Skip to main content
Erschienen in: BMC Public Health 1/2024

Open Access 01.12.2024 | Research

Association between alternative healthy eating index (AHEI) with metabolic health status in adolescents with overweight and obesity

verfasst von: Donya Poursalehi, Ghazaleh Bahrami, Saeideh Mirzaei, Ali Asadi, Masoumeh Akhlaghi, Parvane Saneei

Erschienen in: BMC Public Health | Ausgabe 1/2024

Abstract

Background

There has been lack of evidence on the association between healthy dietary patterns and metabolic health status of adolescents. The present study aimed to evaluate the association between alternative healthy eating index (AHEI) and metabolic health status among a relatively representative sample of Iranian adolescents with overweight/obesity.

Methods

Adolescents with extra body weight (n = 203, aged 12–18 y), were selected for this cross-sectional study by a multistage cluster random-sampling method. Habitual dietary intakes and diet quality of individuals were assessed using validated food frequency questionnaire and AHEI-2010, respectively. Data on other covariates were also gathered by pre-tested questionnaires. To determine fasting glucose, insulin and lipid profiles, fasting blood samples were collected. Participants were categorized as having metabolically healthy overweight/obesity (MHO) or metabolically unhealthy overweight/obesity (MUO) phenotypes, based on two approaches (International Diabetes Federation (IDF) and combination of IDF with Homeostasis Model Assessment Insulin Resistance (HOMA-IR)).

Results

The overall prevalence of MUO was 38.9% (based on IDF criteria) and 33.0% (based on IDF/HOMA-IR criteria). After considering all potential confounders, participants in highest tertiles of AHEI-2010 had lower odds of MUO profile according to both IDF (OR = 0.05; 95% CI: 0.01–0.15) and IDF/HOMA-IR (OR = 0.05; 95% CI: 0.02–0.19) definitions. This association was stronger in adolescents with overweight compared with obese ones and also among girls than boys. Moreover, each unit increase in AHEI-2010 score was associated with lower risk of MUO based on both criteria.

Conclusions

Higher adherence to AHEI-2010 was inversely associated with odds of MUO in Iranian adolescents with overweight/obesity.
Hinweise
Donya Poursalehi and Ghazaleh Bahrami are regarded as co-first authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AHEI
Alternative Healthy Eating Index
BP
Blood Pressure
BMI
Body Mass Index
CDC
Center for Disease Control
CI
Confidence Interval
DASH
Dietary Approaches to Stop Hypertension
DBP
Diastolic Blood Pressure
FBG
Fasting Blood Glucose
FFQ
Food Frequency Questionnaire
Hb A1C
Hemoglobin A1C
HDL-c
High-Density Lipoprotein cholesterol
HEI
Healthy Eating Index
HOMA-IR
Homeostasis Model Assessment Insulin Resistance
IDF
International Diabetes Federation
IR
Insulin Resistance
MetS
Metabolic Syndrome
MHO
Metabolically Healthy Overweight/Obesity
MUO
Metabolically Unhealthy Overweight/Obesity
OR
Odds Ratio
PA
Physical Activity
PAQ-A
Physical Activity Questionnaire for Adolescents
PUFA
Polyunsaturated Fatty Acids
SBP
Systolic Blood Pressure
SD
Standard Deviation
SE
Standard Error
SES
Socioeconomic Status
TG
Triglycerides
WC
Waist Circumference
WHO
World Health Organization

Introduction

A significant increase in prevalence of overweight and obesity and its related comorbidities among adolescents over the past decades, both in early life and adulthood, have become major worldwide concerns [1]. The Center for Disease Control (CDC) has reported that about 1 in 5 American children and adolescents have obesity [2]. In 2016, more than 340 million children and adolescents (aged 5–19 years) around the globe had overweight/obesity [3]. Also, it has been predicted that by 2025, 413 million children and adolescents all around the world and 4 million children in Iran will have overweight/obesity [4, 5]. Overweight and obesity in early life are associated with serious health problems such as greater risk of cardiovascular diseases, type 2 diabetes, dyslipidemia and premature mortality [6, 7]. However not all subjects with overweight/obesity exhibit the mentioned complications.
Adolescents with metabolically healthy overweight/obesity (MHO) have a favourable cardio-metabolic status, presenting normal lipid profile, insulin sensitivity and blood pressure [8], while adolescents with metabolically unhealthy overweight/obesity (MUO) have an unfavourable metabolic profile [8]. These phenotypes could be converted to each other, suggesting that MHO individuals could become MUO over time [9]. Therefore, evaluating the influential factors including heredity, physical activity and diet would be critical to prevent this adverse transition [10, 11].
Dietary patterns could reflect the association between nutrition and metabolic health status more efficiently than individual food components [12]. As a result, many studies have evaluated the association of various dietary patterns such as Mediterranean diet, Dietary approaches to stop hypertension (DASH) and healthy eating patterns with metabolic disorders [1315]. Adherence to a healthy dietary pattern determined by Alternative Healthy Eating Index-2010 (AHEI-2010) has been also associated with decreased odds of metabolic disturbances [16]. AHEI-2010 was developed to enhance assessment of dietary quality in relation to risk of chronic diseases [17]. The cumulative protective effects of AHEI-2010 components including fruits, vegetables and unsaturated fatty acids could justify the inverse association between this index and metabolic abnormalities [18].
A cross-sectional study on a sample of African-American adolescents showed that adherence to AHEI-2010 was associated with lower odds of metabolic syndrome (MetS) [19]. Another study conducted on American adolescents revealed an inverse association between AHEI-2010 and levels of hemoglobin A1C (Hb A1C); while, no significant association was observed between AHEI-2010 and odds of hypertension [20]. Also, no substantial relations between AHEI-2010 adherence and likelihood of cardiometabolic risk factors were found in a cross-sectional survey on both Brazilian and American adolescents [21]. Although previous studies provided information regarding the association between AHEI-2010 and metabolic disorders, there were limited data that evaluated this relationship among adolescents and in Middle-East countries, where dietary intakes differ from American and European countries. Also, to the best of our knowledge, no previous study has investigated AHEI-2010 in relation to metabolic health status, especially in adolescents. Therefore, the current study was conducted to evaluate the association of AHEI-2010 with metabolic health status in a sample of Iranian adolescents with overweight and obesity.

Materials and methods

Participants

A sample of Iranian adolescents aged 12 to 18 were included in this cross-sectional survey conducted in 2020. Considering previously published study, about 62.2 percent of adolescents with extra weight suffer from MUO profile [22]. Therefore, with a precision (d) of 7%, power of 80%, and type I error of 0.05 (confidence interval (CI) of 95%), a sample size of 185 participants were required to be minimally sufficient. Applying a multi-level cluster sampling method, a total of sixteen schools in different regions of Isfahan were randomly selected. Then, according to the standard growth curve of age-sex-specific body mass index (BMI) percentiles [23], students who had overweight and obesity were only invited to participate in our investigation. However, students were not included in the study if they 1) had a history of inherited or metabolic disorders including type 1 diabetes, hypothyroidism and Cushing's syndrome; 2) took supplements or medications which probably affect their metabolic profile; 3) followed a specific weight loss diet. Totally, 203 adolescents with overweight and obesity including 101 boys and 102 girls were included in our study. Participants filled out written consent forms after receiving information about the study. Informed consents were also collected from the parents of the participants, as minors were participated in the study. The study protocol adhered to the ethical principles outlined in the 1975 Declaration of Helsinki. The Local Ethics Committee of the Isfahan University of Medical Sciences (IUMS) approved the study protocol (no. IR.MUI.RESEARCH.REC.1402.116).

