Skip to main content
Erschienen in: Clinical Hypertension 1/2023

Open Access 01.12.2023 | Research

Arterial stiffness and its associations with left ventricular diastolic function according to heart failure types

verfasst von: Hack-Lyoung Kim, Jaehoon Chung, Seokmoon Han, Hyun Sung Joh, Woo-Hyun Lim, Jae-Bin Seo, Sang-Hyun Kim, Joo-Hee Zo, Myung-A Kim

Erschienen in: Clinical Hypertension | Ausgabe 1/2023

Abstract

Background

Little is known about the characteristics of arterial stiffness in heart failure (HF). This study was performed to compare the degree of arterial stiffness and its association with left ventricular (LV) diastolic function among three groups: control subjects, patients with HF with reduced ejection fraction (HFrEF), and patients with HF with preserved ejection fraction (HFpEF).

Methods

A total of 83 patients with HFrEF, 68 patients with HFpEF, and 84 control subjects were analyzed. All HF patients had a history of hospitalization for HF treatment. Brachial-ankle pulse wave velocity (baPWV) measurement and transthoracic echocardiography were performed at the same day in a stable condition.

Results

The baPWV was significantly higher in patients with both HFrEF and HFpEF compared to control subjects (1,661 ± 390, 1,909 ± 466, and 1,477 ± 296 cm/sec, respectively; P < 0.05 for each). After adjustment of age, baPWV values were similar between patients with HFrEF and HFpEF (P = 0.948). In the multiple linear regression analysis, baPWV was significantly associated with both septal e′ velocity (β = –0.360, P = 0.001) and E/e′ (β = 0.344, P = 0.001). However, baPWV was not associated with either of the diastolic indices in HFrEF group. The baPWV was associated only with septal e′ velocity (β = –0.429, P = 0.002) but not with E/e′ in the HFpEF group in the same multivariable analysis.

Conclusions

Although arterial stiffness was increased, its association with LV diastolic function was attenuated in HF patients compared to control subjects. The degree of arterial stiffening was similar between HFrEF and HFpEF.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40885-022-00233-2.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ANCOVA
Analysis of covariance
ANOVA
Analysis of variance
baPWV
Brachial-ankle pulse wave velocity
CAD
Coronary artery disease
cfPWV
Carotid-femoral pulse wave velocity
eGFR
Estimated glomerular filtration rate
HDL
High-density lipoprotein
HF
Heart failure
HFpEF
Heart failure with preserved ejection fraction
HFrEF
Heart failure with reduced ejection fraction
LA
Left atrial
LDL
Low-density lipoprotein
LV
Left ventricular
LVEF
Left ventricular ejection fraction
RAS
Renin-angiotensin system
TR Vmax
Maximal velocity of tricuspid regurgitation
VA
Ventricular-arterial

Introduction

Heart failure (HF) is a terminal state of almost all heart diseases, and its prevalence continues to increase with age. Mortality and medical costs due to HF are so enormous that they pose a huge burden to our human society [1, 2]. Therefore, it is important to understand the underlying pathophysiology, and to develop a treatment that can prevent the occurrence of HF based on this. For several decades, many effective drugs for HF have been developed, which have greatly improved the survival rate of patients with HF [39]. However, since the mortality rate of HF is still very high, similar to that of some cancers, further efforts to treat HF are continuously required [1, 2].
HF is divided into HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF) according to left ventricular ejection fraction (LVEF) [10]. Although HFpEF is also a clinically serious disease due to its high prevalence and poor prognosis, as in HFrEF, underlying pathophysiology and effective long-term treatment has not been well elucidated [11]. Recently, emerging evidence has shown that increased arterial stiffness plays an important role in the development of HFpEF [1214]. However, most of the previous studies that conducted research into this issue analyzed subjects in the stage before clinically overt HF. Additionally, the role of arterial stiffness in HFrEF is still unknown. This study was performed to investigate in the degree of arterial stiffness and its association with left ventricular (LV) diastolic function in patients with HFrEF and HFpEF. We also compared results in patients with HF to control subjects without HF.

