Skip to main content
Erschienen in: BMC Pregnancy and Childbirth 1/2021

Open Access 01.12.2021 | Research

Association between polymorphisms rs2228001 and rs2228000 in XPC and genetic susceptibility to preeclampsia: a case control study

verfasst von: Jingli Wang, Chengcheng Guan, Jing Sui, Yucui Zang, Yuwen Wu, Ru Zhang, Xiaoying Qi, Shunfu Piao

Erschienen in: BMC Pregnancy and Childbirth | Ausgabe 1/2021

Abstract

Background

Xeroderma pigmentosum complementation group C (XPC) is a DNA damage recognition protein that plays an important role in nucleotide excision repair and can reduce oxidative stress, which may be involved in the development of preeclampsia (PE). Therefore, the aim of this study was to explore whether XPC polymorphisms were relevant to the genetic susceptibility to PE in Chinese Han women.

Method

A total of 1276 healthy pregnant women were included as the control group and 958 pregnant women with PE as the case group. DNA was extracted from peripheral blood samples to perform genotyping of loci rs2228001 and rs2228000 in XPC through real-time quantitative polymerase chain reaction (PCR). The relationship between XPC and susceptibility to PE was evaluated by comparing the genotypic and allelic frequencies between the two groups of pregnant women.

Results

Polymorphism of rs2228000 may be associated with PE risk and allele T may play a protective role (genotype, χ2 = 38.961, P < 0.001 and allele χ2 = 21.746 P < 0.001, odds ratio (OR) = 0.885, 95% confidence interval (CI) = 0.840-0.932). No significant difference was found between the two groups in rs2228001,(genotype χ2 = 3.148, P = 0.207 and allele χ2 = 0.59, P = 0.442, OR = 1.017, 95% CI = 0.974–1.062). When the frequencies of genotypes and alleles for early- and late-onset PE, mild PE and severe PE were compared with those of controls, the results were consistent with the large clinical sample.

Conclusion

Our data suggest that the genetic variant rs2228000 in XPC may be associated with PE risk in Chinese Han women, and that pregnant women with the TT genotype have a reduced risk of PE. Further investigations are needed to confirm these findings in other regions or larger prospective populations.
Hinweise
Jingli Wang and Chengcheng Guan contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PE
Preeclampsia
PCR
Polymerase chain reaction
ROS
Reactive oxygen species
RNS
Reactive nitrogen species
8-OHdG
8-hydroxy-20-deoxy-guanosin
XPC
Xeroderma pigmentosum complementation group C
NER
Nucleotide excision repair
SNPs
Single nucleotide polymorphisms
RAD23B
Radiation repair 23B
PCOS
Polycystic ovary syndrome
AMH
Anti-Müllerian hormone
XRCC1
X-ray repair cross-complementing group 1
XPD
Xeroderma pigmentosum group D
RAD23B
Radiation repair 23 B

Introduction

Preeclampsia (PE) is defined as a special disease that occurs after 20 weeks of pregnancy, with hypertension and proteinuria or one of the following characteristics, thrombocytopenia, liver and kidney function damage, and pulmonary oedema [1], and seriously affects maternal and child health and even leads to death or morbidity during the perinatal period [2]. Although the potential harm of PE has been extensively studied, its pathogenesis remains poorly understood, and many factors may be involved in the development of PE, including inflammatory reactions, placental ischemia, vascular endothelial dysfunction, genetic factors, and oxidative stress [35].
Compared with normotensive pregnant women, patients with PE are in a state of extremely increased oxidative stress because of the decreased antioxidant capacity. Excess production of reactive oxygen species (ROS) can lead to vascular endothelial and DNA damage, which may be involved in the pathogenesis of PE by blocking trophoblast invasion and placental formation [6, 7]. A comet assay revealed significantly increased levels of DNA damage in the placenta of PE model rats [8]. As a sensitive indicator of DNA damage, phosphorylated H2AX was highly expressed not only in PE placentas but also in maternal metaphase stromal cells cultured in vitro with oxides [9]. Consistent with this result, Takagi et al. [10] found that 8-hydroxy-20-deoxy-guanosin (8-OHdG), a representative DNA damage marker, was detected at higher concentrations in the serum of patients with PE than in healthy pregnant women. There are enzymes related to DNA repair in the human body that can repair these damaged DNA and maintain a stable state of genetic material [11]. Therefore, it is essential to explore the role of genetic polymorphisms in the DNA repair system in PE pathogenesis based on DNA damage.
As a damage recognition protein of DNA, the gene Xeroderma pigmentosum complementation group C (XPC), which belongs to one of the key genes in the nucleotide excision repair system [12], repairs the damaged DNA by nucleotide excision to reduce the damage to DNA, and then reduces the attack of oxidative stress on organisms [13]. The XPC proteins have specific roles in cell protection and repair and tolerance of ROS-induced DNA damage [14]. In addition, reducing or silencing the expression of XPC increases the level of intracellular ROS, which increases oxidative stress and ultimately leads to oxidative DNA damage [15]. Two nonsynonymous single nucleotide polymorphisms (SNPs), c.2815G > T (p.Q939E, rs2228001) in exon 16 and c.1496C > T (p.A499V, rs2228000) in exon 9 of XPC may alter the capacity of XPC and modulate risk of various cancers [16, 17]. The positions of the two SNPs on the chromosomes are shown in Fig. 1. Currently, there is a lack of research on the association between these two SNPs and PE susceptibility. Therefore, the present study aimed to investigate the relationship between polymorphisms of rs2228001 and rs2228000 in XPC and the susceptibility to PE in the Chinese Han population, which further provides an experimental basis for a follow-up clinical study on PE.