Assessment of dietary intakes

We used a validated semi-quantitative food frequency questionnaire (FFQ) with 147 items to gather data on dietary intakes [2426]. This FFQ has been previously used to reflect the association between dietary intakes of Iranian youths and a variety of disorders [27, 28]. Therefore, this questionnaire has satisfactory validity and reliability among Iranian adolescents [29]. Based on this FFQ, participants have determined the frequency of consumption (based on daily, weekly or monthly) and also amount of each food item during the previous year. Then, the portion size of eaten food was converted to gram per day using household measurements [30]. Finally, Nutritionist IV software, which has been modified for Iranian foods, was used to measure the amount of calorie and nutrients intake.

Assessment of adherence to alternative healthy eating index-2010

AHEI-2010 consists of 11 components: fruits, vegetables, whole grains, nuts and legumes, long-chain n-3 fatty acids, polyunsaturated fatty acids (PUFA), red and processed meats, sugar-sweetened beverages and fruit juices, trans fatty acids, sodium and alcohol [17]. Due to a lack of relevant data in the current study, alcohol intake was excluded from the final score. AHEI-2010 was created by adjusting dietary intake of all components for total energy intake according to the residual approach [29]. Then, participants were divided into decile subgroups according to their energy-adjusted intakes of components. We utilized decile classifications as opposed to quantitative categories, since this approach would be less susceptible to misclassification. Individuals with the highest consumption of fruits, vegetables, whole grains, nuts and legumes, long-chain n-3 fatty acids and PUFA were given a score of 10 and those with the lowest consumption were scored 0. Conversely, other components including red and processed meats, sugar-sweetened beverages and fruit juices, trans fatty acids, and sodium were scored 0 in the highest consumption and 10 in the lowest consumption. The scores for the remaining deciles of these components were also allocated accordingly. The overall value of AHEI-2010 was determined by adding together the scores of all of these components, which ranged from 10 to 100.

Assessment of metabolic health components

An experienced nutritionist assessed standing height and weight using a stadiometer (to the closest 0.1 cm) and calibrated electronic scale (to the nearest 0.1 kg), respectively. All anthropometric measurements were done while participants were wearing no shoes and as little clothing as possible. Furthermore, we calculated BMI based on Quetelet formula (weight (kg)/ height2 (m)) and categorized adolescents in terms of having overweight (85th < BMI < 95th percentile) or obesity (BMI > 95th percentile), according to World Health Organization (WHO) percentiles for age-sex-specific BMI [23]. Waist circumference (WC) measurement was taken to the nearest 0.1 cm, with a non-stretched, flexible tape after a typical expiration and with no external pressure applied. Blood pressure (BP) was measured while adolescents were sat on a chair with back supported and their feet were flat on the floor. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were assessed twice (after a 15-min break) by a mercury sphygmomanometer with a suitable cuff size, and the average BP was regarded in our analysis. Blood samples were taken from participants in a twelve-hour fasting state in the laboratory and then, blood samples were centrifuged at 3500 rpm within 10 min to separate the serum. Concentrations of fasting blood glucose (FBG), triglycerides (TG), high density lipoprotein cholesterol (HDL-c) and insulin were evaluated on the day of sampling, using glucose oxidase, glycerol phosphate oxidase, cholesterol oxidase, and electrochemiluminescence immunoassay methods, respectively. Homeostasis Model Assessment Insulin Resistance (HOMA-IR) formula was also applied to determine Insulin resistance (IR) [31]: [(fasting insulin (mU/L) × FBG (mmol/L)]/22.5.

Metabolic status definitions

Two different approaches were used to distinguish MHO and MUO phenotypes. In the first method, metabolic health status was determined based on the International Diabetes Federation (IDF) [32]. Such that, individuals were considered to be MUO if they had two or more of the following risk factors: 1) elevated FBG (≥ 100 mg/dL), 2) increased TG (≥ 150 mg/dL), 3) reduced HDL-c (< 40 mg/dL for the age of < 16 y, and < 50 mg/dL for girls/ < 40 mg/dL for boys in the ages of ≥ 16 y), 4) increased BP (≥ 130/85 mmHg). On the other hand, adolescents with less than two of mentioned items were recognized as MHO. In the second strategy, existence of IR was also assessed in addition to IDF [33]. Therefore, if participants had at least two items of IDF criteria and HOMA-IR scores ≥ 3.16, they were assumed to be MUO and those with HOMA-IR < 3.16 were considered a MHO.

Assessment of other variables

Socioeconomic status (SES) of participants was assessed through a validated questionnaire including following items: parental education level, parental job, family size, having a personal room, traveling in a year, number of cars and laptops/computers in the family [34]. Data on age, gender, medications or supplements intake and history of diseases were also gathered using another self-administered questionnaire. A validated Physical Activity Questionnaire specified for Adolescents (PAQ-A) was applied to estimate physical activity (PA) level of participants [35]. This questionnaire includes nine items that evaluates usual and unusual activities of subjects over the previous week. By calculating total score, adolescents were categorized into four groups: sedentary (score < 2), low-active (3 < score ≤ 2), active (score ≥ 3), and very active (score ≥ 4). Due to the small number of sedentary and very active participants, we merged sedentary with low-active and active with very active to create two final categories: low level vs. high level.

Statistical analysis

Statistical analysis was done using SPSS software version 26 (IBM, Chicago, IL). The Kolmogorov–Smirnov test was used to assess the normal distribution of quantitative data. Participants were classified based on tertiles of energy-adjusted AHEI-2010. General characteristics of adolescents were expressed as percentage for qualitative variables and mean ± SD/SE for quantitative variables. We used one-way analysis of variance (ANOVA) and chi-square test to respectively assess continuous and categorical variables across tertiles of AHEI-2010. Age-, gender- and energy-adjusted dietary intakes of participants across tertiles of AHEI-2010 were also assessed using analysis of covariance (ANCOVA). To determine the association between AHEI-2010 with MUO, binary logistic regression was utilized in different models. First, the confounding effects of age, gender and energy intake were considered. In the second model, additional adjustments were done for SES and PA. Lastly, BMI was additionally controlled as a confounder. Stratified analyses were conducted based on BMI categories (overweight vs. obese) and sex (boys vs. girls). Moreover, we regarded AHEI-2010 tertiles as an ordinal variable to compute the trend of odds ratios (ORs) over increasing AHEI-2010 tertiles. In all analyses, the first tertile of AHEI-2010 was inputted as the reference group. AHEI-2010 was additionally employed as a continuous variable to assess a linear relation. P-values < 0.05 were accepted to be significant.