Methods

Study patients

This study is a cross-sectional study conducted at a general hospital in a large city (Seoul, Republic of Korea). The study was conducted in accordance with the Declaration of Helsinki. The study protocol was reviewed and approved by the Institutional Review Board of Seoul Metropolitan Government Seoul National University Boramae Medical Center (No. 10–2020-313). Written informed consent was obtained for prospectively enrolled subjects and informed consent was waived by Institutional Review Board for retrospectively enrolled subjects.
In the HF groups, the eligible study subjects were patients who had a history of hospitalization for the management of new-onset acute HF or acute exacerbation of chronic HF. At the time of hospitalization, the main diagnosis should be HF. HF patients with LVEF < 40% were further stratified as the HFrEF group, and HF patients with LVEF ≥ 50% were further stratified as the HFpEF group [15]. Relatively healthy subjects without HF and other documented cardiovascular disease were enrolled as the control group. At the time of study enrollment, more than 30 days passed since HF hospitalization, and all study subjects were outpatient in a chronic stage with a stable condition. Both transthoracic echocardiography and brachial-ankle pulse wave velocity (baPWV) measurement were performed on the same day. Subjects with the following conditions were excluded: (1) uncontrolled HF symptoms with New York Heart Association dyspnea scale IV; (2) uncontrolled blood pressure with systolic blood pressure ≥ 180 mmHg, diastolic blood pressure ≥ 110 mmHg, or systolic blood pressure < 90 mmHg; (3) uncontrolled arrhythmia; (4) significant valvular dysfunction, moderate degree or more; (5) presence of pericardial effusion, maximal thickness > 10 mm, and (6) ankle-brachial index < 0.9. Initially 60 subjects (20 control, 20 HFrEF, and 20 HFpEF) were enrolled with informed consent between January 2021 and February 2022. Among them, one in the control group and one in the HFrEF group were excluded from the analysis because baPWV measurement was not performed. Additional 177 subjects (65 control, 64 HFrEF, and 48 HFpEF) were enrolled in the study through a retrospective review of their medical records between January and December 2020. Informed consent was not obtained from these subjects as data were collected retrospectively. Finally, 235 subjects (84 control, 83 HFrEF, and 68 HFpEF) were analyzed in this study. Flow chart for study enrollment is demonstrated in Fig. 1.

Data collection

Body mass index was calculated as weight in kilograms divided by the square of height in meters (kg/m2). Systolic and diastolic blood pressures were recorded at the time of study enrollment using an oscillometric device. Information on cardiovascular risk factors including hypertension, diabetes mellitus, dyslipidemia, cigarette smoking status, coronary artery disease (CAD), and stroke were obtained. Hypertension was defined basis on previous diagnosis, the current use of antihypertensive medications used to control blood pressure, or blood pressure ≥ 140/90 mmHg. Diabetes mellitus was defined based on previous diagnosis, the current use of antidiabetic medications used to control hyperglycemia, or fasting blood glucose ≥ 126 mg/dL. Dyslipidemia was defined based on previous diagnosis, the current use of antidyslipidemic medications used to control dyslipidemia, or low-density lipoprotein cholesterol ≥ 160 mg/dL. Smokers were defined as those who had smoked during the past year. CAD included myocardial infarction and coronary revascularization. Stroke was defined as a sudden neurological abnormality with cerebral infarction or hemorrhage in imaging studies. After overnight fasting, venous blood was drawn and the blood levels of the following laboratory parameters were obtained: white blood cell count, hemoglobin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, creatinine, glucose, glycated hemoglobin, and C-reactive protein. Estimated glomerular filtration rate was calculated by the Modification of Diet in Renal Disease study equation. Information on concomitant cardiovascular medications including calcium channel blockers, beta blockers, renin-angiotensin system blockers, statins, and diuretics was also obtained.

Transthoracic echocardiography

Transthoracic echocardiography was performed using commercially available machines (Vivid E9 and E95, GE Healthcare, Horten, Norway; EPIQ 7 and EPIQ CVx, Philips Ultrasound Inc., Bothell, WA, USA). Echocardiography was performed according to standardized protocols based on current guidelines’ recommendations [16, 17]. LV dimension was measured using M-mode echocardiography. LV ejection fraction was calculated using Simpson biplane method. LV mass (g) was calculated using the following formula: 0.8 × [1.04 × {(LV end-diastolic dimension) + (interventricular septal wall thickness) + (posterior wall thickness)}3 – (LV end-diastolic dimension)3] + 0.6. LV mass index was calculated as LV mass / body surface area. In apical four-chamber view, peak velocities of E and A waves of mitral inflow during diastole were obtained using a pulsed wave Doppler, and E/A ratio was calculated. Deceleration time of E wave was also measured. Using the tissue Doppler imaging technique, the peak velocity of mitral septal annulus (e′) was obtained. Left atrial (LA) volume was measured using the biplane disk summation method and indexed to body surface as LA volume index. In modified four-chamber view, the maximal velocity of tricuspid regurgitation (TR Vmax) was obtained using the continuous Doppler method. In this study, we focused on sepal e′ velocity and E/e′ as indicators of LV diastolic function because these indicators are relatively easy to measure and reliable indicators that are recommended first for the evaluation of left ventricular diastolic function [17]. Interobserver agreements of septal e′ and E/e′ were evaluated by Pearson correlation among 50 subjects. Correlation coefficients were 0.96 and 0.92 for e′ and E/e′, respectively, in our laboratory [18].

Brachial-ankle pulse wave velocity measurement

Arterial stiffness was assessed using baPWV. The baPWV was measured noninvasively using a volume-plethysmography device (VP‐1000; Colin Co., Komaki, Japan) in the supine position 5 to 10 min after resting in an independent space in a quiet state [19, 20]. On the day of the test, cigarette smoking or consumption of beverages containing caffeine was restricted, and medications that were regularly taken were allowed. Arterial pulse wave was measured on both the brachial artery and posterior tibial artery of the subjects. During measurements, pulse volume waveform, blood pressure, and heart rate were recorded simultaneously. The baPWV were calculated as distance between the brachial and posterior tibial arteries divided by time interval. The distance between the brachial and posterior tibial arteries was estimated based on the height of the subject. The baPWV was measured on the left and right sides, and the average value was used in this study. All baPWV measurements were performed by a single trained operator. Coefficient of variation for intraobserver variability was 5.1% in our laboratory [21].