Materials and methods

Subjects

We enrolled 958 patients with PE and 1276 normal pregnant women at the Linyi People’s Hospital, Zaozhuang Peoples’ Hospital, Heze People’s Hospital, Yantaishan Hospital, and the Affiliated Hospital of Qingdao University from January 2019 to November 2020 as the case and control groups. This study was approved by the ethics committee of Affiliated Hospital of Qingdao University, and informed consent were obtained from all participants. The diagnostic criteria for PE were based on the ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia [1]. The conditions for inclusion in the case group were the presentation of normal blood pressure before 20 weeks of gestation, whereas ≥140/90 blood pressure after 20 weeks of gestation, ≥0.3 g/24 h proteinuria, or one of following symptoms, such as headache, blurred vision, thrombocytopenia, liver and kidney function damage and pulmonary oedema. According to the guidelines, PE patients with systolic blood pressure > 160 mmHg or diastolic blood pressure > 110 mmHg are classified as the severe PE group [1]. Early-onset PE was diagnosed before 34 weeks of pregnancy, whereas late-onset PE was diagnosed after 34 weeks of gestation. The conditions of the control group included ≥26 years old; ≥30 weeks of gestation; no disease of kidney disorders; foetal macrosomia; chronic hypertension, diabetes mellitus, and cardiopathy; no abnormality in the liver, kidney, and blood coagulation; and no history of transfusion immunity, obstetric complications such as threatened abortion, premature rupture of membrane, placenta previa, assisted reproduction, and twin or multiple pregnancy.

Genetic studies

Genomic DNA was extracted from 200 μL of peripheral venous blood using a Qiagen DNA extraction kit (Qiagen, Hilden, Germany). Genotyping for polymorphisms of rs2228000 and rs2228001 in XPC was performed using real-time quantitative polymerase chain reaction (PCR). The TaqMan probe was designed by American Applied Bio System Inc. The rs2228000 primers were 5′-CTCTGATCCCTCTGATGAGGATTC-3′ (forward) and 5′- CCACACCGTGCACACAGTCT-3′ (reverse), the rs2228001 primers were 5-CAGAAGCGGCCAGGATACTG-3′ (forward) and 5′-TGTTCTGTAGCTCAAAGGGTGAGT-3′ (reverse). The total volume of the PCR mixture was 25 μL consisting of 1.25 μL 20× SNP Genotyping Assay, 12.5 μL 2× PCR Master Mix, and 11.25 μL DNA and DNase-free water. PCR amplification was performed using a C1000™ cycle instrument and a CFX96™ real-time system. The cycling conditions were as follows: 3 min at 95 °C for predegeneration; a total of 45 cycles of 15 s at 95 °C and 1 min at 60 °C; and 5 min at 72 °C for extension. The genotype was evaluated using BioRad CFX Manager 3.0. We used Haploview 4.2 softwares to analyze the haplotypes of these two SNPs.

Statistical methods

Statistical analysis of experimental data was performed using the Statistical Package for the Social Sciences version 23.0. Demographic and clinical data such as age, gestational age, pregnancy times, blood pressure, and abortion times were analysed using a t-test to compare differences between the controls and cases. The genotypic and allelic frequencies were compared using the chi-square test (if expected values were below 5, the Fisher’s exact test was used). The distribution of genotypic and allelic frequencies in the control group was checked using the Hardy-Weinberg equilibrium, which ensured that the data were representative of the control group. The 95% confidence intervals (CIs) and odds ratios (ORs) were used to determine the relative risk degree. Considering Bonferroni adjustments, statistical significance was set at P < 0.025 for chi-square test.

