31.
Metadaten
Titel
Two-dimensional correlation (2D) method for improving the accuracy of OCT-based noninvasive blood glucose concentration (BGC) monitoring
verfasst von
Ya Su
Huiqing Liu
Hongjie Wang
Lei Chen
Guoqing Yang
Haishu Xin
X. Steve Yao
Publikationsdatum
01.02.2021
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 8/2021
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-021-03244-x