Skip to main content
Erschienen in: Cardiovascular Toxicology 1/2018

14.06.2017

Amitriptyline May Have Possibility to Induce Brugada Syndrome Rather than Long QT Syndrome

verfasst von: Nur Jaharat Lubna, Takeshi Wada, Yuji Nakamura, Koki Chiba, Xin Cao, Hiroko Izumi-Nakaseko, Kentaro Ando, Atsuhiko T. Naito, Yoshioki Satoh, Atsushi Sugiyama

Erschienen in: Cardiovascular Toxicology | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Amitriptyline has been reported to induce long QT syndrome in addition to Brugada syndrome. We qualitatively and quantitatively analyzed the potential of amitriptyline to induce these lethal syndromes by using the halothane-anesthetized dogs (n = 6). Amitriptyline was intravenously administered in doses of 0.1, 1 and 10 mg/kg over 10 min every 20 min, which would provide approximately 1, 10 and 100 times higher plasma concentrations than a therapeutic one, respectively. The low dose hardly altered any of the cardiovascular variables. The middle dose increased the heart rate, cardiac output and left ventricular contractility, but decreased the total peripheral vascular resistance and left ventricular end-diastolic pressure, whereas it did not alter any of the electrocardiographic variables. The high dose decreased the mean blood pressure and left ventricular contractility; suppressed atrioventricular nodal and intraventricular conduction; shortened the repolarization period without altering the JT peak c and T peakT end; and prolonged the effective refractory period, providing post-repolarization refractoriness in addition to the enhancement of the middle dose-induced cardiovascular effects. Thus, amitriptyline at up to 100 times its therapeutic concentration may not be associated with the onset of long QT syndrome, but may induce Brugada syndrome.
Literatur
1.
Zurück zum Zitat Anderson, I. M. (2000). Selective serotonin reuptake inhibitors versus tricyclic antidepressants: A meta-analysis of efficacy and tolerability. Journal of Affective Disorders, 58, 19–36.CrossRefPubMed Anderson, I. M. (2000). Selective serotonin reuptake inhibitors versus tricyclic antidepressants: A meta-analysis of efficacy and tolerability. Journal of Affective Disorders, 58, 19–36.CrossRefPubMed
2.
Zurück zum Zitat DeBattista, C. (2015). Antidepressive agents. In B. G. Katzung & A. J. Trevor (Eds.), 13th Basic & Clinical Pharmacology (pp. 510–530). New York: McGraw-Hill Medical. DeBattista, C. (2015). Antidepressive agents. In B. G. Katzung & A. J. Trevor (Eds.), 13th Basic & Clinical Pharmacology (pp. 510–530). New York: McGraw-Hill Medical.
3.
Zurück zum Zitat Doyle, Strauss L., Weizenbaum, E., Loder, E. W., & Rizzoli, P. B. (2016). Amitriptyline dose and treatment outcomes in specialty headache practice: A retrospective cohort study. Headache, 56, 1626–1634.CrossRef Doyle, Strauss L., Weizenbaum, E., Loder, E. W., & Rizzoli, P. B. (2016). Amitriptyline dose and treatment outcomes in specialty headache practice: A retrospective cohort study. Headache, 56, 1626–1634.CrossRef
4.
Zurück zum Zitat Jose, V. M., Bhansali, A., Hota, D., & Pandhi, P. (2007). Randomized double-blind study comparing the efficacy and safety of lamotrigine and amitriptyline in painful diabetic neuropathy. Diabetic Medicine, 24, 377–383.CrossRefPubMed Jose, V. M., Bhansali, A., Hota, D., & Pandhi, P. (2007). Randomized double-blind study comparing the efficacy and safety of lamotrigine and amitriptyline in painful diabetic neuropathy. Diabetic Medicine, 24, 377–383.CrossRefPubMed
5.
Zurück zum Zitat Jo, S. H., Youm, J. B., Lee, C. O., Earm, Y. E., & Ho, W. K. (2000). Blockade of the HERG human cardiac K+ channel by the antidepressant drug amitriptyline. British Journal of Pharmacology, 129, 1474–1480.CrossRefPubMedPubMedCentral Jo, S. H., Youm, J. B., Lee, C. O., Earm, Y. E., & Ho, W. K. (2000). Blockade of the HERG human cardiac K+ channel by the antidepressant drug amitriptyline. British Journal of Pharmacology, 129, 1474–1480.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Abeyaratne, D. D., Liyanapathirana, C., Gamage, A., Karunarathne, P., Botheju, M., & Indrakumar, J. (2016). Survival after severe amitriptyline poisoning with prolonged ventricular tachycardia and cardiac arrest. BMC Research Notes, 9, 167.CrossRefPubMedPubMedCentral Abeyaratne, D. D., Liyanapathirana, C., Gamage, A., Karunarathne, P., Botheju, M., & Indrakumar, J. (2016). Survival after severe amitriptyline poisoning with prolonged ventricular tachycardia and cardiac arrest. BMC Research Notes, 9, 167.CrossRefPubMedPubMedCentral
7.