Results

Demographic and clinical characteristics

The comparison of the demographic and clinical characteristics between the PE cases and controls is presented in Table 1. No significant differences were found between the patients with PE and healthy women across maternal age, times of gravidity, and number of abortions (P > 0.05); however, patients with PE had an earlier admission and delivery gestational weeks, lower foetal weight, and higher blood pressure than the controls (P < 0.001).
Table 1
Demographic and clinical characteristics of the PE and control groups
Characteristics
PE (958)
Controls (1279)
t
P-vaule
Maternal ages
30.24 ± 3.90
30.14 ± 3.53
0.472
0.637
Times of gravidity
2.22 ± 1.28
2.23 ± 1.19
−0.161
0.872
Gestational ages
35.22 ± 3.49
39.17 ± 1.38
−34.28
< 0.01
Number of abortion
1.42 ± 0.71
1.55 ± 0.85
−2.493
< 0.001
Birth weight of offspring
2.61 ± 0.92
3.40 ± 0.38
−24.479
< 0.001
Systolic blood pressure(mmHg)
161.01 ± 18.7
114.87 ± 9.95
−72.03
< 0.001
Diastolic blood pressure(mmHg)
104.63 ± 13.73
73.51 ± 7.72
−65.52
< 0.001

Genotypic and allelic frequencies

The genotypic distribution of controls was in Hardy–Weinberg equilibrium for both SNPs (rs2228000: χ2 = 0.024, P = 0.877; rs2228001: χ2 = 0.0005, P = 0.983). Statistical analysis indicated there was statistical difference in the genetic distributions of rs2228000 in XPC between the case and control groups (genotype, χ2 = 38.961, P < 0.001 and allele χ2 = 21.746 P < 0.001, odds ratio (OR) = 0.885, 95% confidence interval (CI) = 0.840-0.932). However, rs2228001 may be not related to the occurrence of PE (genotype χ2 = 3.148, P = 0.207 and allele χ2 = 0.59, P = 0.442, OR = 1.017, 95% CI = 0.974-1.062) (Table 2).
Table 2
Genotype and allele frequencies in PE and control groups
 
Cases no.
Controls no.
χ2
P-value
OR
95%CI
rs2228000
 Genotype
  CC
189
232
38.961
< 0.001
  
  CT
510
541
    
  TT
259
503
    
  TT
259
503
37.342
< 0.001
0.686
0.606-0.777
  CC + CT
699
773
    
 Alleles
  C
888
1005
    
  T
1028
1547
21.746
< 0.001
0.885
0.840-0.932
rs2228001
 Genotype
  TT
408
545
3.148
0.207
  
  GT
444
560
    
  GG
106
171
    
  TT
408
545
0.003
0.954
0.997
0.905-1.099
  GT + GG
550
731
    
 Alleles
  T
1260
1650
0.59
0.442
1.017
0.974-1.062
  G
656
902
    
Comparing patients with mild PE with the control group, rs2228000 showed a distribution frequency difference in genotypes (for rs2228000, genotypic frequency, χ2 = 8.849, P = 0.012; allelic frequency, χ2 = 2.389, P = 0.122, OR = 0.924, 95% CI = 0.832-1.026; for rs2228001, genotype χ2 = 0.23, P = 0.892, and allele χ2 = 0.12, P = 0.729, OR = 1.016, 95% CI = 0.931-1.108). For the severe PE group and the control group, the genotype and allele frequencies of the polymorphism rs2228000 were different (for rs2228000, genotypic frequency, χ2 = 36.169, P < 0.001; allele frequency, χ2 = 22.214, P < 0.001, OR = 0.884, 95% CI = 0.827–0.926; for rs2228001, genotype χ2 = 5.012, P = 0.082, and allele χ2 = 0.001, P = 0.97, OR = 1.001, 95% CI = 0.947-1.058) (Table 3).
Table 3
Genotype and allele frequencies between mild or severe PE and control groups
Group
N
rs2228000
rs2228001
CC
CT
TT
C
T
TT
GT
GG
T
G
Mild PE
150
25
82
43
132
168
65
67
18
197
103
Control
1276
232
541
503
1005
1547
545
560
171
1650
902
χ2
 
8.849
  
2.389
 
0.23
  
0.12
 
P-value
 
0.012
  
0.122
 
0.892
  
0.729
 
OR
     
0.924
   
1.016
 
95%CI
   
0.832-1.026
  
0.931 ~ 1.108
Severe PE
808
164
428
216
756
860
343
377
88
1063
553
Control
1276
232
541
503
1005
1547
545
560
171
1650
902
χ2
 