Results

Main characteristics of participants are summarized in Table 1. The study sample consisted of 102 girls and 101 boys aged 12–18 years old that all had overweight or obesity (mean weight: 73.48 ± 11.60 kg). The average AHEI-2010 score was 55.00 ± 13.07. Compared with the first tertile of AHEI-2010, adolescents in the last tertile had lower weight, BMI, WC, SBP, DBP, FBS, Insulin, HOMA-IR, TG and HDL-c. Conversely, they were more likely to be physically active. However, age, gender and SES did not differ noticeably among categories of AHEI-2010.
Table 1
General characteristics of study participants across tertiles of the alternate healthy eating index-2010 (n = 203)1
 
Tertiles of energy-adjusted alternate healthy eating index-20102
 
T1
(n = 68)
Score < 49
T2
(n = 67)
49–62
T3
(n = 68)
> 62
P3
Alternate healthy eating index-2010
40.16 ± 5.87
55.25 ± 4.08
69.60 ± 4.89
< 0.001
Age (y)
14.03 ± 1.54
13.87 ± 1.52
14.4 ± 1.77
0.78
Weight (kg)
75.65 ± 10.67
74.13 ± 11.88
70.68 ± 11.83
0.04
Body mass index (kg/m2)
27.76 ± 2.65
27.79 ± 3.43
26.52 ± 3.46
0.03
Overweight/obesity prevalence, n (%)
   
< 0.001
 Overweight
25 (36.8)
30 (44.8)
49 (72.1)
 
 Obese
43 (63.2)
37 (55.2)
19 (27.9)
 
 Waist circumference (cm)
91.68 ± 7.03
91.65 ± 7.16
87.68 ± 8.91
0.01
Sex, n (%)
   
0.68
 Boy
31 (45.6)
34 (50.7)
36 (52.9)
 
 Girl
37 (54.4)
33 (49.3)
32 (47.1)
 
Physical activity levels, n (%)
   
< 0.001
 Low4
67 (98.5)
63 (94)
36 (52.9)
 
 High5
1 (1.5)
4 (6.0)
32 (47.1)
 
Socioeconomic status levels, n (%)
   
0.53
 Low
24 (35.3)
18 (26.9)
17 (25)
 
 Moderate
30 (44.1)
28 (41.8)
32 (47.1)
 
 High
14 (20.6)
21 (31.3)
19 (27.9)
 
Systolic blood pressure (mmHg)
116.71 ± 10.41
113.69 ± 21.83
107.74 ± 19.88
0.01
Diastolic blood pressure (mmHg)
76.29 ± 5.95
73.41 ± 13.04
73.50 ± 11.38
0.02
Fasting blood sugar (mg/dL)
102.38 ± 8.92
98.60 ± 7.58
93.43 ± 6.41
< 0.001
Insulin (µUI/mL)
23.78 ± 14.67
21.05 ± 10.31
16.44 ± 11.63
0.01
HOMA-IR index
6.00 ± 3.60
5.22 ± 2.87
3.85 ± 2.98
< 0.001
Triglycerides (mg/dL)
142.75 ± 62.79
125.19 ± 76.63
97.96 ± 50.94
< 0.001
HDL cholesterol (mg/dL)
42.31 ± 7.91
44.49 ± 7.00
47.66 ± 7.98
< 0.001
1All values are means ± standard deviation (SD), unless indicated
2Alternate healthy eating index-2010 components were adjusted for energy intake based on residual method
3Obtained from ANOVA for continuous variables and chi-square test for categorical variables
4Includes sedentary and low-active participants
5Includes active and very-active participants
Table 2 indicates dietary intakes of participants across tertiles of AHEI-2010. Individuals with the highest adherence to AHEI-2010 consumed more amounts of fruits, vegetables, legumes, nuts, whole grains and lower amounts of red and processed meats, sugar-sweetened beverages and fruit juices than those with the least adherence. In case of nutrients, individuals with the highest AHEI-2010 adherence had also higher intake of protein and lower intake of saturated and trans fatty acids. However, no significant differences were observed between intakes of fats, carbohydrates, cholesterols, monounsaturated and polyunsaturated and omega-3 fatty acids across AHEI-2010 tertiles.
Table 2
Multivariable-adjusted intakes of selected food groups and nutrients of study participants across tertiles of Alternate Healthy Eating Index-2010 (n = 203)1
 
Tertiles of energy-adjusted alternate healthy eating index-20102
 
T1
(n = 68)
Score < 49
T2
(n = 67)
49–62
T3
(n = 68)
> 62
P3
Energy (Kcal/d)
2949.90 ± 65.84
2864.51 ± 66.31
2834.39 ± 65.86
0.44
Food groups:
 Fruits (g/day)
219.35 ± 16.23
302.40 ± 16.31
363.15 ± 16.22
< 0.001
 Vegetables (g/day)
168.62 ± 18.26
279.16 ± 18.34
380.43 ± 18.24
< 0.001
 Red and processed meats (g/day)
35.89 ± 1.72
27.83 ± 1.73
15.42 ± 1.72
< 0.001
 Legumes (g/day)
33.43 ± 3.34
55.44 ± 3.35
57.96 ± 3.33
< 0.001
 Nuts (g/day)
7.94 ± 1.25
11.12 ± 1.26
17.47 ± 1.25
< 0.001
 Whole grains (g/day)
178.46 ± 13.46
227.44 ± 13.53
276.27 ± 13.45
< 0.001
 Sugar-sweetened beverages and fruit juices (g/day)
113.57 ± 6.18
72.37 ± 6.21
41.98 ± 6.18
< 0.001
Other nutrients:
 Proteins (% of energy)
13.71 ± 0.24
14.41 ± 0.24
14.81 ± 0.24
0.01
 Fats (% of energy)
28.86 ± 0.63
28.64 ± 0.64
29.04 ± 0.64
0.91
 Carbohydrates (% of energy)
58.67 ± 0.63
58.48 ± 0.64
57.74 ± 0.63
0.55
 Cholesterol (mg/d)
286.88 ± 11.93
268.04 ± 11.99
291.09 ± 11.92
0.35
 Saturated fats (mg/d)
28.81 ± 0.70
26.61 ± 0.70
26.63 ± 0.70
0.04
 Trans fatty acids (g/d)
8.49 ± 0.36
6.00 ± 0.36
3.26 ± 0.36
< 0.001
 Monounsaturated fatty acids (g/d)
27.80 ± 0.84
26.97 ± 0.84
27.87 ± 0.84
0.70
 Polyunsaturated fatty acids (g/d)
27.11 ± 0.96
28.33 ± 0.97
30.02 ± 0.96
0.11
 Long chain n-3 fatty acids (g/d)
0.58 ± 0.02
0.67 ± 0.02
0.59 ± 0.02
0.16
 Sodium (mg/d)
4566.09 ± 129.33
3910.78 ± 129.94
3488.25 ± 129.22
< 0.001
1All values are means ± standard error (SE); energy and macronutrients intake is adjusted for age and sex; all other values are adjusted for age, sex and energy intake
2Alternate healthy eating index-2010 components were adjusted for energy intake based on residual method
3Obtained from ANCOVA
Overall prevalence of MUO was 38.9% according to IDF criteria and 33.0% based on IDF/HOMA-IR criteria. Prevalence of MUO across tertiles of AHEI-2010 is illustrated in Fig. 1. Compared with the lowest category, individuals with the highest adherence to AHEI-2010 had a lower prevalence of MUO based on IDF definition (T3 vs. T1: 8.8% vs. 69.1%; P < 0.001). Same finding was found based on IDF/HOMA-IR criteria (T3 vs. T1: 7.4% vs. 60.3%; P < 0.001).
Crude and multivariable-adjusted ORs for MUO among tertiles of AHEI-2010 are represented in Table 3. According to IDF method, a higher score of AHEI-2010 was associated with decreased chance of MUO profile in the crude model (ORT3 vs. T1 = 0.04; 95% CI: 0.02–0.12). This association remained unchanged after considering probable cofounders (ORT3 vs. T1 = 0.05; 95% CI: 0.01–0.15). Based on IDF/HOMA-IR definition, an inverse association was also observed between AHEI-2010 adherence and MUO in both crude (ORT3 vs. T1 = 0.05; 95% CI: 0.02–0.15) and multivariable-adjusted (ORT3 vs. T1 = 0.05; 95% CI: 0.02–0.19) models. Furthermore, by increasing AHEI-2010 tertiles, a downtrend in MUO profile was observed (Ptrend < 0.001 for all models). Each unit increment in AHEI-2010 score was additionally related to decreased odds of MUO based on IDF and IDF/HOMA-IR criteria.
Table 3
Multivariable-adjusted odds ratio for MUO across tertiles of alternate healthy eating index-2010 (n = 203)a
 