Statistical analysis

Continuous variables were expressed as mean ± standard deviation and categorical variables were expressed as number (%). Comparisons among three groups (control, HFrEF, and HFpEF) were performed using analysis of variance (ANOVA) for continuous variables and chi-square test for categorical variables. Bonferroni post-hoc analysis was applied to compare the baPWV mean difference between the two groups. The difference in baPWV among the three groups was further compared by correcting for age through the analysis of covariance (ANCOVA). Linear relations between baPWV and diastolic parameters were assessed using Pearson correlation analysis. Scatter plots demonstrated these correlations. To find independent association between echocardiographic diastolic indices and baPWV, multiple linear regression analysis was performed. The following potential confounders were controlled during multivariable analysis: age, sex, and cardiovascular risk factors including hypertension, diabetes mellitus, and dyslipidemia, and smoking status. All analyses were two-tailed, and clinical significance was defined as P < 0.05. All statistical analyses were performed with the statistical package IBM SPSS ver. 23.0 (IBM Corp., Armonk, NY, USA).

Results

Comparisons of clinical characteristics among three groups are shown in Table 1. In overall study patients, mean age was 67.0 ± 12.9 years, and 94 (40.0%) were female. The patients in the HFpEF group were oldest, and the proportion of female patients was highest. The HFpEF group had the highest systolic blood pressure as well as the highest prevalence of cardiovascular risk factors including hypertension, diabetes mellitus, dyslipidemia, previous history of CAD, and stroke. In laboratory findings, patients with HFpEF showed better cholesterol profiles and worse renal function compared to those with HFrEF and control groups. The blood levels of glucose, glycated hemoglobin and C-reactive protein were higher in both HFrEF and HFpEF group compared to control group. HF patients were taking more cardiovascular drugs than the control group. Beta blockers, renin-angiotensin system blockers, and diuretics showed the highest frequency of use in the HFrEF group and calcium channel blockers in the HFpEF group, but there was no difference in the statin use rate among the three groups.
Table 1
Clinical characteristics of study subjects
Characteristic
Control (n = 84)
HFrEF (n = 83)
HFpEF (n = 68)
P-value
Age (yr)
61.3 ± 11.1
64.6 ± 12.7
77.0 ± 9.2
< 0.001
Female sex
37 (44.0)
19 (22.9)
38 (55.9)
< 0.001
Body mass index (kg/m2)
24.5 ± 3.2
22.4 ± 7.3
24.3 ± 4.9
0.033
Systolic blood pressure (mmHg)
126.0 ± 13.0
124.0 ± 18.0
139.0 ± 22.0
< 0.001
Diastolic blood pressure (mmHg)
74.3 ± 9.4
76.2 ± 13.4
76.5 ± 11.6
0.436
Cardiovascular risk factor
 Hypertension
34 (40.5)
54 (65.1)
55 (80.9)
< 0.001
 Diabetes mellitus
14 (16.7)
30 (36.1)
28 (41.2)
0.002
 Dyslipidemia
30 (35.7)
25 (30.1)
33 (48.5)
0.062
 Cigarette smoking
10 (11.9)
26 (31.3)
3 (4.4)
< 0.001
 Coronary artery disease
0
13 (15.7)
13 (19.1)
0.001
 Stroke
0
10 (12.0)
10 (14.7)
0.020
Laboratory finding
 White blood cell count (/µL)
6,136 ± 1,696
7,057 ± 1,865
6,494 ± 2,463
0.252
 Hemoglobin (g/dL)
14.1 ± 1.3
15.9 ± 8.7
12.0 ± 2.0
< 0.001
 Total cholesterol (mg/dL)
181.0 ± 41.0
166.0 ± 43.0
146.0 ± 62.0
< 0.001
 LDL cholesterol (mg/dL)
108.0 ± 40.0
103.0 ± 41.0
87.0 ± 32.0
0.019
 HDL cholesterol (mg/dL)
56.2 ± 13.1
39.7 ± 10.2
45.7 ± 13.5
< 0.001
 Triglyceride (mg/dL)
114.0 ± 48.0
122.0 ± 68.0
128.0 ± 79.0
0.452
 eGFR (mL/min/1.73m2)
94.6 ± 19.4
70.8 ± 26.5
65.9 ± 32.0
< 0.001
 Glucose (mg/dL)
115.0 ± 31.0
123.0 ± 38.0
118.0 ± 34.0
0.659
 Glycated hemoglobin (%)
5.91 ± 0.77
6.60 ± 1.20
6.38 ± 1.25
< 0.001
 C-reactive protein (mg/dL)
0.21 ± 0.82
1.65 ± 4.31
1.09 ± 3.15
0.018
Cardiovascular medication
 Calcium channel blocker
9 (10.7)
22 (26.5)
33 (48.5)
< 0.001
 Beta blocker
11 (13.1)
68 (81.9)
42 (61.8)
< 0.001
 RAS blocker
10 (11.9)
70 (84.3)
37 (54.4)
< 0.001
 Statin
31 (36.9)
27 (32.5)
33 (48.5)
0.122
 Diuretics
6 (7.1)
46 (55.4)
31 (45.5)
< 0.001
Values are presented as number (%) or mean ± standard deviation
HFrEF Heart failure with reduced ejection fraction, HFpEF Heart failure with preserved ejection fraction, LDL Low-density lipoprotein, HDL High-density lipoprotein, eGFR Estimated glomerular filtration rate, RAS Renin-angiotensin system