8.
Zurück zum Zitat Dorsey, S. T., & Biblo, L. A. (2000). Prolonged QT interval and torsade de pointes caused by the combination of fluconazole and amitriptyline. American Journal of Emergency Medicine, 18, 227–229.CrossRefPubMed Dorsey, S. T., & Biblo, L. A. (2000). Prolonged QT interval and torsade de pointes caused by the combination of fluconazole and amitriptyline. American Journal of Emergency Medicine, 18, 227–229.CrossRefPubMed
9.
Zurück zum Zitat Lheureux, P., Vranckx, M., Leduc, D., & Askenasi, R. (1992). Flumazenil in mixed benzodiazepine/tricyclic antidepressant overdose: A placebo-controlled study in the dog. American Journal of Emergency Medicine, 10, 184–188.CrossRefPubMed Lheureux, P., Vranckx, M., Leduc, D., & Askenasi, R. (1992). Flumazenil in mixed benzodiazepine/tricyclic antidepressant overdose: A placebo-controlled study in the dog. American Journal of Emergency Medicine, 10, 184–188.CrossRefPubMed
10.
Zurück zum Zitat Mbuvah, F., Petrosyan, F., Thiruchelvam, N., & Kistangari, G. (2015). Electrocardiographic changes in amitriptyline overdose. Cleveland Clinic Journal of Medicine, 82, 396–398.CrossRefPubMed Mbuvah, F., Petrosyan, F., Thiruchelvam, N., & Kistangari, G. (2015). Electrocardiographic changes in amitriptyline overdose. Cleveland Clinic Journal of Medicine, 82, 396–398.CrossRefPubMed
11.
Zurück zum Zitat Mooren, K., Voogel, A. J., & Tan, H. L. (2008). Brugada syndrome induced by amitriptyline toxicity. Netherlands Journal of Medicine, 66, 358–359.PubMed Mooren, K., Voogel, A. J., & Tan, H. L. (2008). Brugada syndrome induced by amitriptyline toxicity. Netherlands Journal of Medicine, 66, 358–359.PubMed
12.
Zurück zum Zitat Yap, Y. G., Behr, E. R., & Camm, A. J. (2009). Drug-induced Brugada syndrome. Europace, 11, 989–994.CrossRefPubMed Yap, Y. G., Behr, E. R., & Camm, A. J. (2009). Drug-induced Brugada syndrome. Europace, 11, 989–994.CrossRefPubMed
13.
Zurück zum Zitat Minoura, Y., Di Diego, J. M., Barajas-Martínez, H., Zygmunt, A. C., Hu, D., Sicouri, S., et al. (2012). Ionic and cellular mechanisms underlying the development of acquired Brugada syndrome in patients treated with antidepressants. Journal of Cardiovascular Electrophysiology, 23, 423–432.CrossRefPubMed Minoura, Y., Di Diego, J. M., Barajas-Martínez, H., Zygmunt, A. C., Hu, D., Sicouri, S., et al. (2012). Ionic and cellular mechanisms underlying the development of acquired Brugada syndrome in patients treated with antidepressants. Journal of Cardiovascular Electrophysiology, 23, 423–432.CrossRefPubMed
14.
Zurück zum Zitat Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodeled hearts. British Journal of Pharmacology, 154, 1528–1537.CrossRefPubMedPubMedCentral Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodeled hearts. British Journal of Pharmacology, 154, 1528–1537.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Johannesen, L., Vicente, J., Gray, R. A., Galeotti, L., Loring, Z., Garnett, C. E., et al. (2014). Improving the assessment of heart toxicity for all new drugs through translational regulatory science. Clinical Pharmacology and Therapeutics, 95, 501–508.CrossRefPubMed Johannesen, L., Vicente, J., Gray, R. A., Galeotti, L., Loring, Z., Garnett, C. E., et al. (2014). Improving the assessment of heart toxicity for all new drugs through translational regulatory science. Clinical Pharmacology and Therapeutics, 95, 501–508.CrossRefPubMed
16.
