Skip to main content
Erschienen in: Cardiovascular Toxicology 1/2018

07.04.2017

Sodium Butyrate Controls Cardiac Hypertrophy in Experimental Models of Rats

verfasst von: Bhoomika M. Patel

Erschienen in: Cardiovascular Toxicology | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

The aim of the present research was to study the effect of sodium butyrate (SB) on partial abdominal aorta constriction (PAAC)-induced cardiac hypertrophy and determine its mechanism of action. Healthy Wistar rats were exposed to PAAC for eight weeks. After eight weeks, we carried out hypertrophic and hemodynamic evaluation and measured oxidative stress parameters and mitochondrial DNA concentration. PAAC control animals exhibited cardiac hypertrophy, decreased hemodynamic functions and oxidative stress. Treatment with SB reduced hypertrophic indices, LV wall thickness, LV collagen levels, cardiomyocyte diameter, serum lipid levels and serum cardiac biomarkers. Treatment with SB also improved hemodynamic functions, prevented oxidative stress and increased mitochondrial DNA concentration. Improvement in hypertrophy due to HDAC inhibition was further confirmed by HDAC mRNA expression studies which revealed that SB decreases expression of prohypertrophic HDAC, i.e., HDAC2, without altering the expression of anti-hypertrophic HDAC5. Sodium butyrate produces beneficial effect on cardiac hypertrophy as is evident, specifically from reduction in hypertrophic parameters including collagen levels, improvement in mitochondrial DNA concentration and preservation of LV systolic and diastolic dysfunction. This beneficial effect of sodium butyrate is mediated through downregulation of class I HDACs, specifically HDAC2 without any effect on class II HDAC, i.e., HDAC5. Thus, selective class I HDAC inhibition is required for controlling cardiac hypertrophy. Newer HDAC inhibitors which are class I inhibitor and class II promoter can be designed to obtain a ‘pan’ or ‘dual’ natural HDAC ‘regulators.’
Literatur
1.
Zurück zum Zitat Frey, N., & Olson, E. N. (2003). Cardiac hypertrophy: The good, the bad, and the ugly. Annual Review of Physiology, 65, 45–79.CrossRefPubMed Frey, N., & Olson, E. N. (2003). Cardiac hypertrophy: The good, the bad, and the ugly. Annual Review of Physiology, 65, 45–79.CrossRefPubMed
2.
Zurück zum Zitat Goyal, B. R., & Mehta, A. A. (2013). Diabetic cardiomyopathy: Pathophysiological mechanisms and cardiac dysfunction. Human and Experimental Toxicology, 32(6), 571–590.CrossRefPubMed Goyal, B. R., & Mehta, A. A. (2013). Diabetic cardiomyopathy: Pathophysiological mechanisms and cardiac dysfunction. Human and Experimental Toxicology, 32(6), 571–590.CrossRefPubMed
3.
Zurück zum Zitat Patel, B. M., & Mehta, A. A. (2013). The choice of anti-hypertensive agents in diabetic subjects. Diabetes and Vascular Disease Research, 10(50), 385–396.CrossRefPubMed Patel, B. M., & Mehta, A. A. (2013). The choice of anti-hypertensive agents in diabetic subjects. Diabetes and Vascular Disease Research, 10(50), 385–396.CrossRefPubMed
4.
Zurück zum Zitat Patel, B. M., & Mehta, A. A. (2012). Aldosterone and angiotensin: Role in diabetes and cardiovascular diseases. European Journal of Pharmacology, 697(1–3), 1–12.CrossRefPubMed Patel, B. M., & Mehta, A. A. (2012). Aldosterone and angiotensin: Role in diabetes and cardiovascular diseases. European Journal of Pharmacology, 697(1–3), 1–12.CrossRefPubMed
5.
Zurück zum Zitat Raghunathan, S., & Patel, B. M. (2013). Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundamental and Clinical Pharmacology, 27(1), 1–20.CrossRefPubMed Raghunathan, S., & Patel, B. M. (2013). Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundamental and Clinical Pharmacology, 27(1), 1–20.CrossRefPubMed
6.