Results of transthoracic echocardiography are demonstrated in Table 2. Patients with HFrEF had the largest LV systolic and diastolic dimensions and LV mass index. The mean LVEF were 67.4% ± 4.6%, 29.7% ± 6.4%, and 63.6% ± 8.1%, in the control, HFrEF, and HFpEF groups, respectively. Compared to the control group, LV diastolic function was more severely impaired in both patients with HFrEF and HFpEF, which was shown by lower septal e′ velocity as well as by higher E/e′, TR Vmax, and LA volume index.
Table 2
Echocardiographic findings of study subjects
Characteristic
Control (n = 84)
HFrEF (n = 83)
HFpEF (n = 68)
P-value
LV end-diastolic dimension (mm)
47.4 ± 3.6
55.8 ± 7.4
49.5 ± 5.1
< 0.001
LV end-systolic dimension, mm)
29.6 ± 3.1
43.8 ± 8.8
32.7 ± 5.7
< 0.001
LV ejection fraction (%)
67.4 ± 4.6
29.7 ± 6.4
63.6 ± 8.1
< 0.001
LV mass index (g/m2)
85.2 ± 17.8
144.0 ± 40.0
108.0 ± 30.0
< 0.001
E/A
0.80 ± 0.18
0.94 ± 0.55
0.89 ± 0.48
0.026
Deceleration time (ms)
223.0 ± 50.0
172.0 ± 55.0
184.0 ± 56.0
< 0.001
Peak septal e′ velocity (cm/sec)
6.27 ± 1.84
4.79 ± 1.75
5.56 ± 2.28
< 0.001
Septal E/e′
10.5 ± 3.4
16.4 ± 7.4
16.6 ± 7.2
< 0.001
Left atrial volume index (mL/m2)
31.8 ± 9.3
43.4 ± 18.2
57.3 ± 23.8
< 0.001
TR Vmax (m/sec)
2.28 ± 0.23
2.49 ± 0.55
2.66 ± 0.46
< 0.001
Values are presented as mean ± standard deviation
HFrEF Heart failure with reduced ejection fraction, HFpEF Heart failure with preserved ejection fraction, LV Left ventricular, TR Vmax Maximal velocity of tricuspid regurgitation
Comparison of baPWV values among three groups is demonstrated in Fig. 2. Mean baPWV values were 1,477 ± 296, 1,661 ± 390, and 1,909 ± 466 cm/sec, in the control, HFrEF, and HFpEF groups, respectively (ANOVA, P < 0.001). In post-hoc analysis, baPWV value was significantly higher in patients with HFrEF than in control subjects (P = 0.006). Also, baPWV value was significantly higher in the HFpEF group compared to the control and HFrEF groups (P < 0.05 for each). Differences in baPWV values between the control group and HFrEF or HFpEF groups were also significant when age-adjusted using ANCOVA analysis (age-adjusted, P < 0.005). However, after adjusting for age, no difference in baPWV values was observed between the HFrEF and HFpEF groups (age-adjusted, P = 0.948). Without stratification by heart failure type, baPWV was significantly higher in heart failure group than in control group (1,771 ± 439 vs. 1,477 ± 297 cm/sec) even after controlling for age (age-adjusted, P < 0.001) (Supplementary Figure S1).
Simple linear correlations between baPWV and diastolic parameters are shown in Fig. 3. The baPWV was significantly correlated with septal e′ velocity in all three groups (r = –0.572, P < 0.05 for the control group; r = –0.226, P = 0.040 for HFrEF group; r = –0.384, P = 0.001 for HFpEF group). baPWV was significantly correlated with E/e′ in control group (r = 0.551, P < 0.001), but not in the HFrEF (r = 0.049, P = 0.657) and HFpEF groups (r = 0.048, P = 0.702). Without stratification by heart failure type, baPWV was significantly correlated with septal e′ velocity (r = –0.213, P = 0.009) but not with septal E/e′ (r = –0.016, P = 0.842) (Supplementary Figure S2).
In the multiple linear regression analysis (Table 3), baPWV was significantly associated with both septal e′ velocity (β = –0.360, P = 0.001) and E/e′ (β = 0.344, P = 0.001) even after controlling for clinical confounders in the control group. However, baPWV was not associated with septal e′ velocity (β = –0.167, P = 0.177) and E/e′ (β = 0.063; P = 0.631) after controlling for confounders in the HFrEF group. The baPWV was associated with septal e′ velocity (β = –0.429, P = 0.002) but not with E/e′ (β = 0.117, P = 0.435) in the HFpEF group in the same multivariable analysis. Without stratification by heart failure type, baPWV was independently associated with septal e′ velocity (β = –0.281, P = 0.004) but not with E/e′ (β = 0.058, P = 0.551) (Supplementary Table S1).
Table 3
Independent association between brachial-ankle pulse wave velocity and left ventricular diastolic parameters
Dependent variable
β
P-value
Control group
 Septal e′ velocity
–0.360
0.001
 E/e′
0.344
0.001
HFrEF group
 Septal e′ velocity
–0.167
0.177
 E/e′
0.063
0.631
HFpEF group
 Septal e′ velocity
–0.429
0.002
 E/e′
0.117
0.435
β and P values are for brachial-ankle pulse wave velocity. Following clinical covariates were controlled as potential confounders: age, sex, and cardiovascular risk factors including hypertension, diabetes mellitus, dyslipidemia, and cigarette smoking
HFrEF Heart failure with reduced ejection fraction, HFpEF Heart failure with preserved ejection fraction