Zurück zum Zitat Yoshida, H., Sugiyama, A., Satoh, Y., Ishida, Y., Kugiyama, K., & Hashimoto, K. (2002). Effects of disopyramide and mexiletine on the terminal repolarization process of the in situ heart assessed using the halothane-anesthetized in vivo canine model. Circulation Journal, 66, 857–862.CrossRefPubMed Yoshida, H., Sugiyama, A., Satoh, Y., Ishida, Y., Kugiyama, K., & Hashimoto, K. (2002). Effects of disopyramide and mexiletine on the terminal repolarization process of the in situ heart assessed using the halothane-anesthetized in vivo canine model. Circulation Journal, 66, 857–862.CrossRefPubMed
17.
Zurück zum Zitat Sugiyama, A., & Hashimoto, K. (2002). Effects of a typical I Kr channel blocker sematilide on the relationship between ventricular repolarization, refractoriness and onset of torsades de pointes. Japanese Journal of Pharmacology, 88, 414–421.CrossRefPubMed Sugiyama, A., & Hashimoto, K. (2002). Effects of a typical I Kr channel blocker sematilide on the relationship between ventricular repolarization, refractoriness and onset of torsades de pointes. Japanese Journal of Pharmacology, 88, 414–421.CrossRefPubMed
18.
Zurück zum Zitat Yamazaki-Hashimoto, Y., Nakamura, Y., Ohara, H., Cao, X., Kitahara, K., Izumi-Nakaseko, H., et al. (2015). Fluvoxamine by itself has potential to directly induce long QT syndrome at supra-therapeutic concentrations. Journal of Toxicological Sciences, 40, 33–42.CrossRefPubMed Yamazaki-Hashimoto, Y., Nakamura, Y., Ohara, H., Cao, X., Kitahara, K., Izumi-Nakaseko, H., et al. (2015). Fluvoxamine by itself has potential to directly induce long QT syndrome at supra-therapeutic concentrations. Journal of Toxicological Sciences, 40, 33–42.CrossRefPubMed
19.
Zurück zum Zitat Van de Water, A., Verheyen, J., Xhonneux, R., & Reneman, R. S. (1989). An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. Journal of Pharmacological Methods, 22, 207–217.CrossRefPubMed Van de Water, A., Verheyen, J., Xhonneux, R., & Reneman, R. S. (1989). An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. Journal of Pharmacological Methods, 22, 207–217.CrossRefPubMed
20.
Zurück zum Zitat Johannesen, L., Vicente, J., Mason, J. W., Sanabria, C., Waite-Labott, K., Hong, M., et al. (2014). Differentiating drug-induced multichannel block on the electrocardiogram: Randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clinical Pharmacology and Therapeutics, 96, 549–558.CrossRefPubMed Johannesen, L., Vicente, J., Mason, J. W., Sanabria, C., Waite-Labott, K., Hong, M., et al. (2014). Differentiating drug-induced multichannel block on the electrocardiogram: Randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clinical Pharmacology and Therapeutics, 96, 549–558.CrossRefPubMed
21.
Zurück zum Zitat Smetana, P., Batchvarov, V., Hnatkova, K., John Camm, A., & Malik, M. (2003). Sex differences in the rate dependence of the T wave descending limb. Cardiovascular Research, 58, 549–554.CrossRefPubMed Smetana, P., Batchvarov, V., Hnatkova, K., John Camm, A., & Malik, M. (2003). Sex differences in the rate dependence of the T wave descending limb. Cardiovascular Research, 58, 549–554.CrossRefPubMed
22.
Zurück zum Zitat Ishizaka, T., Takahara, A., Iwasaki, H., Mitsumori, Y., Kise, H., Nakamura, Y., et al. (2008). Comparison of electropharmacological effects of bepridil and sotalol in halothane-anesthetized dogs. Circulation Journal, 72, 1003–1011.CrossRefPubMed Ishizaka, T., Takahara, A., Iwasaki, H., Mitsumori, Y., Kise, H., Nakamura, Y., et al. (2008). Comparison of electropharmacological effects of bepridil and sotalol in halothane-anesthetized dogs. Circulation Journal, 72, 1003–1011.CrossRefPubMed
23.
Zurück zum Zitat Vandel, S., Vandel, B., Sandoz, M., Allers, G., Bechtel, P., & Volmat, R. (1978). Clinical response and plasma concentration of amitriptyline and its metabolite nortriptyline. European Journal of Clinical Pharmacology, 14, 185–190.CrossRefPubMed Vandel, S., Vandel, B., Sandoz, M., Allers, G., Bechtel, P., & Volmat, R. (1978). Clinical response and plasma concentration of amitriptyline and its metabolite nortriptyline. European Journal of Clinical Pharmacology, 14, 185–190.CrossRefPubMed
24.