36.139
  
22.214
 
3.361
  
0.551
 
P-value
 
< 0.001
  
< 0.001
 
0.186
  
0.458
 
OR
     
0.878
   
1.017
 
95%CI
   
0.831-0.928
  
0.972 ~ 1.065
Consistent with above results, there were significant differences in genetic distribution of rs2228000 between control group and early-onset PE group (genotype: χ2 = 13.286 P = 0.001; allelic: χ2 = 9.098, P = 0.003, OR = 0.909, 95% CI = 0.852-0.969) or lately-onset PE group (genotype: χ2 = 48.54 P < 0.001; allelic: χ2 = 14, P < 0.001, OR = 0.884, 95% CI = 0.827-0.926). No differences in the genetic distribution of rs228001 were found between the early-onset PE group and the control group (genotypic χ2 = 1.43, P = 0.489; allelic χ2 = 1.388, P = 0.239, OR = 1.033, 95% CI = 0.98–1.089). Comparing the genotypic and allelic frequencies of the late-onset and control groups of rs2228001, no differences were found in genotypic frequency (χ2 = 5.012, P = 0.082) and allelic frequency (χ2 = 0.001, P = 0.97, OR = 1.001, 95% CI = 0.947-1.058) (Table 4).
Table 4
Genotype and allele frequencies between early-onset or late-onset PE and control
Group
N
rs2228000
rs2228001
CC
CT
TT
C
T
TT
GT
GG
T
G
Early-onset PE
486
112
226
148
450
522
219
211
56
649
323
Control
1276
232
541
503
1005
1547
545
560
171
1650
902
χ2
 
13.286
  
9.098
 
1.43
  
1.388
 
P-value
 
0.001
  
0.003
 
0.489
  
0.239
 
OR
     
0.909
   
1.033
 
95%CI
   
0.852-0.969
  
0.98-1.089
 
Late-onset PE
472
77
284
111
438
506
189
233
50
611
333
Control
1276
232
541
503
1005
1547
545
560
171
1650
902
χ2
 
48.54
  
14
 
5.012
  
0.001
 
P-value
 
< 0.001
  
< 0.001
 
0.082
  
0.97
 
OR
     
0.884
   
1.001
 
95%CI
   
0.827 ~ 0.926
  
0.947-1.058
 
In addition, we performed interaction and haplotype analysis of these two SNPs and found that there is an linkage disequilibrium between these two loci (Fig. 2) and that haplotypes of AC and AT may be involved in the pathogenesis of PE (Table 5) (AC: χ2 = 21.75, P < 0.001; AT: χ2 = 21.37, P < 0.001).
Table 5
Relationship between haplotype interaction and PE
Haplotype
Frequency
χ2
P-value
TT
0.424
21.75
< 0.001
GT
0.349
0.59
0.44
GC
0.228
21.37
< 0.001