Discussion

Main findings of this study are as follows: (1) baPWV was significantly higher in patients with HFrEF and HFpEF compared to control subjects; (2) although univariable comparison showed that baPWV was significantly higher in patients with HFpEF than in those with HFrEF, it was similar between patients with HFrEF and HFpEF after adjusting for age; and (3) baPWV was significantly associated with septal e′ velocity and E/e′ in the control group, had no association with either of the LV diastolic indices in patients with HFrEF, and was associated only with septal e′ velocity, but not with E/e′ in patients with HFpEF.
Our results showed that baPWV was significantly higher in patients with HF than in control subjects who had no HF or other documented cardiovascular disease and stroke. The significance of this difference remains even after adjusting for age, a major determinant of arterial stiffness. It may be due to the fact that patients with HF had more various risk factors that could increase arterial stiffness compared to the control group, which was consistent with the characteristics of our study population. We also presented, for the first time, differences in the degree of arterial stiffness according to HF types. Although the baPWV value in the univariable comparison was higher in the HFpEF group than in the HFrEF group, there was no difference between the two groups after age adjustment. Large-scale data are required to verify our findings.
As arterial stiffness increases, LV diastolic function deteriorates. In a stiffened artery, the velocity of reflected wave is increased and merges with the forward wave early [22]. This raises systolic blood pressure and lowers diastolic blood pressure. Increased systolic blood pressure causes LV hypertrophy and decreased diastolic blood pressure reduces coronary perfusion. In addition, with the concept of a shared common risk factors, many cardiovascular risk factors related to arterial stiffening also exacerbate LV diastolic dysfunction [23]. Based on this hypothesis, many existing clinical studies have shown a significant association between increased arterial stiffness and LV diastolic dysfunction in the general population as well as in patients with certain diseases [18, 2431]. However, in studies demonstrating such ventricular-arterial (VA) coupling, the study subjects were mostly restricted to the general population or subjects without documented cardiovascular disease including HF [2527, 30]. To the best of our knowledge, there was only two studies showing the association between arterial stiffness and LV diastolic function in patients with established HF [28, 31]. Noguchi et al. [28] investigated 44 hypertensive patients with normal LVEF and 31 patients with reduced EF, and showed that cardio-ankle vascular index was correlated with septal e′ velocity in both groups. However, in that study, the definition of HFrEF and HFpEF depended only on LVEF and did not take into account clinical aspects such as hospitalization or symptoms. Additionally, the authors did not perform multivariable analysis [28]. More recently, another study of 107 patients with HFpEF revealed that ambulatory arterial stiffness index was correlated with E/e′ [31]. In our study, baPWV was correlated with e′ velocity in patients with HFpEF but not in those with HFrEF. It seems that the results of each individual study are inconsistent due to differences in the basic characteristics of the study subjects, including race and the method of measuring arterial stiffness. Our study is most meaningful in that it showed a relationship between arterial stiffness and LV diastolic function according to HF types and compared it with the control group.
In the comparisons between control and HF groups, our results showed that the degree of arterial stiffness is more severe in the HF groups, but the association between arterial stiffness and LV diastolic function was stronger in the control group. This implies that arterial stiffness has a greater impact on the diastolic function of LV in the stage before the HF onset, and that the effect is somewhat weakened when HF has already occurred. Therefore, this may suggest that strategy targeting arterial stiffness to improve LV diastolic function or prevent HF [32] should be implanted as early as possible. In addition, baPWV was associated with septal e′ velocity in patients with HFpEF but not in patients with HFrEF. This may be a consistent finding with the results of previous studies showing the important role of arterial stiffness in the development of HFpEF [32]. Our study also showed that baPWV was not associated with E/e′ in either type of HF. It has been suggested that e′ velocity is less affected by the LV loading condition than E/e′; thus, e′ velocity is a more reliable indicator of LV diastolic function [33]. Septal e′ may be a better indicator for response monitoring than E/e′ in treatment strategies targeting arterial stiffness especially in patients with HFpEF.
Our study has several limitations. First, the associations of baPWV with septal e′ velocity and E/e′ were determined with cross-sectional data; therefore, the causal relationship between arterial stiffness and diastolic function could not be confirmed. Second, although carotid-femoral pulse wave velocity (cfPWV) is the gold standard for the non-invasive measurement of arterial stiffness [34], baPWV was used in our study. However, baPWV is more simple to measure and has a good correlation with cfPWV [23]. Third, the unavoidable differences in clinical characteristics among the three groups might affect the study results. In order to overcome this, we enrolled consecutive subjects who visited the same institution during the same period and corrected for important confounding variables through multivariable analysis. Fourth, due to the small number of heart failure patients enrolled in the study, it was difficult to conduct a detailed analysis according to the etiology of heart failure, such as ischemic vs. non-ischemic. Finally, because our study target is limited to Korean adults, it may be difficult to directly apply our findings to other ethnic groups.