Zurück zum Zitat Park, K. S., Kong, I. D., Park, K. C., & Lee, J. W. (1999). Fluoxetine inhibits L-type Ca2+ and transient outward K+ currents in rat ventricular myocytes. Yonsei Medical Journal, 40, 144–151.CrossRefPubMed Park, K. S., Kong, I. D., Park, K. C., & Lee, J. W. (1999). Fluoxetine inhibits L-type Ca2+ and transient outward K+ currents in rat ventricular myocytes. Yonsei Medical Journal, 40, 144–151.CrossRefPubMed
25.
Zurück zum Zitat Ma, Y., & Henry, J. A. (2001). The antidotal effect of α1-acid glycoprotein on amitriptyline toxicity in cardiac myocytes. Toxicology, 169, 133–144.CrossRefPubMed Ma, Y., & Henry, J. A. (2001). The antidotal effect of α1-acid glycoprotein on amitriptyline toxicity in cardiac myocytes. Toxicology, 169, 133–144.CrossRefPubMed
26.
Zurück zum Zitat Ziegler, V. E., & Biggs, J. T. (1977). Electrocardiographic findings in patients undergoing amitriptyline treatment. Diseases of the Nervous System, 38, 697–699.PubMed Ziegler, V. E., & Biggs, J. T. (1977). Electrocardiographic findings in patients undergoing amitriptyline treatment. Diseases of the Nervous System, 38, 697–699.PubMed
27.
Zurück zum Zitat Burgess, C. D., Montgomery, S., Wadsworth, J., & Turner, P. (1979). Cardiovascular effects of amitriptyline, mianserin, zimelidine and nomifensine in depressed patients. Postgraduate Medical Journal, 55, 704–708.CrossRefPubMedPubMedCentral Burgess, C. D., Montgomery, S., Wadsworth, J., & Turner, P. (1979). Cardiovascular effects of amitriptyline, mianserin, zimelidine and nomifensine in depressed patients. Postgraduate Medical Journal, 55, 704–708.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Nattel, S. (1985). Frequency-dependent effects of amitriptyline on ventricular conduction and cardiac rhythm in dogs. Circulation, 72, 898–906.CrossRefPubMed Nattel, S. (1985). Frequency-dependent effects of amitriptyline on ventricular conduction and cardiac rhythm in dogs. Circulation, 72, 898–906.CrossRefPubMed
29.
Zurück zum Zitat Dumovic, P., Trethewie, E. R., & Burrows, G. D. (1977). The effect of tricyclic antidepressant drugs on the isolated perfused guinea-pig heart. Clinical and Experimental Pharmacology and Physiology, 4, 421–424.CrossRefPubMed Dumovic, P., Trethewie, E. R., & Burrows, G. D. (1977). The effect of tricyclic antidepressant drugs on the isolated perfused guinea-pig heart. Clinical and Experimental Pharmacology and Physiology, 4, 421–424.CrossRefPubMed
30.
Zurück zum Zitat Sugiyama, A., Motomura, S., & Hashimoto, K. (1994). Utilization of an isolated, blood-perfused canine papillary muscle preparation as a model to assess efficacy and adversity of class I antiarrhythmic drugs. Japanese Journal of Pharmacology, 66, 303–316.CrossRefPubMed Sugiyama, A., Motomura, S., & Hashimoto, K. (1994). Utilization of an isolated, blood-perfused canine papillary muscle preparation as a model to assess efficacy and adversity of class I antiarrhythmic drugs. Japanese Journal of Pharmacology, 66, 303–316.CrossRefPubMed
31.
Zurück zum Zitat Dumovic, P., Burrows, G. D., Vohra, J., Davies, B., & Scoggins, B. A. (1976). The effect of tricyclic antidepressant drugs on the heart. Archives of Toxicology, 35, 255–262.CrossRefPubMed Dumovic, P., Burrows, G. D., Vohra, J., Davies, B., & Scoggins, B. A. (1976). The effect of tricyclic antidepressant drugs on the heart. Archives of Toxicology, 35, 255–262.CrossRefPubMed
32.
Zurück zum Zitat Nattel, S., Keable, H., & Sasyniuk, B. I. (1984). Experimental amitriptyline intoxication: Electrophysiologic manifestations and management. Journal of Cardiovascular Pharmacology, 6, 83–89.CrossRefPubMed Nattel, S., Keable, H., & Sasyniuk, B. I. (1984). Experimental amitriptyline intoxication: Electrophysiologic manifestations and management. Journal of Cardiovascular Pharmacology, 6, 83–89.CrossRefPubMed
33.