Zurück zum Zitat Schreiber, S. L., & Bernstein, B. E. (2002). Signaling network model of chromatin. Cell, 111, 771–778.CrossRefPubMed Schreiber, S. L., & Bernstein, B. E. (2002). Signaling network model of chromatin. Cell, 111, 771–778.CrossRefPubMed
7.
Zurück zum Zitat Wade, P. A. (2001). Transcriptional control at regulatory checkpoints by histone deacetylases: Molecular connections between cancer and chromatin. Human Molecular Genetics, 10(7), 693–698.CrossRefPubMed Wade, P. A. (2001). Transcriptional control at regulatory checkpoints by histone deacetylases: Molecular connections between cancer and chromatin. Human Molecular Genetics, 10(7), 693–698.CrossRefPubMed
8.
Zurück zum Zitat Gusterson, R. J., Jazrawi, E., Adcock, I. M., & Latchman, D. S. (2003). The transcriptional co-activators CREB binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. Journal of Biological Chemistry, 278, 6838–6847.CrossRefPubMed Gusterson, R. J., Jazrawi, E., Adcock, I. M., & Latchman, D. S. (2003). The transcriptional co-activators CREB binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. Journal of Biological Chemistry, 278, 6838–6847.CrossRefPubMed
9.
Zurück zum Zitat de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal, 370(3), 737–749.CrossRefPubMedPubMedCentral de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal, 370(3), 737–749.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Gregoretti, I. V., Lee, Y. M., & Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology, 338(1), 17–31.CrossRefPubMed Gregoretti, I. V., Lee, Y. M., & Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology, 338(1), 17–31.CrossRefPubMed
11.
Zurück zum Zitat Marks, P. A., & Xu, W. S. (2009). Histone deacetylase inhibitors: Potential in cancer therapy. Journal of Cellular Biochemistry, 107(4), 600–608.CrossRefPubMedPubMedCentral Marks, P. A., & Xu, W. S. (2009). Histone deacetylase inhibitors: Potential in cancer therapy. Journal of Cellular Biochemistry, 107(4), 600–608.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Marks, P. A. (2010). Histone deacetylase inhibitors: A chemical genetics approach to understanding cellular functions. Biochimica et Biophysica Acta, 1799(10–12), 717–725.CrossRefPubMedPubMedCentral Marks, P. A. (2010). Histone deacetylase inhibitors: A chemical genetics approach to understanding cellular functions. Biochimica et Biophysica Acta, 1799(10–12), 717–725.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Gao, L., Cueto, M. A., Asselbergs, F., & Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry, 277(28), 25748–25755.CrossRefPubMed Gao, L., Cueto, M. A., Asselbergs, F., & Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry, 277(28), 25748–25755.CrossRefPubMed
14.
Zurück zum Zitat Kee, H. J., & Kook, H. (2011). Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy. BioMed Research International, 2011, 928326. Kee, H. J., & Kook, H. (2011). Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy. BioMed Research International, 2011, 928326.
15.
Zurück zum Zitat Carducci, M. A., Gilbert, J., Bowling, M. K., Noe, D., Eisenberger, M. A., Sinibaldi, V., et al. (2001). A phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clinical Cancer Research, 7, 3047–3055.PubMed Carducci, M. A., Gilbert, J., Bowling, M. K., Noe, D., Eisenberger, M. A., Sinibaldi, V., et al. (2001). A phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clinical Cancer Research, 7, 3047–3055.PubMed
16.
Zurück zum Zitat Bolden, J. E., Peart, M. J., & Johnstokeene, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews Drug Discovery, 5, 769–784.CrossRefPubMed Bolden, J. E., Peart, M. J., & Johnstokeene, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews Drug Discovery, 5, 769–784.CrossRefPubMed
17.