Conclusions

Compared to the control subjects, arterial stiffness was increased in HF patients, but the association of the arterial stiffness on LV diastolic function was weaker in HF patients compared to the control subjects. These results suggest early detection and effective intervention for reverse arterial stiffening may limit adverse cardiac remodeling and HF. The degree of arterial stiffness was similar between HFrEF and HFpEF, but the association between arterial stiffness and LV diastolic function was stronger in the HFpEF group. Given that baPWV correlated well with septal e′ velocity in HFpEF, septal e′ velocity could be useful for devising a therapeutic strategy targeting VA coupling. Further large-scale studies are needed to confirm our findings.

Acknowledgements

Not applicable.

Declarations

The study was conducted in accordance with the Declaration of Helsinki. The study protocol was reviewed and approved by the Institutional Review Board of Seoul Metropolitan Government Seoul National University Boramae Medical Center (No. 10–2020-313). Written informed consent was obtained for prospectively enrolled subjects and informed consent was waived by Institutional Review Board for retrospectively enrolled subjects.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics: 2020 update: a report from the American Heart Association. Circulation. 2020;141:e139-596.CrossRef Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics: 2020 update: a report from the American Heart Association. Circulation. 2020;141:e139-596.CrossRef
2.
Zurück zum Zitat Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, et al. European Society of Cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020;41:12–85.CrossRef Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, et al. European Society of Cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020;41:12–85.CrossRef
3.
Zurück zum Zitat Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure Collaborative Group on ACE Inhibitor Trials. JAMA. 1995;273:1450–6.CrossRef Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure Collaborative Group on ACE Inhibitor Trials. JAMA. 1995;273:1450–6.CrossRef
4.
Zurück zum Zitat Crozier I, Ikram H, Awan N, Cleland J, Stephen N, Dickstein K, et al. Losartan in heart failure. Hemodynamic effects and tolerability Losartan Hemodynamic Study Group. Circulation. 1995;91:691–7.CrossRef Crozier I, Ikram H, Awan N, Cleland J, Stephen N, Dickstein K, et al. Losartan in heart failure. Hemodynamic effects and tolerability Losartan Hemodynamic Study Group. Circulation. 1995;91:691–7.CrossRef
5.
Zurück zum Zitat Mazayev VP, Fomina IG, Kazakov EN, Sulimov VA, Zvereva TV, Lyusov VA, et al. Valsartan in heart failure patients previously untreated with an ACE inhibitor. Int J Cardiol. 1998;65:239–46.CrossRef Mazayev VP, Fomina IG, Kazakov EN, Sulimov VA, Zvereva TV, Lyusov VA, et al. Valsartan in heart failure patients previously untreated with an ACE inhibitor. Int J Cardiol. 1998;65:239–46.CrossRef
6.
Zurück zum Zitat The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II). a randomised trial. Lancet. 1999;353:9–13.CrossRef The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II). a randomised trial. Lancet. 1999;353:9–13.CrossRef
7.
Zurück zum Zitat Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651–8.CrossRef Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651–8.CrossRef
8.
Zurück zum Zitat Effect of metoprolol CR/XL in chronic heart failure. Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353:2001–7.CrossRef Effect of metoprolol CR/XL in chronic heart failure. Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353:2001–7.CrossRef
9.
Zurück zum Zitat McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.CrossRef McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.CrossRef
10.
Zurück zum Zitat WRITING COMMITTEE MEMBERS, Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, et al. ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;2013(128):e240-327. WRITING COMMITTEE MEMBERS, Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, et al. ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;2013(128):e240-327.
11.
Zurück zum Zitat Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.CrossRef Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.CrossRef
12.