Zurück zum Zitat Upward, J. W., Edwards, J. G., Goldie, A., & Waller, D. G. (1988). Comparative effects of fluoxetine and amitriptyline on cardiac function. British Journal of Clinical Pharmacology, 26, 399–402.CrossRefPubMedPubMedCentral Upward, J. W., Edwards, J. G., Goldie, A., & Waller, D. G. (1988). Comparative effects of fluoxetine and amitriptyline on cardiac function. British Journal of Clinical Pharmacology, 26, 399–402.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Barber, M. J., Starmer, C. F., & Grant, A. O. (1991). Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin evidence for two use-dependent binding sites. Circulation Research, 69, 677–696.CrossRefPubMed Barber, M. J., Starmer, C. F., & Grant, A. O. (1991). Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin evidence for two use-dependent binding sites. Circulation Research, 69, 677–696.CrossRefPubMed
35.
Zurück zum Zitat Nau, C., Seaver, M., Wang, S. Y., & Wang, G. K. (2000). Block of human heart hH1 sodium channels by amitriptyline. Journal of Pharmacology and Experimental Therapeutics, 292, 1015–1023.PubMed Nau, C., Seaver, M., Wang, S. Y., & Wang, G. K. (2000). Block of human heart hH1 sodium channels by amitriptyline. Journal of Pharmacology and Experimental Therapeutics, 292, 1015–1023.PubMed
36.
Zurück zum Zitat Hamplová-Peichlová, J., Krůsek, J., Paclt, I., Slavícek, J., Lisá, V., & Vyskocil, F. (2002). Citalopram inhibits L-type calcium channel current in rat cardiomyocytes in culture. Physiological Research, 51, 317–321.PubMed Hamplová-Peichlová, J., Krůsek, J., Paclt, I., Slavícek, J., Lisá, V., & Vyskocil, F. (2002). Citalopram inhibits L-type calcium channel current in rat cardiomyocytes in culture. Physiological Research, 51, 317–321.PubMed
37.
Zurück zum Zitat Shen, M. J., & Zipes, D. P. (2014). Role of the autonomic nervous system in modulating cardiac arrhythmias. Circulation Research, 114, 1004–1021.CrossRefPubMed Shen, M. J., & Zipes, D. P. (2014). Role of the autonomic nervous system in modulating cardiac arrhythmias. Circulation Research, 114, 1004–1021.CrossRefPubMed
38.
Zurück zum Zitat Ray, W. A., Meredith, S., Thapa, P. B., Hall, K., & Murray, K. T. (2004). Cyclic antidepressants and the risk of sudden cardiac death. Clinical Pharmacology and Therapeutics, 75, 234–241.CrossRefPubMed Ray, W. A., Meredith, S., Thapa, P. B., Hall, K., & Murray, K. T. (2004). Cyclic antidepressants and the risk of sudden cardiac death. Clinical Pharmacology and Therapeutics, 75, 234–241.CrossRefPubMed
39.
Zurück zum Zitat Darpo, B. (2001). Spectrum of drugs prolonging QT interval and the incidence of torsade de pointes. European Heart Journal Supplements, 3(Suppl K), K70–K80.CrossRef Darpo, B. (2001). Spectrum of drugs prolonging QT interval and the incidence of torsade de pointes. European Heart Journal Supplements, 3(Suppl K), K70–K80.CrossRef
40.
Zurück zum Zitat Wenzel-Seifert, K., Wittmann, M., & Haen, E. (2011). QTc prolongation by psychotropic drugs and the risk of Torsade de Pointes. Deutsches Aerzteblatt International, 108, 687–693. Wenzel-Seifert, K., Wittmann, M., & Haen, E. (2011). QTc prolongation by psychotropic drugs and the risk of Torsade de Pointes. Deutsches Aerzteblatt International, 108, 687–693.
Metadaten
Titel
Amitriptyline May Have Possibility to Induce Brugada Syndrome Rather than Long QT Syndrome
verfasst von
Nur Jaharat Lubna
Takeshi Wada
Yuji Nakamura
Koki Chiba
Xin Cao
Hiroko Izumi-Nakaseko
Kentaro Ando
Atsuhiko T. Naito
Yoshioki Satoh
Atsushi Sugiyama
Publikationsdatum
14.06.2017
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 1/2018
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9417-z

Weitere Artikel der Ausgabe 1/2018

Cardiovascular Toxicology 1/2018 Zur Ausgabe