Zurück zum Zitat Daosukho, C., Chen, Y., Noel, T., Sompol, P., Nithipongvanitch, R., Velez, J. M., et al. (2007). Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radical Biology and Medicine, 42(12), 1818–1825.CrossRefPubMedPubMedCentral Daosukho, C., Chen, Y., Noel, T., Sompol, P., Nithipongvanitch, R., Velez, J. M., et al. (2007). Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radical Biology and Medicine, 42(12), 1818–1825.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Chen, Y., Du, J., Zhao, Y. T., Zhang, L., Lv, G., Zhuang, S., et al. (2015). Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovascular Diabetology, 14, 99.CrossRefPubMedPubMedCentral Chen, Y., Du, J., Zhao, Y. T., Zhang, L., Lv, G., Zhuang, S., et al. (2015). Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovascular Diabetology, 14, 99.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Patel, B. M., & Desai, V. J. (2014). Beneficial role of tamoxifen in experimentally induced cardiac hypertrophy. Pharmacological Reports, 66(2), 264–272.CrossRefPubMed Patel, B. M., & Desai, V. J. (2014). Beneficial role of tamoxifen in experimentally induced cardiac hypertrophy. Pharmacological Reports, 66(2), 264–272.CrossRefPubMed
20.
Zurück zum Zitat Goyal, B. R., Mesariya, P., Goyal, R. K., & Mehta, A. A. (2008). Effect of telmisartan on cardiovascular complications associated with STZ-diabetic rats. Molecular and Cellular Biochemistry, 314(1–2), 123–131.CrossRefPubMed Goyal, B. R., Mesariya, P., Goyal, R. K., & Mehta, A. A. (2008). Effect of telmisartan on cardiovascular complications associated with STZ-diabetic rats. Molecular and Cellular Biochemistry, 314(1–2), 123–131.CrossRefPubMed
21.
Zurück zum Zitat Goyal, B. R., Solanki, N., Goyal, R. K., & Mehta, A. A. (2009). Investigation into the cardiac effects of spironolactone in the experimental model of type 1 diabetes. Journal of Cardiovascular Pharmacology, 54(6), 502–509.CrossRefPubMed Goyal, B. R., Solanki, N., Goyal, R. K., & Mehta, A. A. (2009). Investigation into the cardiac effects of spironolactone in the experimental model of type 1 diabetes. Journal of Cardiovascular Pharmacology, 54(6), 502–509.CrossRefPubMed
22.
Zurück zum Zitat Goyal, B. R., Parmar, K., Goyal, R. K., & Mehta, A. A. (2011). Beneficial role of telmisartan on cardiovascular complications associated with STZ-induced type-2 diabetic rats. Pharmacological Reports, 63(4), 956–966.CrossRefPubMed Goyal, B. R., Parmar, K., Goyal, R. K., & Mehta, A. A. (2011). Beneficial role of telmisartan on cardiovascular complications associated with STZ-induced type-2 diabetic rats. Pharmacological Reports, 63(4), 956–966.CrossRefPubMed
23.
Zurück zum Zitat Patel, B. M., Kakadiya, J., Goyal, R. K., & Mehta, A. A. (2013). Effect of spironolactone on cardiovascular complications associated with type-2 diabetes in rats. Experimental and Clinical Endocrinology and Diabetes, 121(08), 441–447.CrossRefPubMed Patel, B. M., Kakadiya, J., Goyal, R. K., & Mehta, A. A. (2013). Effect of spironolactone on cardiovascular complications associated with type-2 diabetes in rats. Experimental and Clinical Endocrinology and Diabetes, 121(08), 441–447.CrossRefPubMed
24.
Zurück zum Zitat Goyal, B. R., Patel, M. M., & Bhadada, S. V. (2011). Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril on diabetes induced cardiovascular complications in type 1 diabetes in rats. International Journal of Diabetes and Metabolism, 19(1), 11–18. Goyal, B. R., Patel, M. M., & Bhadada, S. V. (2011). Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril on diabetes induced cardiovascular complications in type 1 diabetes in rats. International Journal of Diabetes and Metabolism, 19(1), 11–18.
25.
Zurück zum Zitat Patel, B. M., & Bhadada, S. V. (2014). Type 2 diabetes induced cardiovascular complications: Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril. Clinical and Experimental Hypertension, 36(5), 340–347.CrossRefPubMed Patel, B. M., & Bhadada, S. V. (2014). Type 2 diabetes induced cardiovascular complications: Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril. Clinical and Experimental Hypertension, 36(5), 340–347.CrossRefPubMed
26.