Discussion

There are many studies on the role of genetic polymorphisms in susceptibility to female diseases such as uterine fibroids, recurrent spontaneous abortion, and polycystic ovary syndrome (PCOS). The levels of anti-Müllerian hormone (AMH) were found to be significantly higher in patients with PCOS than in healthy women; however, findings regarding the association between AMH polymorphisms and the development of PCOS were inconsistent. Therefore, Wang et al. conducted a meta-analysis of five studies and found that AMH genetic variants may not be related to PCOS risk [18]. A genome-wide association study in a Japanese population revealed that nine SNP loci were considered risk factors for uterine leiomyoma, further indicating the important role of genetic factors in uterine leiomyoma [19]. Salimi et al. [20] suggested that SNPs of the HOX transcript antisense RNA gene, such as rs12826786, rs920778, and rs1899663, are related to the development of RSA. Previous studies have reported that women whose mothers and sisters have a history of PE have an elevated risk of PE, which provides evidence for the important role of genetic factors in PE. A common complication of pregnancy, PE is responsible for 7 to 10% of maternal morbidity worldwide [2123], and is caused by many factors, including endothelial damage, inflammatory response, oxidative stress, and placental factors; among which the role of oxidative stress should not be ignored [5, 24]. Patients with PE are in a state of increased oxidative stress, and excessive amounts of oxidants can result in damage to lipids, proteins, and DNA. Damaged DNA can be repaired by DNA repair mechanisms, which are essential for the stability of the genetic material.
However, only a few studies have reported an association between DNA repair system polymorphisms and PE risk. A previous study has shown that in the Iranian population, Arg399Gln of X-ray repair cross-complementing group 1 (XRCC1) is associated with PE susceptibility, and the allele 399Gln is considered a risk factor for PE [25]. This result contradicted another study in the Mexican population in which xeroderma pigmentosum group D (XPD) Lys751Gln, XRCC Arg399Gln, and XRCC3 Thr241Met polymorphisms were not associated with the risk of PE [26]. This discrepancy in results may be due to racial differences. Moslehi et al. found positive links between specific XPD variants in the foetal genome and the risk of placental maldevelopment and PE [27]. Among the Turkish population, Vural et al. studied three SNP sites on DNA repair genes in XRCC1, Apurinic endonuclease 1, and XPD, indicating that these three SNPs may not be related to the onset of PE [28]. Although the study included important genes in the DNA repair system, its small sample size limited its representativeness. In our previous study, we investigated the association between polymorphisms of the other three core genes in the nucleotide excision repair pathway and PE risk and found that XPA rs1800975, XPF rs1799801, and XPG rs17655 were not significantly correlated with the risk of PE as a whole in Chinese Han women [29].
As an initiator of the nucleotide excision repair process, XPC, located in the short arm of chromosome 3 (3p25), plays a key role in DNA damage recognition by binding to the radiation repair 23 B (RAD23B) protein to form the XPC-RAD23B complex. Relevant studies have found that the expression of XPC can downregulate the expression of ROS and lead to a change in metabolism [15]. In addition, many studies have indicated that XPC polymorphisms are associated with the risk of oesophageal squamous cell carcinoma and gastric cardiac adenocarcinoma [30]. Therefore, we hypothesised that the genetic polymorphism of XPC is related to the occurrence of PE to explore the possible pathogenesis of PE.
In our study, 1276 normal pregnant women and 958 patients with PE were enrolled. Genotyping of the two loci rs2228000 and rs2228001 in XPC, found that there were significant differences in genotypic and allelic frequencies of rs2228000 between the PE and control groups, and allele T may act as a protect factor. However, no difference was observed in rs2228001 between two groups. To further explore the relationship between them, PE was divided into mild and severe and early-onset and late-onset PE categories. The results generally consistent with those of the large sample data. Then, haplotype analysis showed that AC and AT may be associated with the pathogenesis of PE. Therefore, this study suggests that rs228000 in XPC may be associated with the risk of PE in Chinese Han women and allele T was considered as a protective factor in the pathogenesis of PE.
As PE is a complex and polygenetic hereditary disease, determined by both genetic and environmental factors as well as their interactions, the influence of environmental risk factors for PE should not be ignored in our study. Moreover, our results might also be affected by racial and regional differences, suggesting that we should enlarge the scale of subjects and explore more susceptibility genes of PE from multiple regions, to provide the basis for the pathogenesis of PE from the perspective of genetic analysis. Thus, further research is needed to determine the relationship between XPC and PE.

Acknowledgements

I would like to express my gratitude to all those who helped me during the writing of this manuscript. We would like to thank Editage (www.​editage.​cn) for English language editing.

Declarations

The study was approved by the ethics committee of Affiliated Hospital of Qingdao University, and informed consent were obtained from all subjects. All methods were carried out in accordance with relevant guidelines and regulations.
Not applicable.