Tertiles of energy-adjusted alternate healthy eating index-2010b
Per 1 score (unit) increase in AHEI-2010
T1
(n = 68)
Score < 49
T2
(n = 67)
49–62
T3
(n = 68)
> 62
Ptrend
MUO Based on IDF criteria
 MUO cases (n)
47
26
6
  
  Crude
1.00
0.28 (0.14, 0.58)
0.04 (0.02, 0.12)
< 0.001
0.91 (0.88, 0.94)
  Model 1
1.00
0.31 (0.15, 0.63)
0.04 (0.01, 0.12)
< 0.001
0.91 (0.88, 0.94)
  Model 2
1.00
0.34 (0.16, 0.71)
0.05 (0.02, 0.15)
< 0.001
0.91 (0.88, 0.95)
  Model 3
1.00
0.32 (0.15, 0.68)
0.05 (0.01, 0.15)
< 0.001
0.91 (0.88, 0.94)
MUO Based on IDF/HOMA-IR criteria
 MUO cases (n)
41
21
5
  
  Crude
1.00
0.30 (0.15, 0.61)
0.05 (0.02, 0.15)
< 0.001
0.91 (0.89, 0.94)
  Model 1
1.00
0.31 (0.15, 0.66)
0.05 (0.02, 0.15)
< 0.001
0.91 (0.88, 0.94)
  Model 2
1.00
0.35 (0.16, 0.74)
0.06 (0.02, 0.20)
< 0.001
0.92 (0.89, 0.95)
  Model 3
1.00
0.32 (0.15, 0.69)
0.05 (0.02, 0.19)
< 0.001
0.92 (0.88, 0.95)
aAll values are odds ratios and 95% confidence intervals. Model 1: Adjusted for age, sex, energy intake. Model 2: More adjustments for physical activity levels, socioeconomic status. Model 3: Further adjustments for BMI
bAlternate healthy eating index-2010 components were adjusted for energy intake based on residual method
ORs for MUO across tertiles of AHEI-2010 stratified by BMI categories and sex are shown in Tables 4 and 5, respectively. Based on IDF definition, greater adherence to AHEI-2010 was significantly associated with reduced odds of MUO in both groups of adolescents with overweight (adjusted-ORT3 vs. T1 = 0.02; 95% CI: 0.01–0.12) and obesity (adjusted-ORT3 vs. T1 = 0.15; 95% CI: 0.04–0.63). Considering IDF/HOMA-IR method, the same findings were observed in subjects with overweight (adjusted-ORT3 vs. T1 = 0.04; 95% CI: 0.01–0.37) and obesity (adjusted-ORT3 vs. T1 = 0.10; 95% CI: 0.02–0.48) (Table 4). Among girls, those in the top tertile of AHEI-2010 in comparison with the bottom tertile had a lower chance of MUO profile according to both IDF (adjusted-ORT3 vs. T1 = 0.02; 95% CI: 0.01–0.11) and IDF/HOMA-IR (adjusted-ORT3 vs. T1 = 0.02; 95% CI: 0.01–0.23) criteria. Similarly, an inverse association was observed between higher AHEI-2010 score and MUO in boys; however, the magnitude of this association was weaker than in girls [based on IDF definition: fully-adjusted ORT3 vs. T1 = 0.05; 95% CI: 0.01–0.29; based on IDF/HOMA-IR definition: fully-adjusted ORT3 vs. T1 = 0.05; 95% CI: 0.01–0.34] (Table 5).
Table 4
Multivariable-adjusted odds ratio for MUO across tertiles of alternate healthy eating index-2010 stratified by BMI categories (n = 203)a
 
Tertiles of energy-adjusted alternate healthy eating index-2010b
 
T1
(n = 68)
Score < 49
T2
(n = 67)
49–62
T3
(n = 68)
> 62
Ptrend
MUO Based on IDF criteria
Overweight (cases/participants)
17/25
10/30
1/49
 
  Crude
1.00
0.24 (0.08, 0.73)
0.02 (0.01, 0.08)
< 0.001
  Model 1
1.00
0.26 (0.08, 0.85)
0.02 (0.01, 0.09)
< 0.001
  Model 2
1.00
0.30 (0.09, 1.03)
0.02 (0.01, 0.12)
< 0.001
Obesity (cases/participants)
30/43
16/37
5/19
 
  Crude
1.00
0.33 (0.13, 0.83)
0.16 (0.05, 0.52)
0.01
  Model 1
1.00
0.34 (0.13, 0.88)
0.13 (0.04, 0.50)
0.01
  Model 2
1.00
0.37 (0.14, 0.97)
0.15 (0.04, 0.63)
0.01
MUO Based on IDF/HOMA-IR criteria
Overweight (cases/participants)
12/25
7/30
1/49
 
  Crude
1.00
0.33 (0.10, 1.05)
0.02 (0.01, 0.19)
< 0.001
  Model 1
1.00
0.33 (0.10, 1.14)
0.02 (0.01, 0.20)
< 0.001
  Model 2
1.00
0.39 (0.11, 1.41)
0.04 (0.01, 0.37)
0.01
Obesity (cases/participants)
29/43
14/37
4/19
 
  Crude
1.00
0.29 (0.12, 0.74)
0.13 (0.04, 0.46)
0.01
  Model 1
1.00
0.31 (0.12, 0.79)
0.10 (0.03, 0.43)
0.01
  Model 2
1.00
0.32 (0.12, 0.84)
0.10 (0.02, 0.48)
0.01
aAll values are odds ratios and 95% confidence intervals. Model 1: Adjusted for age, sex, energy intake. Model 2: More adjustments for physical activity levels, socioeconomic status
bAlternate healthy eating index-2010 components were adjusted for energy intake based on residual method
Table 5
Multivariable-adjusted odds ratio for MUO across tertiles of alternate healthy eating index-2010 stratified by sex (n = 203)a
 
Tertiles of energy-adjusted alternate healthy eating index-2010b
 
T1
(n = 68)
Score < 49
T2
(n = 67)
49–62
T3
(n = 68)
> 62
Ptrend
MUO Based on IDF criteria
Girls (cases/participants)
27/37
13/33
2/32
 
  Crude
1.00
0.24 (0.09, 0.66)
0.03 (0.01, 0.12)
< 0.001
  Model 1
1.00
0.24 (0.08, 0.72)
0.02 (0.01, 0.09)
< 0.001
  Model 2
1.00
0.24 (0.08, 0.73)
0.02 (0.01, 0.12)
< 0.001
  Model 3
1.00
0.24 (0.08, 0.75)
0.02 (0.01, 0.11)
< 0.001
Boys (cases/participants)
20/31
13/34
4/36
 
  Crude
1.00
0.34 (0.12, 0.94)
0.07 (0.02, 0.25)
< 0.001
  Model 1
1.00
0.37 (0.13, 1.02)
0.07 (0.02, 0.25)
< 0.001
  Model 2
1.00
0.47 (0.16, 1.38)
0.08 (0.02, 0.41)
0.01
  Model 3
1.00
0.41 (0.13, 1.25)
0.05 (0.01, 0.29)
0.01
MUO Based on IDF/HOMA-IR criteria
Girls (cases/participants)
22/37
9/33
1/32
 
  Crude
1.00
0.26 (0.09, 0.70)
0.02 (0.01, 0.18)
< 0.001
  Model 1
1.00
0.22 (0.07, 0.69)
0.02 (0.01, 0.15)
< 0.001
  Model 2
1.00
0.22 (0.07, 0.70)
0.02 (0.01, 0.21)
< 0.001
  Model 3
1.00
0.22 (0.07, 0.70)
0.02 (0.01, 0.23)
< 0.001
Boys (cases/participants)
19/31
12/34
4/36
 