Zurück zum Zitat Raghunathan, S., Goyal, R. K., & Patel, B. M. (2017). Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy. Canadian Journal of Physiology and Pharmacology, 95(3), 260–267.CrossRefPubMed Raghunathan, S., Goyal, R. K., & Patel, B. M. (2017). Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy. Canadian Journal of Physiology and Pharmacology, 95(3), 260–267.CrossRefPubMed
27.
Zurück zum Zitat Rayabarapu, N., & Patel, B. M. (2014). Beneficial role of tamoxifen in isoproterenol induced myocardial infarction. Canadian Journal of Physiology and Pharmacology, 92(10), 849–857.CrossRefPubMed Rayabarapu, N., & Patel, B. M. (2014). Beneficial role of tamoxifen in isoproterenol induced myocardial infarction. Canadian Journal of Physiology and Pharmacology, 92(10), 849–857.CrossRefPubMed
28.
Zurück zum Zitat Patel, B. M., Raghunathan, S., & Porwal, U. (2014). Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. European Journal of Pharmacology, 728, 128–134.CrossRefPubMed Patel, B. M., Raghunathan, S., & Porwal, U. (2014). Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. European Journal of Pharmacology, 728, 128–134.CrossRefPubMed
29.
30.
Zurück zum Zitat Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMed Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMed
31.
Zurück zum Zitat Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMed Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMed
32.
Zurück zum Zitat Beutler, E., Duron, O., & Kelly, B. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.PubMed Beutler, E., Duron, O., & Kelly, B. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.PubMed
33.
Zurück zum Zitat Misra, H. P., & Frodvich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175.PubMed Misra, H. P., & Frodvich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175.PubMed
34.
Zurück zum Zitat Barja, G., & Herrero, A. (2000). Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heat and brain of mammals. FASEB Journal, 14, 312–318.PubMed Barja, G., & Herrero, A. (2000). Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heat and brain of mammals. FASEB Journal, 14, 312–318.PubMed
35.
Zurück zum Zitat Patel, B. M., Agarwal, S. S., & Bhadada, S. V. (2012). Perindopril protects against streptozotocin induced hyperglycemic myocardial damage/alterations. Human and Experimental Toxicology, 31(11), 1138–1149.CrossRef Patel, B. M., Agarwal, S. S., & Bhadada, S. V. (2012). Perindopril protects against streptozotocin induced hyperglycemic myocardial damage/alterations. Human and Experimental Toxicology, 31(11), 1138–1149.CrossRef
36.
Zurück zum Zitat Goyal, B. R., & Mehta, A. A. (2012). Beneficial role of spironolactone, telmisartan and their combination on isoproterenol induced cardiac hypertrophy. Acta Cardiologica, 67(2), 203–211.CrossRefPubMed Goyal, B. R., & Mehta, A. A. (2012). Beneficial role of spironolactone, telmisartan and their combination on isoproterenol induced cardiac hypertrophy. Acta Cardiologica, 67(2), 203–211.CrossRefPubMed
37.
Zurück zum Zitat Chang, S., McKinsey, T. A., Zhang, C. L., Richardson, J. A., Hill, J. A., & Olson, E. N. (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Molecular and Cellular Biology, 24(19), 8467–8476.CrossRefPubMedPubMedCentral Chang, S., McKinsey, T. A., Zhang, C. L., Richardson, J. A., Hill, J. A., & Olson, E. N. (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Molecular and Cellular Biology, 24(19), 8467–8476.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Rishikof, D. C., Ricupero, D. A., Liu, H., & Goldstein, R. H. (2004). Phenylbutyrate decreases type I collagen production in human lung fibroblasts. Journal of Cellular Biochemistry, 91(4), 740–748.CrossRefPubMed Rishikof, D. C., Ricupero, D. A., Liu, H., & Goldstein, R. H. (2004). Phenylbutyrate decreases type I collagen production in human lung fibroblasts. Journal of Cellular Biochemistry, 91(4), 740–748.CrossRefPubMed
40.
Zurück zum Zitat Shapiro, L. M., & Sugden, P. H. (1996). Left ventricular hypertrophy. In D. G. Julian, A. J. Camm, K. M. Fox, R. T. C. Hall, & P. A. Poole-Wilson (Eds.), Diseases of the heart (2nd ed.). London: Saunders. Shapiro, L. M., & Sugden, P. H. (1996). Left ventricular hypertrophy. In D. G. Julian, A. J. Camm, K. M. Fox, R. T. C. Hall, & P. A. Poole-Wilson (Eds.), Diseases of the heart (2nd ed.). London: Saunders.