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat ACOG Practice Bulletin No. 202. Gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133(1):1. ACOG Practice Bulletin No. 202. Gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133(1):1.
2.
Zurück zum Zitat Wang H, Guo M, Liu F, Wang J, Zhou Z, Ji J, et al. Role of IL-17 variants in preeclampsia in Chinese Han women. PLoS One. 2015;10(10):e0140118.CrossRef Wang H, Guo M, Liu F, Wang J, Zhou Z, Ji J, et al. Role of IL-17 variants in preeclampsia in Chinese Han women. PLoS One. 2015;10(10):e0140118.CrossRef
3.
Zurück zum Zitat Daglar K, Kirbas A, Timur H, Ozturk Inal Z, Danisman N. Placental levels of total oxidative and anti-oxidative status, ADAMTS-12 and decorin in early- and late-onset severe preeclampsia. J Matern Fetal Neonatal Med. 2016;29(24):4059–64.CrossRef Daglar K, Kirbas A, Timur H, Ozturk Inal Z, Danisman N. Placental levels of total oxidative and anti-oxidative status, ADAMTS-12 and decorin in early- and late-onset severe preeclampsia. J Matern Fetal Neonatal Med. 2016;29(24):4059–64.CrossRef
4.
Zurück zum Zitat Xuan J, Jing Z, Yuanfang Z, Xiaoju H, Pei L, Guiyin J, et al. Comprehensive analysis of DNA methylation and gene expression of placental tissue in preeclampsia patients. Hypertens Pregnancy. 2016;35(1):129–38.CrossRef Xuan J, Jing Z, Yuanfang Z, Xiaoju H, Pei L, Guiyin J, et al. Comprehensive analysis of DNA methylation and gene expression of placental tissue in preeclampsia patients. Hypertens Pregnancy. 2016;35(1):129–38.CrossRef
6.
Zurück zum Zitat Thompson L, West M. XRCC1 keeps DNA from getting stranded. Mutat Res. 2000;459(1):1–18.CrossRef Thompson L, West M. XRCC1 keeps DNA from getting stranded. Mutat Res. 2000;459(1):1–18.CrossRef
7.
Zurück zum Zitat Zalba G, San Jose G, Moreno MU, Fortuno A, Diez J. NADPH oxidase-mediated oxidative stress: genetic studies of the p22(phox) gene in hypertension. Antioxid Redox Signal. 2005;7(9-10):1327–36.CrossRef Zalba G, San Jose G, Moreno MU, Fortuno A, Diez J. NADPH oxidase-mediated oxidative stress: genetic studies of the p22(phox) gene in hypertension. Antioxid Redox Signal. 2005;7(9-10):1327–36.CrossRef
8.
Zurück zum Zitat Kolesnikova SA, Eremina AI, Kustova MV, Muzyko EA, Dudchenko GP, Perfilova VN, et al. Evaluation of DNA damage in experimental preeclampsia by comet assay. Bull Exp Biol Med. 2018;164(5):605–8.CrossRef Kolesnikova SA, Eremina AI, Kustova MV, Muzyko EA, Dudchenko GP, Perfilova VN, et al. Evaluation of DNA damage in experimental preeclampsia by comet assay. Bull Exp Biol Med. 2018;164(5):605–8.CrossRef
9.
Zurück zum Zitat Tadesse S, Kidane D, Guller S, Luo T, Norwitz N, Arcuri F, et al. In vivo and in vitro evidence for placental DNA damage in preeclampsia. PLoS One. 2014;9(1):e86791.CrossRef Tadesse S, Kidane D, Guller S, Luo T, Norwitz N, Arcuri F, et al. In vivo and in vitro evidence for placental DNA damage in preeclampsia. PLoS One. 2014;9(1):e86791.CrossRef
10.
Zurück zum Zitat Takagi Y, Nikaido T, Toki T, Kita N, Kanai M, Ashida T, et al. Levels of oxidative stress and redox-related molecules in the placenta in preeclampsia and fetal growth restriction. Virchows Archiv. 2004;444(1):49–55.CrossRef Takagi Y, Nikaido T, Toki T, Kita N, Kanai M, Ashida T, et al. Levels of oxidative stress and redox-related molecules in the placenta in preeclampsia and fetal growth restriction. Virchows Archiv. 2004;444(1):49–55.CrossRef
11.
Zurück zum Zitat Frosina G. Overexpression of enzymes that repair endogenous damage to DNA. Eur J Biochem. 2000;267(8):2135–49.CrossRef Frosina G. Overexpression of enzymes that repair endogenous damage to DNA. Eur J Biochem. 2000;267(8):2135–49.CrossRef
12.
Zurück zum Zitat Melis JP, Kuiper RV, Zwart E, Robinson J, Pennings JL, van Oostrom CT, et al. Slow accumulation of mutations in Xpc−/− mice upon induction of oxidative stress. DNA Repair (Amst). 2013;12(12):1081–6.CrossRef Melis JP, Kuiper RV, Zwart E, Robinson J, Pennings JL, van Oostrom CT, et al. Slow accumulation of mutations in Xpc−/− mice upon induction of oxidative stress. DNA Repair (Amst). 2013;12(12):1081–6.CrossRef