  Crude
1.00
0.34 (0.13, 0.94)
0.08 (0.02, 0.28)
< 0.001
  Model 1
1.00
0.37 (0.13, 1.04)
0.08 (0.02, 0.30)
< 0.001
  Model 2
1.00
0.49 (0.16, 1.46)
0.10 (0.02, 0.47)
0.01
  Model 3
1.00
0.43 (0.14, 1.32)
0.05 (0.01, 0.34)
0.01
aAll values are odds ratios and 95% confidence intervals. Model 1: Adjusted for age, energy intake. Model 2: More adjustments for physical activity levels, socioeconomic status. Model 3: Further adjustments for BMI
bAlternate healthy eating index-2010 components were adjusted for energy intake based on residual method

Discussion

In this cross-sectional study, we found a strong negative association between scores of AHEI-2010 and odds of MUO based on IDF and IDF/HOMA-IR criteria. After considering probable cofounders, this association remained unchanged. This relation was stronger in adolescents with overweight compared with obesity and also in girls than boys. Furthermore, each unit increment in AHEI-2010 score was related to decreased odds of MUO.
Obesity acts as a multisystem disorder that is associated with progression of different comorbidities such as cardiometabolic disease, cancers, mental disorders and even death [36]. Excessive fat accumulation and its subsequent consequences, especially among adolescents, are of the major challenges of both developed and developing countries which impose a lot of costs on healthcare systems [37]. So, it is imperative to control overweight/obesity and prevent progressing MHO to MUO status. Our findings showed an inverse association of AHEI-2010 and MUO profiles among adolescents. Hence, more adherence to AHEI-2010 and its components could be a worthwhile clinical advice for adolescents to prevent emerging metabolic comorbidities of obesity.
The Healthy Eating Index (HEI) has been created to assess diet quality based on dietary guidelines for Americans [38]. Several modified HEIs have been measured in relation to metabolic disorders. In a cross-sectional study among American adolescents, adherence to HEI-2015 was in association with decreased odds of MetS [39]. However, no substantial relation was concluded from another study with HEI-2010 and cardiometabolic risk factors [40]. A cross-sectional investigation on 706 Iranian adolescents illustrated that higher consistency with HEI-2005 was associated with lower odds of hypertriglyceridemia and low serum levels of HDL-c; whereas, no significant association was observed with MetS [41]. In our study, AHEI-2010 index was utilized to evaluate diet quality of participants in relation to odds of MUO. Decimal scoring in this index would reduce the possibility of misclassification and enhance the accuracy of our analyses.
We found an inverse association between AHEI-2010 adherence and odds of MUO. In line with our finding, a prospective study conducted among Iranian adults demonstrated that greater adherence to AHEL-2010 was associated with reduced odds of MetS [42]. In addition, a prior cross-sectional study on a sample of adults with obesity revealed an inverse relationship between AHEI-2010 adherence and likelihood of hyperglycemia and hypertriglyceridemia [43]. Another cross-sectional investigation among Canadian adults showed that individuals with higher scores of AHEI-2010 had lower risk of developing MetS [44]. However, there is a lack of data relating AHEI-2010 to metabolic disorders in children and adolescents. Ducharme-Smith et al. demonstrated an inverse relationship between greater AHEI-2010 scores and odds of MetS in adolescents [19]. In another study among adolescents aged 10–19 years, AHEI-2010 adherence was in association with low levels of Hb A1C, but not with hypertension [20]. Furthermore, AHEI-2010 adherence was not associated with reduced odds of cardiometabolic risk factors in a cross-sectional study on 189 Brazilian and 787 Hispanic/Latino American adolescents [21]. These inconsistencies between findings of the mentioned studies could be attributed to the differences in study designs, populations, measurement tools for assessing dietary intakes, metabolic disorders, and also different confounding variables in the analyses. It is worth noting that our study was conducted among adolescents with overweight/obesity, while most previous studies were performed among individuals with different BMI categories.
In the current analysis, adherence to AHEI-2010 has stronger association with MUO among adolescents with overweight than obesity. Although adopting a healthy lifestyle, particularly with regard to diet is beneficial for both overweight and obesity conditions, metabolic state of the body in overweight might be more sensitive to these factors to overcome the detrimental health consequences of extra weight [45]. Moreover, the strength of the observed association was greater in girls than boys. Different dietary habits may be the reason behind this finding in which, girls prefer higher intake of fruits and vegetables and lower intake of fatty and processed products [46]. In addition, girls often have a healthier metabolic profile that could be due to the differences in hormonal status and distribution of extra fat throughout their bodies [47]. Nevertheless, differences in number of cases and also range of AHEI-2010 in each tertile should not be ignored.
The fundamental cause of positive relation between AHEI-2010 and healthier metabolic status is not exactly clear and needs further studies. However it is well known that AHEI-2010 is accompanied by higher intakes of fruits, vegetables, whole grains, legumes and nuts which contain high amounts of fiber. Dietary fiber intake could decrease abdominal obesity by regulating energy homeostasis. Fiber intake could also reduce glycemic response and have cholesterol-lowering effects [48]. In addition, this index is restricted in consumption of red and processed meats that has substantial role in increasing obesity-related inflammatory markers [49]. Due to the documented association of inflammation and metabolic unhealthy status [50], reduction in intake of red and processed meat could prevent metabolic disorders development. Moreover, lower intake of carbohydrates, specifically from refined sources, could result in elevated HDL-c and decreased serum TG levels which are directly associated with lower odds of metabolic disorders [51].
The present study has several strengths and weaknesses. This is the first study exploring the association of AHEI-2010 with metabolic health status in a sample of Iranian adolescents with overweight and obesity. Moreover, we used two different definitions of metabolic health status to determine MUO/MHO phenotypes in a sample of both sexes (girls and boys) from all socioeconomic regions of a large central city in Iran. Furthermore, several potential confounders were adjusted in our analyses. Nevertheless, we acknowledge several limitations in our study. First, due to the cross-sectional design of the study, we were not able to infer a causal relation between AHEI-2010 and MUO/MHO. Therefore, conducting prospective studies is necessary. Second, due to the possible measurement errors and self-report nature of FFQ, misclassification of exposure could lead to unpredictable effects. Third, despite adjusting several covariates, residual confounders such as the state of puberty and sleep disorders might affect the relations. Finally, only adolescents who had overweight/obesity enrolled in our study; therefore, extrapolation our results to other adolescents should be done with caution.

Conclusions

In conclusion, we found a strong adverse association between AHEI-2010 and odds of MUO profile in adolescents with overweight/obesity. Therefore, adherence to AHEI-2010 and its components could be an advisable approach for public health strategies in maintaining metabolic health among adolescents with overweight/obesity. Further studies, particularly with prospective nature, among different societies are required to confirm our results.

Acknowledgements

None.