41.
Zurück zum Zitat Davila-Roman, V. G., Vedala, G., Herrero, P., de las Fuentes, L., Rogers, J. G., Kelly, D. P., et al. (2002). Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology, 40(2), 271–277.CrossRefPubMed Davila-Roman, V. G., Vedala, G., Herrero, P., de las Fuentes, L., Rogers, J. G., Kelly, D. P., et al. (2002). Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology, 40(2), 271–277.CrossRefPubMed
42.
Zurück zum Zitat Cesselli, D., Jakoniuk, I., Barlucchi, L., Beltrami, A. P., Hintze, T. H., Nadal-GInard, B., et al. (2001). Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circulation Research, 89(3), 279–286.CrossRefPubMed Cesselli, D., Jakoniuk, I., Barlucchi, L., Beltrami, A. P., Hintze, T. H., Nadal-GInard, B., et al. (2001). Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circulation Research, 89(3), 279–286.CrossRefPubMed
43.
Zurück zum Zitat Anan, R., Nakagawa, M., Miyata, M., Higuchi, I., Nakao, S., Suehara, M., et al. (1995). Cardiac involvement in mitochondrial diseases: A study on 17 patients with documented mitochondrial DNA defects. Circulation, 91(4), 955–961.CrossRefPubMed Anan, R., Nakagawa, M., Miyata, M., Higuchi, I., Nakao, S., Suehara, M., et al. (1995). Cardiac involvement in mitochondrial diseases: A study on 17 patients with documented mitochondrial DNA defects. Circulation, 91(4), 955–961.CrossRefPubMed
44.
Zurück zum Zitat Candido, E. P., Reeves, R., & Davie, J. R. (1978). Sodium butyrate inhibits histone deacetylation in cultured cells. Cell, 14(1), 105–113.CrossRefPubMed Candido, E. P., Reeves, R., & Davie, J. R. (1978). Sodium butyrate inhibits histone deacetylation in cultured cells. Cell, 14(1), 105–113.CrossRefPubMed
45.
Zurück zum Zitat Boffa, L. C., Vidali, G., Mann, R. S., & Allfrey, V. G. (1978). Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. Journal of Biological Chemistry, 253(10), 3364–3366.PubMed Boffa, L. C., Vidali, G., Mann, R. S., & Allfrey, V. G. (1978). Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. Journal of Biological Chemistry, 253(10), 3364–3366.PubMed
46.
Zurück zum Zitat Davie, J. R. (2003). Inhibition of histone deacetylase activity by butyrate. Journal of Nutrition, 133(7 Suppl), 2485S–2493S.PubMed Davie, J. R. (2003). Inhibition of histone deacetylase activity by butyrate. Journal of Nutrition, 133(7 Suppl), 2485S–2493S.PubMed
47.
Zurück zum Zitat Kook, H., Lepore, J. J., Gitler, A. D., Lu, M. M., Wing-Man Yung, W., Mackay, J., et al. (2003). Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. The Journal of Clinical Investigation, 112(6), 863–871.CrossRefPubMedPubMedCentral Kook, H., Lepore, J. J., Gitler, A. D., Lu, M. M., Wing-Man Yung, W., Mackay, J., et al. (2003). Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. The Journal of Clinical Investigation, 112(6), 863–871.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Trivedi, C. M., Luo, Y., Yin, Z., Zhang, M., Zhu, W., Wang, T., et al. (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nature Medicine, 13(3), 324–331.CrossRefPubMed Trivedi, C. M., Luo, Y., Yin, Z., Zhang, M., Zhu, W., Wang, T., et al. (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nature Medicine, 13(3), 324–331.CrossRefPubMed
Metadaten
Titel
Sodium Butyrate Controls Cardiac Hypertrophy in Experimental Models of Rats
verfasst von
Bhoomika M. Patel
Publikationsdatum
07.04.2017
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 1/2018
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9406-2

Weitere Artikel der Ausgabe 1/2018

Cardiovascular Toxicology 1/2018 Zur Ausgabe