13.
Zurück zum Zitat Hosseini M, Mahfouf W, Serrano-Sanchez M, Raad H, Harfouche G, Bonneu M, et al. Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice. J Invest Dermatol. 2015;135(4):1108–18.CrossRef Hosseini M, Mahfouf W, Serrano-Sanchez M, Raad H, Harfouche G, Bonneu M, et al. Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice. J Invest Dermatol. 2015;135(4):1108–18.CrossRef
14.
Zurück zum Zitat Berra CM, de Oliveira CS, Garcia CC, Rocha CR, Lerner LK, Lima LC, et al. Nucleotide excision repair activity on DNA damage induced by photoactivated methylene blue. Free Radic Biol Med. 2013;61:343–56.CrossRef Berra CM, de Oliveira CS, Garcia CC, Rocha CR, Lerner LK, Lima LC, et al. Nucleotide excision repair activity on DNA damage induced by photoactivated methylene blue. Free Radic Biol Med. 2013;61:343–56.CrossRef
15.
Zurück zum Zitat Rezvani HR, Rossignol R, Ali N, Benard G, Tang X, Yang HS, et al. XPC silencing in normal human keratinocytes triggers metabolic alterations through NOX-1 activation-mediated reactive oxygen species. Biochim Biophys Acta. 2011;1807(6):609–19.CrossRef Rezvani HR, Rossignol R, Ali N, Benard G, Tang X, Yang HS, et al. XPC silencing in normal human keratinocytes triggers metabolic alterations through NOX-1 activation-mediated reactive oxygen species. Biochim Biophys Acta. 2011;1807(6):609–19.CrossRef
16.
Zurück zum Zitat Ji G, Lin Y, Cao SY, Li LZ, Chen XL, Sun BM, et al. XPC 939A>C and 499C>T polymorphisms and skin cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2012;13(10):4983–8.CrossRef Ji G, Lin Y, Cao SY, Li LZ, Chen XL, Sun BM, et al. XPC 939A>C and 499C>T polymorphisms and skin cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2012;13(10):4983–8.CrossRef
17.
Zurück zum Zitat Dai Y, Song Z, Zhang J, Gao W. Comprehensive assessment of the association between XPC rs2228000 and cancer susceptibility based on 26835 cancer cases and 37069 controls. Biosci Rep. 2019;39(12):BSR20192452. https://doi.org/10.1042/BSR20192452. Dai Y, Song Z, Zhang J, Gao W. Comprehensive assessment of the association between XPC rs2228000 and cancer susceptibility based on 26835 cancer cases and 37069 controls. Biosci Rep. 2019;39(12):BSR20192452. https://​doi.​org/​10.​1042/​BSR20192452.
18.
Zurück zum Zitat Wang F, Niu WB, Kong HJ, Guo YH, Sun YP. The role of AMH and its receptor SNP in the pathogenesis of PCOS. Mol Cell Endocrinol. 2017;439:363–8.CrossRef Wang F, Niu WB, Kong HJ, Guo YH, Sun YP. The role of AMH and its receptor SNP in the pathogenesis of PCOS. Mol Cell Endocrinol. 2017;439:363–8.CrossRef
19.
Zurück zum Zitat Sakai K, Tanikawa C, Hirasawa A, Chiyoda T, Yamagami W, Kataoka F, et al. Identification of a novel uterine leiomyoma GWAS locus in a Japanese population. Sci Rep. 2020;10(1):1197.CrossRef Sakai K, Tanikawa C, Hirasawa A, Chiyoda T, Yamagami W, Kataoka F, et al. Identification of a novel uterine leiomyoma GWAS locus in a Japanese population. Sci Rep. 2020;10(1):1197.CrossRef
20.
Zurück zum Zitat Salimi S, Sargazi S, Heidari Nia M, Mirani Sargazi F, Ghasemi M. Genetic variants of HOTAIR are associated with susceptibility to recurrent spontaneous abortion: A preliminary case-control study. J Obstet Gynaecol Res. 2021;47(11):3767–78. https://doi.org/10.1111/jog.14977. Salimi S, Sargazi S, Heidari Nia M, Mirani Sargazi F, Ghasemi M. Genetic variants of HOTAIR are associated with susceptibility to recurrent spontaneous abortion: A preliminary case-control study. J Obstet Gynaecol Res. 2021;47(11):3767–78. https://​doi.​org/​10.​1111/​jog.​14977.
21.
Zurück zum Zitat Ge J, Wang J, Zhang F, Diao B, Song ZF, Shan LL, et al. Correlation between MTHFR gene methylation and pre-eclampsia, and its clinical significance. Genet Mol Res. 2015;14(3):8021–8.CrossRef Ge J, Wang J, Zhang F, Diao B, Song ZF, Shan LL, et al. Correlation between MTHFR gene methylation and pre-eclampsia, and its clinical significance. Genet Mol Res. 2015;14(3):8021–8.CrossRef
22.