Declarations

All participants provided an informed written consent. In order to ensure ethical compliance, the researchers got informed consent from the parents of the minor participants included in the study. The protocol of study was in accordance with the ethical principles established in the 1975 Declaration of Helsinki. The study protocol was approved by the local Ethics Committee of Isfahan University of Medical Sciences.
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:1–17.PubMedCrossRef Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:1–17.PubMedCrossRef
2.
Zurück zum Zitat Grant-Guimaraes J, Feinstein R, Laber E, Kosoy J. Childhood overweight and obesity. Gastroenterol Clin. 2016;45:715–28.CrossRef Grant-Guimaraes J, Feinstein R, Laber E, Kosoy J. Childhood overweight and obesity. Gastroenterol Clin. 2016;45:715–28.CrossRef
3.
Zurück zum Zitat Report GN. Shining a light to spur action on nutrition. UK: Development Initiatives Bristol; 2018. Report GN. Shining a light to spur action on nutrition. UK: Development Initiatives Bristol; 2018.
4.
Zurück zum Zitat Lobstein T, Jackson-Leach R. Planning for the worst: estimates of obesity and comorbidities in school-age children in 2025. Pediatr Obes. 2016;11:321–5.PubMedCrossRef Lobstein T, Jackson-Leach R. Planning for the worst: estimates of obesity and comorbidities in school-age children in 2025. Pediatr Obes. 2016;11:321–5.PubMedCrossRef
5.
Zurück zum Zitat Mendenhall E, Singer M. The global syndemic of obesity, undernutrition, and climate change. The Lancet. 2019;393:741.CrossRef Mendenhall E, Singer M. The global syndemic of obesity, undernutrition, and climate change. The Lancet. 2019;393:741.CrossRef
6.
Zurück zum Zitat Horesh A, Tsur AM, Bardugo A, Twig G. Adolescent and childhood obesity and excess morbidity and mortality in young adulthood—A systematic review. Curr Obes Rep. 2021;10:301–10.PubMedCrossRef Horesh A, Tsur AM, Bardugo A, Twig G. Adolescent and childhood obesity and excess morbidity and mortality in young adulthood—A systematic review. Curr Obes Rep. 2021;10:301–10.PubMedCrossRef
7.
Zurück zum Zitat Drozdz D, Alvarez-Pitti J, Wójcik M, Borghi C, Gabbianelli R, Mazur A, et al. Obesity and cardiometabolic risk factors: from childhood to adulthood. Nutrients. 2021;13:4176.PubMedPubMedCentralCrossRef Drozdz D, Alvarez-Pitti J, Wójcik M, Borghi C, Gabbianelli R, Mazur A, et al. Obesity and cardiometabolic risk factors: from childhood to adulthood. Nutrients. 2021;13:4176.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Genovesi S, Antolini L, Orlando A, Gilardini L, Bertoli S, Giussani M, et al. Cardiovascular risk factors associated with the metabolically healthy obese (MHO) phenotype compared to the metabolically unhealthy obese (MUO) phenotype in children. Front Endocrinol. 2020;11:27.CrossRef Genovesi S, Antolini L, Orlando A, Gilardini L, Bertoli S, Giussani M, et al. Cardiovascular risk factors associated with the metabolically healthy obese (MHO) phenotype compared to the metabolically unhealthy obese (MUO) phenotype in children. Front Endocrinol. 2020;11:27.CrossRef
9.
Zurück zum Zitat Magkos F. Metabolically healthy obesity: what’s in a name? Am J Clin Nutr. 2019;110:533–9.PubMedCrossRef Magkos F. Metabolically healthy obesity: what’s in a name? Am J Clin Nutr. 2019;110:533–9.PubMedCrossRef
10.
Zurück zum Zitat Elmaogullari S, Demirel F, Hatipoglu N. Risk factors that affect metabolic health status in obese children. J Pediatr Endocrinol Metab. 2017;30:49–55.PubMedCrossRef Elmaogullari S, Demirel F, Hatipoglu N. Risk factors that affect metabolic health status in obese children. J Pediatr Endocrinol Metab. 2017;30:49–55.PubMedCrossRef
11.
Zurück zum Zitat Fung MD, Canning KL, Mirdamadi P, Ardern CI, Kuk JL. Lifestyle and weight predictors of a healthy overweight profile over a 20-year follow-up. Obesity (Silver Spring). 2015;23:1320–5.PubMedCrossRef Fung MD, Canning KL, Mirdamadi P, Ardern CI, Kuk JL. Lifestyle and weight predictors of a healthy overweight profile over a 20-year follow-up. Obesity (Silver Spring). 2015;23:1320–5.PubMedCrossRef
12.
Zurück zum Zitat Bell LK, Edwards S, Grieger JA. The relationship between dietary patterns and metabolic health in a representative sample of adult Australians. Nutrients. 2015;7:6491–505.PubMedPubMedCentralCrossRef Bell LK, Edwards S, Grieger JA. The relationship between dietary patterns and metabolic health in a representative sample of adult Australians. Nutrients. 2015;7:6491–505.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Godos J, Zappalà G, Bernardini S, Giambini I, Bes-Rastrollo M, Martinez-Gonzalez M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: a meta-analysis of observational studies. Int J Food Sci Nutr. 2017;68:138–48.PubMedCrossRef Godos J, Zappalà G, Bernardini S, Giambini I, Bes-Rastrollo M, Martinez-Gonzalez M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: a meta-analysis of observational studies. Int J Food Sci Nutr. 2017;68:138–48.PubMedCrossRef
14.
Zurück zum Zitat Asghari G, Yuzbashian E, Mirmiran P, Hooshmand F, Najafi R, Azizi F. Dietary approaches to stop hypertension (DASH) dietary pattern is associated with reduced incidence of metabolic syndrome in children and adolescents. J Pediatr. 2016;174:178–84. e1.PubMedCrossRef Asghari G, Yuzbashian E, Mirmiran P, Hooshmand F, Najafi R, Azizi F. Dietary approaches to stop hypertension (DASH) dietary pattern is associated with reduced incidence of metabolic syndrome in children and adolescents. J Pediatr. 2016;174:178–84. e1.PubMedCrossRef
15.
Zurück zum Zitat Rocha NP, Milagres LC, Longo GZ, Ribeiro AQ, de Novaes JF. Association between dietary pattern and cardiometabolic risk in children and adolescents: a systematic review☆. J Pediatr. 2017;93:214–22.CrossRef Rocha NP, Milagres LC, Longo GZ, Ribeiro AQ, de Novaes JF. Association between dietary pattern and cardiometabolic risk in children and adolescents: a systematic review☆. J Pediatr. 2017;93:214–22.CrossRef
16.
Zurück zum Zitat Morze J, Danielewicz A, Hoffmann G, Schwingshackl L. Diet quality as assessed by the healthy eating index, alternate healthy eating index, dietary approaches to stop hypertension score, and health outcomes: a second update of a systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2020;120:1998–2031. e15.PubMedCrossRef Morze J, Danielewicz A, Hoffmann G, Schwingshackl L. Diet quality as assessed by the healthy eating index, alternate healthy eating index, dietary approaches to stop hypertension score, and health outcomes: a second update of a systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2020;120:1998–2031. e15.PubMedCrossRef
17.