Zurück zum Zitat Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Cheng S, et al. Relations of central hemodynamics and aortic stiffness with left ventricular structure and function: the Framingham Heart Study. J Am Heart Assoc. 2016;5:e002693.CrossRef Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Cheng S, et al. Relations of central hemodynamics and aortic stiffness with left ventricular structure and function: the Framingham Heart Study. J Am Heart Assoc. 2016;5:e002693.CrossRef
13.
Zurück zum Zitat Cauwenberghs N, Knez J, Tikhonoff V, D’hooge J, Kloch-Badelek M, Thijs L, et al. Doppler indexes of left ventricular systolic and diastolic function in relation to the arterial stiffness in a general population. J Hypertens. 2016;34:762–71.CrossRef Cauwenberghs N, Knez J, Tikhonoff V, D’hooge J, Kloch-Badelek M, Thijs L, et al. Doppler indexes of left ventricular systolic and diastolic function in relation to the arterial stiffness in a general population. J Hypertens. 2016;34:762–71.CrossRef
14.
Zurück zum Zitat Weber T. The role of arterial stiffness and central hemodynamics in heart failure. Int J Heart Fail. 2020;2:209–30.CrossRef Weber T. The role of arterial stiffness and central hemodynamics in heart failure. Int J Heart Fail. 2020;2:209–30.CrossRef
15.
Zurück zum Zitat Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.CrossRef Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.CrossRef
16.
Zurück zum Zitat Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.CrossRef Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.CrossRef
17.
Zurück zum Zitat Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1321–60.CrossRef Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1321–60.CrossRef
18.
Zurück zum Zitat Kim HL, Seo JB, Chung WY, Kim SH, Kim MA, Zo JH. Association between invasively measured central aortic pressure and left ventricular diastolic function in patients undergoing coronary angiography. Am J Hypertens. 2015;28:393–400.CrossRef Kim HL, Seo JB, Chung WY, Kim SH, Kim MA, Zo JH. Association between invasively measured central aortic pressure and left ventricular diastolic function in patients undergoing coronary angiography. Am J Hypertens. 2015;28:393–400.CrossRef
19.
Zurück zum Zitat Kwak S, Kim HL, In M, Lim WH, Seo JB, Kim SH, et al. Associations of brachial-ankle pulse wave velocity with left ventricular geometry and diastolic function in untreated hypertensive patients. Front Cardiovasc Med. 2021;8:647491.CrossRef Kwak S, Kim HL, In M, Lim WH, Seo JB, Kim SH, et al. Associations of brachial-ankle pulse wave velocity with left ventricular geometry and diastolic function in untreated hypertensive patients. Front Cardiovasc Med. 2021;8:647491.CrossRef
20.
Zurück zum Zitat Kim HL, Lim WH, Seo JB, Kim SH, Zo JH, Kim MA. Improved Prognostic value in predicting long-term cardiovascular events by a combination of high-sensitivity c-reactive protein and brachial-ankle pulse wave velocity. J Clin Med. 2021;10:3291.CrossRef Kim HL, Lim WH, Seo JB, Kim SH, Zo JH, Kim MA. Improved Prognostic value in predicting long-term cardiovascular events by a combination of high-sensitivity c-reactive protein and brachial-ankle pulse wave velocity. J Clin Med. 2021;10:3291.CrossRef
21.
Zurück zum Zitat Lee HS, Kim HL, Kim H, Hwang D, Choi HM, Oh SW, et al. Incremental prognostic value of brachial-ankle pulse wave velocity to single-photon emission computed tomography in patients with suspected coronary artery disease. J Atheroscler Thromb. 2015;22:1040–50.CrossRef Lee HS, Kim HL, Kim H, Hwang D, Choi HM, Oh SW, et al. Incremental prognostic value of brachial-ankle pulse wave velocity to single-photon emission computed tomography in patients with suspected coronary artery disease. J Atheroscler Thromb. 2015;22:1040–50.CrossRef
22.
Zurück zum Zitat Kim HL, Weber T. Pulsatile hemodynamics and coronary artery disease. Korean Circ J. 2021;51:881–98.CrossRef Kim HL, Weber T. Pulsatile hemodynamics and coronary artery disease. Korean Circ J. 2021;51:881–98.CrossRef
23.
Zurück zum Zitat Kim HL, Kim SH. Pulse wave velocity in atherosclerosis. Front Cardiovasc Med. 2019;6:41.CrossRef Kim HL, Kim SH. Pulse wave velocity in atherosclerosis. Front Cardiovasc Med. 2019;6:41.CrossRef
24.
Zurück zum Zitat Einarsen E, Gerdts E, Waje-Andreassen U, Naess H, Fromm A, Saeed S. Association of increased arterial stiffness with diastolic dysfunction in ischemic stroke patients: the Norwegian Stroke in the Young Study. J Hypertens. 2020;38:467–73.CrossRef Einarsen E, Gerdts E, Waje-Andreassen U, Naess H, Fromm A, Saeed S. Association of increased arterial stiffness with diastolic dysfunction in ischemic stroke patients: the Norwegian Stroke in the Young Study. J Hypertens. 2020;38:467–73.CrossRef