Zurück zum Zitat Ye W, Shen L, Xiong Y, Zhou Y, Gu H, Yang Z. Preeclampsia is associated with decreased methylation of the GNA12 promoter. Ann Hum Genet. 2016;80(1):7–10.CrossRef Ye W, Shen L, Xiong Y, Zhou Y, Gu H, Yang Z. Preeclampsia is associated with decreased methylation of the GNA12 promoter. Ann Hum Genet. 2016;80(1):7–10.CrossRef
23.
Zurück zum Zitat Zhao X, Liu J, Zhao C, Ye P, Ji J, Wang J, et al. Association between COMT Val158Met polymorphism and preeclampsia in the Chinese Han population. Hypertens Pregnancy. 2016;35(4):565–72.CrossRef Zhao X, Liu J, Zhao C, Ye P, Ji J, Wang J, et al. Association between COMT Val158Met polymorphism and preeclampsia in the Chinese Han population. Hypertens Pregnancy. 2016;35(4):565–72.CrossRef
24.
Zurück zum Zitat San Juan-Reyes S, Gomez-Olivan LM, Islas-Flores H, Dublan-Garcia O. Oxidative stress in pregnancy complicated by preeclampsia. Arch Biochem Biophys. 2020;681:108255.CrossRef San Juan-Reyes S, Gomez-Olivan LM, Islas-Flores H, Dublan-Garcia O. Oxidative stress in pregnancy complicated by preeclampsia. Arch Biochem Biophys. 2020;681:108255.CrossRef
25.
Zurück zum Zitat Saadat I, Beyzaei Z, Aghaei F, Kamrani S, Saadat M. Association between polymorphisms in DNA repair genes (XRCC1 and XRCC7) and risk of preeclampsia. Arch Gynecol Obstet. 2012;286(6):1459–62.CrossRef Saadat I, Beyzaei Z, Aghaei F, Kamrani S, Saadat M. Association between polymorphisms in DNA repair genes (XRCC1 and XRCC7) and risk of preeclampsia. Arch Gynecol Obstet. 2012;286(6):1459–62.CrossRef
26.
Zurück zum Zitat Sandoval-Carrillo A, Méndez-Hernández E, Vazquez-Alaniz F, Aguilar-Durán M, Téllez-Valencia A, Barraza-Salas M, et al. Polymorphisms in DNA repair genes (APEX1, XPD, XRCC1 and XRCC3) and risk of preeclampsia in a Mexican mestizo population. Int J Mol Sci. 2014;15(3):4273–83.CrossRef Sandoval-Carrillo A, Méndez-Hernández E, Vazquez-Alaniz F, Aguilar-Durán M, Téllez-Valencia A, Barraza-Salas M, et al. Polymorphisms in DNA repair genes (APEX1, XPD, XRCC1 and XRCC3) and risk of preeclampsia in a Mexican mestizo population. Int J Mol Sci. 2014;15(3):4273–83.CrossRef
27.
Zurück zum Zitat Moslehi R, Kumar A, Mills JL, Ambroggio X, Signore C, Dzutsev A. Phenotype-specific adverse effects of XPD mutations on human prenatal development implicate impairment of TFIIH-mediated functions in placenta. Eur J Hum Genet. 2012;20(6):626–31.CrossRef Moslehi R, Kumar A, Mills JL, Ambroggio X, Signore C, Dzutsev A. Phenotype-specific adverse effects of XPD mutations on human prenatal development implicate impairment of TFIIH-mediated functions in placenta. Eur J Hum Genet. 2012;20(6):626–31.CrossRef
28.
Zurück zum Zitat Vural P, Değirmencioğlu S, Doğru-Abbasoğlu S, Saral N, Akgül C, Uysal M. Genetic polymorphisms in DNA repair gene APE1, XRCC1 and XPD and the risk of pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2009;146(2):160–4.CrossRef Vural P, Değirmencioğlu S, Doğru-Abbasoğlu S, Saral N, Akgül C, Uysal M. Genetic polymorphisms in DNA repair gene APE1, XRCC1 and XPD and the risk of pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2009;146(2):160–4.CrossRef
29.
Zurück zum Zitat Wang H, Liu J, Zhang R, Liu Y, Ren X, Gao K, et al. The relationship between DNA repair genes (XPA, XPF, XPG) polymorphism and the risk of preeclampsia in Chinese Han women. Pregnancy Hypertens. 2018;14:145–9.CrossRef Wang H, Liu J, Zhang R, Liu Y, Ren X, Gao K, et al. The relationship between DNA repair genes (XPA, XPF, XPG) polymorphism and the risk of preeclampsia in Chinese Han women. Pregnancy Hypertens. 2018;14:145–9.CrossRef
30.
Metadaten
Titel
Association between polymorphisms rs2228001 and rs2228000 in XPC and genetic susceptibility to preeclampsia: a case control study
verfasst von
Jingli Wang
Chengcheng Guan
Jing Sui
Yucui Zang
Yuwen Wu
Ru Zhang
Xiaoying Qi
Shunfu Piao
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Pregnancy and Childbirth / Ausgabe 1/2021
Elektronische ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-021-04242-1

Weitere Artikel der Ausgabe 1/2021

BMC Pregnancy and Childbirth 1/2021 Zur Ausgabe

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Neue S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.