Zurück zum Zitat Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, et al. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr. 2012;142:1009–18.PubMedPubMedCentralCrossRef Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, et al. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr. 2012;142:1009–18.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Moszak M, Szulińska M, Bogdański P. You are what you eat—the relationship between diet, microbiota, and metabolic disorders—a review. Nutrients. 2020;12:1096.PubMedPubMedCentralCrossRef Moszak M, Szulińska M, Bogdański P. You are what you eat—the relationship between diet, microbiota, and metabolic disorders—a review. Nutrients. 2020;12:1096.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Ducharme-Smith K, Caulfield LE, Brady TM, Rosenstock S, Mueller NT, Garcia-Larsen V. Higher diet quality in african-american adolescents is associated with lower odds of metabolic syndrome: evidence from the NHANES. J Nutr. 2021;151:1609–17.PubMedPubMedCentralCrossRef Ducharme-Smith K, Caulfield LE, Brady TM, Rosenstock S, Mueller NT, Garcia-Larsen V. Higher diet quality in african-american adolescents is associated with lower odds of metabolic syndrome: evidence from the NHANES. J Nutr. 2021;151:1609–17.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Ducharme-Smith K, Chambers R, Garcia-Larsen V, Larzelere F, Kenney A, Reid R, et al. Native youth participating in the together on diabetes 12-month home-visiting program reported improvements in alternative healthy eating index-2010 diet quality domains likely to be associated with blood pressure and glycemic control. J Acad Nutr Diet. 2021;121:1125–35.PubMedCrossRef Ducharme-Smith K, Chambers R, Garcia-Larsen V, Larzelere F, Kenney A, Reid R, et al. Native youth participating in the together on diabetes 12-month home-visiting program reported improvements in alternative healthy eating index-2010 diet quality domains likely to be associated with blood pressure and glycemic control. J Acad Nutr Diet. 2021;121:1125–35.PubMedCrossRef
21.
Zurück zum Zitat Pereira JL, Mattei J, Isasi CR, Van Horn L, Carnethon MR, Daviglus ML, et al. Diet quality, excess body weight and cardiometabolic risk factors in adolescents living in São Paulo, Brazil and in the USA: differences and similarities. Public Health Nutr. 2021;24:4091–101.PubMedCrossRef Pereira JL, Mattei J, Isasi CR, Van Horn L, Carnethon MR, Daviglus ML, et al. Diet quality, excess body weight and cardiometabolic risk factors in adolescents living in São Paulo, Brazil and in the USA: differences and similarities. Public Health Nutr. 2021;24:4091–101.PubMedCrossRef
22.
Zurück zum Zitat Rahimi H, Yuzbashian E, Zareie R, Asghari G, Djazayery A, Movahedi A, et al. Dietary approaches to stop hypertension (DASH) score and obesity phenotypes in children and adolescents. Nutr J. 2020;19:1–9.CrossRef Rahimi H, Yuzbashian E, Zareie R, Asghari G, Djazayery A, Movahedi A, et al. Dietary approaches to stop hypertension (DASH) score and obesity phenotypes in children and adolescents. Nutr J. 2020;19:1–9.CrossRef
23.
Zurück zum Zitat de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.PubMedPubMedCentralCrossRef de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Kelishadi R, Majdzadeh R, Motlagh M-E, Heshmat R, Aminaee T, Ardalan G, et al. Development and evaluation of a questionnaire for assessment of determinants of weight disorders among children and adolescents: the Caspian-IV study. Int J Prev Med. 2012;3:699.PubMedPubMedCentral Kelishadi R, Majdzadeh R, Motlagh M-E, Heshmat R, Aminaee T, Ardalan G, et al. Development and evaluation of a questionnaire for assessment of determinants of weight disorders among children and adolescents: the Caspian-IV study. Int J Prev Med. 2012;3:699.PubMedPubMedCentral
25.
Zurück zum Zitat Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010;13:654–62.PubMedCrossRef Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010;13:654–62.PubMedCrossRef
26.
Zurück zum Zitat Esfahani FH, Asghari G, Mirmiran P, Azizi F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J Epidemiol. 2010;20:150–8.PubMedCrossRef Esfahani FH, Asghari G, Mirmiran P, Azizi F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J Epidemiol. 2010;20:150–8.PubMedCrossRef
27.
Zurück zum Zitat Mohseni H, Mohammadi FM, Karampour Z, Amini S, Abiri B, Sayyah M. The relationship between history of dietary nutrients intakes and incidence of aggressive behavior in adolescent girls: A case–control study. Clin Nutr ESPEN. 2021;43:200–5.PubMedCrossRef Mohseni H, Mohammadi FM, Karampour Z, Amini S, Abiri B, Sayyah M. The relationship between history of dietary nutrients intakes and incidence of aggressive behavior in adolescent girls: A case–control study. Clin Nutr ESPEN. 2021;43:200–5.PubMedCrossRef
28.
Zurück zum Zitat Daneshzad E, Ghorabi S, Hasani H, Omidian M, Pritzl TJ, Yavari P. Food Insecurity is positively related to Dietary Inflammatory Index in Iranian high school girls. Int J Vitam Nutr Res. 2019. Daneshzad E, Ghorabi S, Hasani H, Omidian M, Pritzl TJ, Yavari P. Food Insecurity is positively related to Dietary Inflammatory Index in Iranian high school girls. Int J Vitam Nutr Res. 2019.
29.
Zurück zum Zitat Willett W. Nutritional epidemiology. Oxford university press; 2012. Willett W. Nutritional epidemiology. Oxford university press; 2012.
30.
Zurück zum Zitat Ghaffarpour M, Houshiar-Rad A, Kianfar H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran: Nashre Olume Keshavarzy. 1999;7:42–58. Ghaffarpour M, Houshiar-Rad A, Kianfar H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran: Nashre Olume Keshavarzy. 1999;7:42–58.
31.
Zurück zum Zitat Swaroop JJ, Rajarajeswari D, Naidu J. Association of TNF-α with insulin resistance in type 2 diabetes mellitus. Indian J Med Res. 2012;135:127–30.PubMedPubMedCentralCrossRef Swaroop JJ, Rajarajeswari D, Naidu J. Association of TNF-α with insulin resistance in type 2 diabetes mellitus. Indian J Med Res. 2012;135:127–30.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents. Lancet. 2007;369:2059–61.PubMedCrossRef Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents. Lancet. 2007;369:2059–61.PubMedCrossRef
33.
Zurück zum Zitat Bervoets L, Massa G. Classification and clinical characterization of metabolically “healthy” obese children and adolescents. J Pediatr Endocrinol Metab. 2016;29:553–60.PubMedCrossRef Bervoets L, Massa G. Classification and clinical characterization of metabolically “healthy” obese children and adolescents. J Pediatr Endocrinol Metab. 2016;29:553–60.PubMedCrossRef
34.
Zurück zum Zitat Garmaroudi GR, Moradi A. Socio-economic status in Iran: a study of measurement index. Payesh (Health Monitor). 2010;9:137–44. Garmaroudi GR, Moradi A. Socio-economic status in Iran: a study of measurement index. Payesh (Health Monitor). 2010;9:137–44.
35.
Zurück zum Zitat Kowalski KC, Crocker PR, Donen RM. The physical activity questionnaire for older children (PAQ-C) and adolescents (PAQ-A) manual. College of Kinesiology, University of Saskatchewan. 2004;87:1-38. Kowalski KC, Crocker PR, Donen RM. The physical activity questionnaire for older children (PAQ-C) and adolescents (PAQ-A) manual. College of Kinesiology, University of Saskatchewan. 2004;87:1-38.
36.
Zurück zum Zitat Sarma S, Sockalingam S, Dash S. Obesity as a multisystem disease: Trends in obesity rates and obesity-related complications. Diabetes Obes Metab. 2021;23:3–16.PubMedCrossRef Sarma S, Sockalingam S, Dash S. Obesity as a multisystem disease: Trends in obesity rates and obesity-related complications. Diabetes Obes Metab. 2021;23:3–16.PubMedCrossRef
37.