25.
Zurück zum Zitat Park KT, Kim HL, Oh S, Lim WH, Seo JB, Chung WY, et al. Association between reduced arterial stiffness and preserved diastolic function of the left ventricle in middle-aged and elderly patients. J Clin Hypertens (Greenwich). 2017;19:620–6.CrossRef Park KT, Kim HL, Oh S, Lim WH, Seo JB, Chung WY, et al. Association between reduced arterial stiffness and preserved diastolic function of the left ventricle in middle-aged and elderly patients. J Clin Hypertens (Greenwich). 2017;19:620–6.CrossRef
26.
Zurück zum Zitat Abhayaratna WP, Barnes ME, O’Rourke MF, Gersh BJ, Seward JB, Miyasaka Y, et al. Relation of arterial stiffness to left ventricular diastolic function and cardiovascular risk prediction in patients > or =65 years of age. Am J Cardiol. 2006;98:1387–92.CrossRef Abhayaratna WP, Barnes ME, O’Rourke MF, Gersh BJ, Seward JB, Miyasaka Y, et al. Relation of arterial stiffness to left ventricular diastolic function and cardiovascular risk prediction in patients > or =65 years of age. Am J Cardiol. 2006;98:1387–92.CrossRef
27.
Zurück zum Zitat Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96–103.CrossRef Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96–103.CrossRef
28.
Zurück zum Zitat Noguchi S, Masugata H, Senda S, Ishikawa K, Nakaishi H, Tada A, et al. Correlation of arterial stiffness to left ventricular function in patients with reduced ejection fraction. Tohoku J Exp Med. 2011;225:145–51.CrossRef Noguchi S, Masugata H, Senda S, Ishikawa K, Nakaishi H, Tada A, et al. Correlation of arterial stiffness to left ventricular function in patients with reduced ejection fraction. Tohoku J Exp Med. 2011;225:145–51.CrossRef
29.
Zurück zum Zitat Shah AS, Gidding SS, El Ghormli L, Tryggestad JB, Nadeau KJ, Bacha F, et al. Relationship between arterial stiffness and subsequent cardiac structure and function in young adults with youth-onset type 2 diabetes: results from the TODAY study. J Am Soc Echocardiogr. 2022;35:620–8.CrossRef Shah AS, Gidding SS, El Ghormli L, Tryggestad JB, Nadeau KJ, Bacha F, et al. Relationship between arterial stiffness and subsequent cardiac structure and function in young adults with youth-onset type 2 diabetes: results from the TODAY study. J Am Soc Echocardiogr. 2022;35:620–8.CrossRef
30.
Zurück zum Zitat Kim HL, Lim WH, Seo JB, Chung WY, Kim SH, Kim MA, et al. Association between arterial stiffness and left ventricular diastolic function in relation to gender and age. Medicine (Baltimore). 2017;96:e5783.CrossRef Kim HL, Lim WH, Seo JB, Chung WY, Kim SH, Kim MA, et al. Association between arterial stiffness and left ventricular diastolic function in relation to gender and age. Medicine (Baltimore). 2017;96:e5783.CrossRef
31.
Zurück zum Zitat Zhang H, Hu W, Wang Y, Liu J, You L, Dong Q, et al. The relationship between ambulatory arterial stiffness index and left ventricular diastolic dysfunction in HFpEF: a prospective observational study. BMC Cardiovasc Disord. 2022;22:246.CrossRef Zhang H, Hu W, Wang Y, Liu J, You L, Dong Q, et al. The relationship between ambulatory arterial stiffness index and left ventricular diastolic dysfunction in HFpEF: a prospective observational study. BMC Cardiovasc Disord. 2022;22:246.CrossRef
32.
Zurück zum Zitat Chi C, Liu Y, Xu Y, Xu D. Association between arterial stiffness and heart failure with preserved ejection fraction. Front Cardiovasc Med. 2021;8:707162.CrossRef Chi C, Liu Y, Xu Y, Xu D. Association between arterial stiffness and heart failure with preserved ejection fraction. Front Cardiovasc Med. 2021;8:707162.CrossRef
33.
Zurück zum Zitat Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–94.CrossRef Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–94.CrossRef
34.
Zurück zum Zitat Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.CrossRef Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.CrossRef
Metadaten
Titel
Arterial stiffness and its associations with left ventricular diastolic function according to heart failure types
verfasst von
Hack-Lyoung Kim
Jaehoon Chung
Seokmoon Han
Hyun Sung Joh
Woo-Hyun Lim
Jae-Bin Seo
Sang-Hyun Kim
Joo-Hee Zo
Myung-A Kim
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Clinical Hypertension / Ausgabe 1/2023
Elektronische ISSN: 2056-5909
DOI
https://doi.org/10.1186/s40885-022-00233-2

Weitere Artikel der Ausgabe 1/2023

Clinical Hypertension 1/2023 Zur Ausgabe

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.