Zurück zum Zitat Di Cesare M, Sorić M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019;17:1–20.CrossRef Di Cesare M, Sorić M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019;17:1–20.CrossRef
38.
Zurück zum Zitat Kirkpatrick SI, Reedy J, Krebs-Smith SM, Pannucci TE, Subar AF, Wilson MM, et al. Applications of the Healthy Eating Index for surveillance, epidemiology, and intervention research: considerations and caveats. J Acad Nutr Diet. 2018;118:1603–21.PubMedPubMedCentralCrossRef Kirkpatrick SI, Reedy J, Krebs-Smith SM, Pannucci TE, Subar AF, Wilson MM, et al. Applications of the Healthy Eating Index for surveillance, epidemiology, and intervention research: considerations and caveats. J Acad Nutr Diet. 2018;118:1603–21.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Summer SS, Jenkins T, Inge T, Deka R, Khoury JC. Association of diet quality, physical activity, and abdominal obesity with metabolic syndrome z-score in black and white adolescents in the US. Nutr Metab Cardiovasc Dis. 2022;32:346–54.PubMedCrossRef Summer SS, Jenkins T, Inge T, Deka R, Khoury JC. Association of diet quality, physical activity, and abdominal obesity with metabolic syndrome z-score in black and white adolescents in the US. Nutr Metab Cardiovasc Dis. 2022;32:346–54.PubMedCrossRef
40.
Zurück zum Zitat Mellendick K, Shanahan L, Wideman L, Calkins S, Keane S, Lovelady C. Diets rich in fruits and vegetables are associated with lower cardiovascular disease risk in adolescents. Nutrients. 2018;10:136.PubMedPubMedCentralCrossRef Mellendick K, Shanahan L, Wideman L, Calkins S, Keane S, Lovelady C. Diets rich in fruits and vegetables are associated with lower cardiovascular disease risk in adolescents. Nutrients. 2018;10:136.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Mohseni-Takalloo S, Mirmiran P, Hosseini-Esfahani F, Mehrabi Y, Azizi F. Metabolic syndrome and its association with healthy eating index-2005 in adolescents: Tehran lipid and glucose study. J Food Nutr Res. 2014;2:155–61.CrossRef Mohseni-Takalloo S, Mirmiran P, Hosseini-Esfahani F, Mehrabi Y, Azizi F. Metabolic syndrome and its association with healthy eating index-2005 in adolescents: Tehran lipid and glucose study. J Food Nutr Res. 2014;2:155–61.CrossRef
42.
Zurück zum Zitat Mirmiran P, Farhadnejad H, Teymoori F, Parastouei K, Azizi F. The higher adherence to healthy lifestyle factors is associated with a decreased risk of metabolic syndrome in Iranian adults. Nutr Bull. 2022;47:57–67.PubMedCrossRef Mirmiran P, Farhadnejad H, Teymoori F, Parastouei K, Azizi F. The higher adherence to healthy lifestyle factors is associated with a decreased risk of metabolic syndrome in Iranian adults. Nutr Bull. 2022;47:57–67.PubMedCrossRef
43.
Zurück zum Zitat Abdurahman AA, Bule M, Azadbakhat L, Fallahyekta M, Parouhan A, Qorbani M, et al. The association between diet quality and obesity-related metabolic risks. Hum Antibodies. 2020;28:1–9.PubMedCrossRef Abdurahman AA, Bule M, Azadbakhat L, Fallahyekta M, Parouhan A, Qorbani M, et al. The association between diet quality and obesity-related metabolic risks. Hum Antibodies. 2020;28:1–9.PubMedCrossRef
44.
Zurück zum Zitat Lafrenière J, Carbonneau É, Laramée C, Corneau L, Robitaille J, Labonté M-È, et al. Is the Canadian Healthy Eating Index 2007 an appropriate diet indicator of metabolic health? Insights from dietary pattern analysis in the PREDISE Study. Nutrients. 2019;11:1597.PubMedPubMedCentralCrossRef Lafrenière J, Carbonneau É, Laramée C, Corneau L, Robitaille J, Labonté M-È, et al. Is the Canadian Healthy Eating Index 2007 an appropriate diet indicator of metabolic health? Insights from dietary pattern analysis in the PREDISE Study. Nutrients. 2019;11:1597.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Heath L, Jebb SA, Aveyard P, Piernas C. Obesity, metabolic risk and adherence to healthy lifestyle behaviours: prospective cohort study in the UK Biobank. BMC Med. 2022;20:1–12.CrossRef Heath L, Jebb SA, Aveyard P, Piernas C. Obesity, metabolic risk and adherence to healthy lifestyle behaviours: prospective cohort study in the UK Biobank. BMC Med. 2022;20:1–12.CrossRef
46.
Zurück zum Zitat Lee C, Tsenkova VK, Boylan JM, Ryff CD. Gender differences in the pathways from childhood disadvantage to metabolic syndrome in adulthood: An examination of health lifestyles. SSM-Population Health. 2018;4:216–24.PubMedPubMedCentralCrossRef Lee C, Tsenkova VK, Boylan JM, Ryff CD. Gender differences in the pathways from childhood disadvantage to metabolic syndrome in adulthood: An examination of health lifestyles. SSM-Population Health. 2018;4:216–24.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Isasi CR, Parrinello CM, Ayala GX, Delamater AM, Perreira KM, Daviglus ML, et al. Sex differences in cardiometabolic risk factors among Hispanic/Latino youth. J Pediatr. 2016;176:121–7. e1.PubMedPubMedCentralCrossRef Isasi CR, Parrinello CM, Ayala GX, Delamater AM, Perreira KM, Daviglus ML, et al. Sex differences in cardiometabolic risk factors among Hispanic/Latino youth. J Pediatr. 2016;176:121–7. e1.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Kim K, Chang Y. Association of dietary fiber intake with metabolic syndrome among adult cancer survivors: a population-based cross-sectional study. Sci Rep. 2021;11:1–8. Kim K, Chang Y. Association of dietary fiber intake with metabolic syndrome among adult cancer survivors: a population-based cross-sectional study. Sci Rep. 2021;11:1–8.
49.
Zurück zum Zitat Mazidi M, Kengne AP, George ES, Siervo M. The association of red meat intake with inflammation and circulating intermediate biomarkers of type 2 diabetes is mediated by central adiposity. Br J Nutr. 2021;125:1043–50.PubMedCrossRef Mazidi M, Kengne AP, George ES, Siervo M. The association of red meat intake with inflammation and circulating intermediate biomarkers of type 2 diabetes is mediated by central adiposity. Br J Nutr. 2021;125:1043–50.PubMedCrossRef
50.
Zurück zum Zitat González-Gil E, Cadenas-Sanchez C, Santabárbara J, Bueno-Lozano G, Iglesia I, Gonzalez-Gross M, et al. Inflammation in metabolically healthy and metabolically abnormal adolescents: The HELENA study. Nutr Metab Cardiovasc Dis. 2018;28:77–83.PubMedCrossRef González-Gil E, Cadenas-Sanchez C, Santabárbara J, Bueno-Lozano G, Iglesia I, Gonzalez-Gross M, et al. Inflammation in metabolically healthy and metabolically abnormal adolescents: The HELENA study. Nutr Metab Cardiovasc Dis. 2018;28:77–83.PubMedCrossRef
51.
Zurück zum Zitat Song S, Lee JE, Song WO, Paik H-Y, Song Y. Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J Acad Nutr Diet. 2014;114:54–62.PubMedCrossRef Song S, Lee JE, Song WO, Paik H-Y, Song Y. Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J Acad Nutr Diet. 2014;114:54–62.PubMedCrossRef
Metadaten
Titel
Association between alternative healthy eating index (AHEI) with metabolic health status in adolescents with overweight and obesity
verfasst von
Donya Poursalehi
Ghazaleh Bahrami
Saeideh Mirzaei
Ali Asadi
Masoumeh Akhlaghi
Parvane Saneei
Publikationsdatum
01.12.2024
Verlag
BioMed Central
Erschienen in
BMC Public Health / Ausgabe 1/2024
Elektronische ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-023-17558-8

Weitere Artikel der Ausgabe 1/2024

BMC Public Health 1/2024 Zur Ausgabe